1
|
Di Francesco D, Marcello E, Casarella S, Copes F, Chevallier P, Carmagnola I, Mantovani D, Boccafoschi F. Characterization of a decellularized pericardium extracellular matrix hydrogel for regenerative medicine: insights on animal-to-animal variability. Front Bioeng Biotechnol 2024; 12:1452965. [PMID: 39205858 PMCID: PMC11350490 DOI: 10.3389/fbioe.2024.1452965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation. Moreover, the choice of tissue source, decellularization and solubilization protocols leads to differences in dECM-derived hydrogels. In this context, detailed characterization of chemical, physical and biological properties of the hydrogels should be performed, with attention to how these properties can be affected by animal-to-animal variability. Herein, we report a detailed characterization of a hydrogel derived from the decellularized extracellular matrix of bovine pericardium (dBP). Protein content, rheological properties, injectability, surface microstructure, in vitro stability and cytocompatibility were evaluated, with particular attention to animal-to-animal variability. The gelation process showed to be thermoresponsive and the obtained dBP hydrogels are injectable, porous, stable up to 2 weeks in aqueous media, rapidly degrading in enzymatic environment and cytocompatible, able to maintain cell viability in human mesenchymal stromal cells. Results from proteomic analysis proved that dBP hydrogels are highly rich in composition, preserving bioactive proteoglycans and glycoproteins in addition to structural proteins such as collagen. With respect to the chemical composition, animal-to-animal variability was shown, but the biological properties were not affected, which remained consistent in different batches. Taken together these results show that dBP hydrogels are excellent candidates for regenerative medicine applications.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
2
|
Lopera Higuita M, Shortreed NA, Dasari S, Griffiths LG. Basement Membrane of Tissue Engineered Extracellular Matrix Scaffolds Modulates Rapid Human Endothelial Cell Recellularization and Promote Quiescent Behavior After Monolayer Formation. Front Bioeng Biotechnol 2022; 10:903907. [PMID: 35983533 PMCID: PMC9379346 DOI: 10.3389/fbioe.2022.903907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Off-the-shelf small diameter vascular grafts are an attractive alternative to eliminate the shortcomings of autologous tissues for vascular grafting. Bovine saphenous vein (SV) extracellular matrix (ECM) scaffolds are potentially ideal small diameter vascular grafts, due to their inherent architecture and signaling molecules capable of driving repopulating cell behavior and regeneration. However, harnessing this potential is predicated on the ability of the scaffold generation technique to maintain the delicate structure, composition, and associated functions of native vascular ECM. Previous de-cellularization methods have been uniformly demonstrated to disrupt the delicate basement membrane components of native vascular ECM. The antigen removal (AR) tissue processing method utilizes the protein chemistry principle of differential solubility to achieve a step-wise removal of antigens with similar physiochemical properties. Briefly, the cellular components of SV are permeabilized and the actomyosin crossbridges are relaxed, followed by lipophilic antigen removal, sarcomeric disassembly, hydrophilic antigen removal, nuclease digestion, and washout. Here, we demonstrate that bovine SV ECM scaffolds generated using the novel AR approach results in the retention of native basement membrane protein structure, composition (e.g., Collagen IV and laminin), and associated cell modulatory function. Presence of basement membrane proteins in AR vascular ECM scaffolds increases the rate of endothelial cell monolayer formation by enhancing cell migration and proliferation. Following monolayer formation, basement membrane proteins promote appropriate formation of adherence junction and apicobasal polarization, increasing the secretion of nitric oxide, and driving repopulating endothelial cells toward a quiescent phenotype. We conclude that the presence of an intact native vascular basement membrane in the AR SV ECM scaffolds modulates human endothelial cell quiescent monolayer formation which is essential for vessel homeostasis.
Collapse
|
3
|
Nguyen MTN, Tran HLB. In-Vitro Endothelialization Assessment of Heparinized Bovine Pericardial Scaffold for Cardiovascular Application. Polymers (Basel) 2022; 14:polym14112156. [PMID: 35683829 PMCID: PMC9182580 DOI: 10.3390/polym14112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Hemocompatibility is a critical challenge for tissue-derived biomaterial when directly contacting the bloodstream. In addition to surface modification with heparin, endothelialization of the grafted material is suggested to improve long-term clinical efficacy. This study aimed to evaluate the ability to endothelialize in vitro of heparinized bovine pericardial scaffolds. (2) Methods: bovine pericardial scaffolds were fabricated and heparinized using a layer-by-layer assembly technique. The heparinized scaffolds were characterized for heparin content, surface morphology, and blood compatibility. Liquid extraction of the samples was prepared for cytotoxicity testing on human endothelial cells. The in-vitro endothelialization was determined via human endothelial cell attachment and proliferation on the scaffold. (3) Results: The heparinized bovine pericardial scaffold exhibited a heparin coating within its microfiber network. The scaffold surface immobilized with heparin performed good anti-thrombosis and prevented platelet adherence. The proper cytotoxicity impact was observed for a freshly used heparinized sample. After 24 h washing in PBS 1X, the cell compatibility of the heparinized scaffolds was improved. In-vitro examination results exhibited human endothelial cell attachment and proliferation for 7 days of culture. (4) Conclusions: Our in-vitro analysis provided evidence for the scaffold's ability to support endothelialization, which benefits long-term thromboresistance.
Collapse
Affiliation(s)
- My Thi Ngoc Nguyen
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City 700000, Vietnam;
- Department of Physiology and Animal Biotechnology, Faculty of Biology—Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Ha Le Bao Tran
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City 700000, Vietnam;
- Department of Physiology and Animal Biotechnology, Faculty of Biology—Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Correspondence:
| |
Collapse
|
4
|
Shotgun Immunoproteomics for Identification of Nonhuman Leukocyte Antigens Associated With Cellular Dysfunction in Heart Transplant Rejection. Transplantation 2021; 106:1376-1389. [PMID: 34923540 DOI: 10.1097/tp.0000000000004012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The International Society for Heart and Lung Transplant consensus panel notes that too little data exist regarding the role of non-HLA in allograft rejection. We developed a novel shotgun immunoproteomic approach to determine the identities and potential roles non-HLA play in antibody-mediated rejection (AMR) in heart transplant recipients. METHODS Serum was collected longitudinally from heart transplant recipients experiencing AMR in the absence of donor-specific anti-HLA antibodies (n = 6) and matched no rejection controls (n = 7). Antidonor heart affinity chromatography columns were formed by recipient immunoglobulin G immobilization at transplantation, acute rejection, and chronic postrejection time points. Affinity chromatography columns were used to capture antigens from individual patient's donor heart biopsies collected at transplantation. Captured proteins were subjected to quantitative proteomic analysis and the longitudinal response was calculated. RESULTS Overlap in antigen-specific response between AMR and non-AMR patients was only 8.3%. In AMR patients, a total of 155 non-HLAs were identified, with responses toward 43 high prevalence antigens found in ≥50% of patients. Immunofluorescence staining for representative high prevalence antigens demonstrated that their abundance increased at acute rejection, correlating with their respective non-HLA antibody response. Physiological changes in cardiomyocyte and endothelial cell function, following in vitro culture with patient immunoglobulin G, correlated with response toward several high prevalence antigens. CONCLUSIONS This work demonstrates a novel high-throughput strategy to identify clinically relevant non-HLA from donor endomyocardial biopsy. Such a technique has the potential to improve understanding of longitudinal timing of antigen-specific responses and their cause and effect relationship in graft rejection.
Collapse
|
5
|
Williams DF, Bezuidenhout D, de Villiers J, Human P, Zilla P. Long-Term Stability and Biocompatibility of Pericardial Bioprosthetic Heart Valves. Front Cardiovasc Med 2021; 8:728577. [PMID: 34589529 PMCID: PMC8473620 DOI: 10.3389/fcvm.2021.728577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
The use of bioprostheses for heart valve therapy has gradually evolved over several decades and both surgical and transcatheter devices are now highly successful. The rapid expansion of the transcatheter concept has clearly placed a significant onus on the need for improved production methods, particularly the pre-treatment of bovine pericardium. Two of the difficulties associated with the biocompatibility of bioprosthetic valves are the possibilities of immune responses and calcification, which have led to either catastrophic failure or slow dystrophic changes. These have been addressed by evolutionary trends in cross-linking and decellularization techniques and, over the last two decades, the improvements have resulted in somewhat greater durability. However, as the need to consider the use of bioprosthetic valves in younger patients has become an important clinical and sociological issue, the requirement for even greater longevity and safety is now paramount. This is especially true with respect to potential therapies for young people who are afflicted by rheumatic heart disease, mostly in low- to middle-income countries, for whom no clinically acceptable and cost-effective treatments currently exist. To extend longevity to this new level, it has been necessary to evaluate the mechanisms of pericardium biocompatibility, with special emphasis on the interplay between cross-linking, decellularization and anti-immunogenicity processes. These mechanisms are reviewed in this paper. On the basis of a better understanding of these mechanisms, a few alternative treatment protocols have been developed in the last few years. The most promising protocol here is based on a carefully designed combination of phases of tissue-protective decellularization with a finely-titrated cross-linking sequence. Such refined protocols offer considerable potential in the progress toward superior longevity of pericardial heart valves and introduce a scientific dimension beyond the largely disappointing 'anti-calcification' treatments of past decades.
Collapse
Affiliation(s)
- David F. Williams
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Deon Bezuidenhout
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | | | - Paul Human
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Peter Zilla
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Biological Characterization of Human Autologous Pericardium Treated with the Ozaki Procedure for Aortic Valve Reconstruction. J Clin Med 2021; 10:jcm10173954. [PMID: 34501402 PMCID: PMC8432048 DOI: 10.3390/jcm10173954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The Ozaki procedure is an innovative surgical technique aiming at reconstructing aortic valves with human autologous pericardium. Even if this procedure is widely used, a comprehensive biological characterization of the glutaraldehyde (GA)-fixed pericardial tissue is still missing. Methods: Morphological analysis was performed to assess the general organization of pericardium subjected to the Ozaki procedure (post-Ozaki) in comparison to native tissue (pre-Ozaki). The effect of GA treatment on cell viability and nuclear morphology was then investigated in whole biopsies and a cytotoxicity assay was executed to assess the biocompatibility of pericardium. Finally, human umbilical vein endothelial cells were seeded on post-Ozaki samples to evaluate the influence of GA in modulating the endothelialization ability in vitro and the production of pro-inflammatory mediators. Results: The Ozaki procedure alters the arrangement of collagen and elastic fibers in the extracellular matrix and results in a significant reduction in cell viability compared to native tissue. GA treatment, however, is not cytotoxic to murine fibroblasts as compared to a commercially available bovine pericardium membrane. In addition, in in vitro experiments of endothelial cell adhesion, no difference in the inflammatory mediators with respect to the commercial patch was found. Conclusions: The Ozaki procedure, despite alteration of ECM organization and cell devitalization, allows for the establishment of a noncytotoxic environment in which endothelial cell repopulation occurs.
Collapse
|
7
|
Tao C, Wang D. Tissue Engineering for Mimics and Modulations of Immune Functions. Adv Healthc Mater 2021; 10:e2100146. [PMID: 33871178 DOI: 10.1002/adhm.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Indexed: 11/12/2022]
Abstract
In the field of regenerative medicine, advances in tissue engineering have surpassed the reconstruction of individual tissues or organs and begun to work towards engineering systemic factors such as immune objects and functions. The immune system plays a crucial role in protecting and regulating systemic functions in the human body. Engineered immune tissues and organs have shown potential in recovering dysfunctions and aplasia of the immune system and the evasion from immune-mediated inflammatory responses and rejection elicited by engineered implants from allogeneic or xenogeneic sources are also being pursued to facilitate clinical transplantation of tissue engineered grafts. Here, current progress in tissue engineering to mimic or modulate immune functions is reviewed and elaborated from two perspectives: 1) engineering of immune tissues and organs per se and 2) immune evasion of host immunoinflammatory rejection by tissue-engineered implants.
Collapse
Affiliation(s)
- Chao Tao
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Dong‐An Wang
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR China
- Karolinska Institute Ming Wai Lau Centre for Reparative Medicine HKSTP Sha Tin Hong Kong SAR China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
8
|
Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110:68-81. [PMID: 32305447 PMCID: PMC7294167 DOI: 10.1016/j.actbio.2020.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Autologous grafts are the current gold standard of care for coronary artery bypass graft surgeries, but are limited by availability and plagued by high failure rates. Similarly, tissue engineering approaches to small diameter vascular grafts using naturally derived and synthetic materials fall short, largely due to inappropriate mechanical properties. Alternatively, decellularized extracellular matrix from tissue is biocompatible and has comparable strength to vessels, while poly(propylene fumarate) (PPF) has shown promising results for vascular grafts. This study investigates the integration of decellularized pericardial extracellular matrix (dECM) and PPF to create a biohybrid scaffold (dECM+PPF) suitable for use as a small diameter vascular graft. Our method to decellularize the ECM was efficient at removing DNA content and donor variability, while preserving protein composition. PPF was characterized and added to dECM, where it acted to preserve dECM against degradative effects of collagenase without disturbing the material's overall mechanics. A transport study showed that diffusion occurs across dECM+PPF without any effect from collagenase. The modulus of dECM+PPF matched that of human coronary arteries and saphenous veins. dECM+PPF demonstrated ample circumferential stress, burst pressure, and suture retention strength to survive in vivo. An in vivo study showed re-endothelialization and tissue growth. Overall, the dECM+PPF biohybrid presents a robust solution to overcome the limitations of the current methods of treatment for small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: In creating a dECM+PPF biohybrid graft, we have observed phenomena that will have a lasting impact within the scientific community. First, we found that we can reduce donor variability through decellularization, a unique use of the decellularization process. Additionally, we coupled a natural material with a synthetic polymer to capitalize on the benefits of each: the cues provided to cells and the ability to easily tune material properties, respectively. This principle can be applied to other materials in a variety of applications. Finally, we created an off-the-shelf alternative to autologous grafts with a newly developed material that has yet to be utilized in any scaffolds. Furthermore, bovine pericardium has not been investigated as a small diameter vascular graft.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jules D Allbritton-King
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Javier Navarro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Takahiro Inoue
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Narutoshi Hibino
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
9
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|