1
|
Høyvik AJK, Kvassheim M, Ma LW, Wiig E, Hillestad T, Revheim ME, Liukaityte R, Bruland Ø, Juzeniene A. Therapeutic evaluation of [ 212Pb]Pb-AB001 and [ 177Lu]Lu-PSMA-617 in a mouse model of disseminated prostate cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07330-y. [PMID: 40397137 DOI: 10.1007/s00259-025-07330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) frequently leads to bone and soft tissue metastases, leading to poor prognosis. The beta-emitting radioligand [177Lu]Lu-PSMA-617 targets the prostate-specific membrane antigen (PSMA) and may be less efficient against micrometastatic disease. The alpha-emitting radioligand [212Pb]Pb-AB001 could offer enhanced treatment by delivering high energy over a short range. This study compared the efficacy of [212Pb]Pb-AB001 and [177Lu]Lu-PSMA-617 in a mouse model of disseminated prostate cancer. METHODS Binding and internalisation of radioligands were evaluated in PC-3 PIP-luc cells. A mouse model was established by intracardiac injection of these cells. Treatments with 0.24‒1.0 MBq [212Pb]Pb-AB001 or 22‒66 MBq [177Lu]Lu-PSMA-617 were initiated 7 d post-cell inoculation. Metastatic burden was measured using bioluminescence imaging, and PSMA-targeted uptake was determined with [18F]F-PSMA-1007 µPET/µCT. Gamma-autoradiography evaluated [212Pb]Pb-AB001 distribution, and bone metastases were identified by radiography. RESULTS Both radioligands displayed comparable in vitro binding. In vivo studies revealed metastatic formation in clinically relevant organs. µPET/µCT demonstrated increased [18F]F-PSMA-1007 uptake in metastases, matching the bioluminescence imaging results. Focal [212Pb]Pb-AB001 distribution in the metastatic xenograft indicated heterogeneously distributed micrometastases in the organs. A median survival up to 47 d was achieved with [212Pb]Pb-AB001, compared to 25 d for controls and 27 d for [177Lu]Lu-PSMA-617. An activity-dependent reduction in bone metastases was observed for [177Lu]Lu-PSMA-617, while no bone lesions were detected in [212Pb]Pb-AB001-treated mice. CONCLUSION [212Pb]Pb-AB001 showed significant efficacy against micrometastases and advantages over [177Lu]Lu-PSMA-617 in preventing or treating early bone metastases for the investigated injected activities. This implies clinical potential for treating mCRPC, including patients at risk of early metastatic disease, but further studies including dosimetry and toxicity analyses are required with regards to activity levels.
Collapse
Affiliation(s)
- Anna Julie Kjøl Høyvik
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- ARTBIO AS, Oslo, 0379, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, 0318, Norway
| | - Monika Kvassheim
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, 0318, Norway
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, 0379, Norway
| | - Li-Wei Ma
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Elisabeth Wiig
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Tiril Hillestad
- Department of Core Facilities, Institute for Cancer Research and Molecular Imaging, Oslo University Hospital, Oslo, 0379, Norway
| | - Mona-Elisabeth Revheim
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, 0318, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, 0372, Norway
| | - Rugile Liukaityte
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- ARTBIO AS, Oslo, 0379, Norway
| | - Øyvind Bruland
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, 0318, Norway
- Department of Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway.
- Faculty of Physics, University of Oslo, Oslo, 0318, Norway.
| |
Collapse
|
2
|
Lee J, Kim T. Current Status and Future Perspectives of Nuclear Medicine in Prostate Cancer from Imaging to Therapy: A Comprehensive Review. Biomedicines 2025; 13:1132. [PMID: 40426959 PMCID: PMC12109171 DOI: 10.3390/biomedicines13051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Nuclear medicine has emerged as a critical modality in the diagnostic and therapeutic management of urological malignancies, particularly prostate cancer. Advances in single-photon emission computed tomography/computed tomography (CT) and positron emission tomography/CT (PET/CT) have enhanced tumor assessment across staging, treatment response, and recurrence settings. Molecular imaging, which offers insights beyond traditional anatomical imaging, is increasingly integral in specific clinical scenarios. Theranostic nuclear medicine, which combines diagnostic imaging with targeted therapy, has become a well-established treatment option, particularly for patients with metastatic castration-resistant prostate cancer (mCRPC). The development of the prostate-specific membrane antigen (PSMA) radioligands has revolutionized clinical management by enabling precise disease staging and delivering effective radioligand therapy (RLT). Ongoing research aims to refine the role of PSMA PET imaging in staging and treatment monitoring, while optimizing PSMA-targeted RLT for broader clinical use. Given that prostate cancer remains highly prevalent, the anticipated increase in the demand for RLT presents both challenges and opportunities for nuclear medicine services globally. Theranostic approaches exemplify personalized medicine by enabling the tailoring of treatments to individual tumor biology, thereby improving survival outcomes and maintaining patients' quality of life with minimal toxicity. Although the current focus is on advanced disease, future research holds promise for expanding these strategies to earlier stages, potentially enhancing curative prospects. This evolving field not only signifies a paradigm shift in the care of prostate cancer patients but also underscores the growing importance of nuclear medicine in delivering precision oncology.
Collapse
Affiliation(s)
- Joohee Lee
- CHA Ilsan Medical Center, Department of Nuclear Medicine, CHA University College of Medicine, Ilsan 10414, Gyeonggi-do, Republic of Korea;
| | - Taejin Kim
- CHA Ilsan Medical Center, Department of Urology, CHA University College of Medicine, Ilsan 10414, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Mapanao AK, Busslinger SD, Mehta A, Kegler K, Favaretto C, Grundler PV, Talip Z, Köster U, Johnston K, Schibli R, van der Meulen NP, Müller C. Preclinical investigation of [ 149Tb]Tb-DOTATATE and [ 149Tb]Tb-DOTA-LM3 for tumor-targeted alpha therapy. Eur J Nucl Med Mol Imaging 2025; 52:1383-1398. [PMID: 39743617 DOI: 10.1007/s00259-024-07035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Terbium-149 is a short-lived α-particle emitter, potentially useful for tumor-targeted therapy. The aim of this study was to investigate terbium-149 in combination with the somatostatin receptor (SSTR) agonist DOTATATE and the SSTR antagonist DOTA-LM3. The radiopeptides were evaluated to compare their therapeutic efficacy in vitro and in vivo. METHODS Terbium-149 was produced at ISOLDE/CERN and chemically purified at the Paul Scherrer Institute. Radiolabeling of somatostatin analogues with [149Tb]TbCl3 was performed under standard labeling conditions at pH 4.5. Cell viability (MTT) and survival assays (colony forming) assays were performed after 16-18 h exposure of SSTR-positive AR42J rat pancreatic tumor cells to various activity concentrations of [149Tb]Tb-DOTATATE and [149Tb]Tb-DOTA-LM3. DNA double-strand breaks were determined using immunofluorescence imaging of γ-H2A.X and 53BP1. Therapy studies were performed with AR42J tumor-bearing mice injected with 1 × 5 MBq or 2 × 5 MBq of the respective radiopeptide. The tolerability of up to 40 MBq [149Tb]Tb-DOTATATE or 40 MBq [149Tb]Tb-DOTA-LM3 was assessed with regard to undesired effects to the bone marrow and kidneys in immunocompetent mice without tumors. RESULTS The radiolabeling of peptides was achieved at molar activities of up to 20 MBq/nmol at ≥ 98% radiochemical purity. AR42J cell viability was reduced in an activity-dependent manner, with [149Tb]Tb-DOTA-LM3 being slightly more potent than [149Tb]Tb-DOTATATE (EC50: 0.5 vs. 1.2 kBq/mL). Both radiopeptides induced a similar number of γ-H2A.X and 53BP1 foci per nuclei, which indicated DNA damage in AR42J tumor cells. Injection of tumor-bearing mice with 1 × 5 MBq radiopeptide resulted in median survival times of 16.5 days and 19 days for [149Tb]Tb-DOTATATE and [149Tb]Tb-DOTA-LM3, respectively, as compared to only 8 days for untreated control mice. Application of 2 × 5 MBq of the radiopeptides further extended the median survival times to 30 days and 29 days, respectively. The blood cell counts and values for blood plasma biomarkers of treated mice without tumors were similar to those of untreated controls. Renal accumulation of [99mTc]Tc-DMSA was similar in all mice, indicating normal kidney function. CONCLUSION 149Tb-based radiopeptides effectively reduced the viability of tumor cells in vitro as well as the tumor growth in mice without causing relevant adverse events, irrespective of whether the SSTR agonist or antagonist was employed. These data encourage further preclinical application of terbium-149 to evaluate its potential in combination with other tumor-targeting agents.
Collapse
Affiliation(s)
- Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Sarah D Busslinger
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Avni Mehta
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | | | - Chiara Favaretto
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Division of Nuclear Medicine, University Hospital Basel, Basel, 4031, Switzerland
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Laboratory of Radiochemistry, PSI Center for Nuclear Engineering and Sciences, Villigen-PSI, 5232, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, 38042, France
| | - Karl Johnston
- Physics Department, ISOLDE/CERN, Geneva, 1211, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Laboratory of Radiochemistry, PSI Center for Nuclear Engineering and Sciences, Villigen-PSI, 5232, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
4
|
Tosato M, Favaretto C, Kleynhans J, Burgoyne AR, Gestin JF, van der Meulen NP, Jalilian A, Köster U, Asti M, Radchenko V. Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy. Nucl Med Biol 2025; 142-143:108990. [PMID: 39809026 DOI: 10.1016/j.nucmedbio.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges. Moreover, the high cost and technical difficulties associated with handling and applying alpha-emitting radionuclides pose additional barriers to their clinical implementation. This Alpha Atlas provides an in-depth overview of the leading alpha-particle emitting radionuclide candidates for clinical use, focusing on their production processes and supply chains. By mapping the current facilities that produce and supply these radionuclides, this atlas aims to assist researchers, clinicians, and industries in initiating or scaling up the applications of alpha-emitters. The Alpha Atlas aspires to act as a strategic guide, facilitating collaboration and driving forward the integration of these potent therapeutic agents into cancer treatment practices.
Collapse
Affiliation(s)
- Marianna Tosato
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy.
| | - Chiara Favaretto
- Radiopharmacy and Cyclotron Department, IRCCS Sacro Cuore Don Calabria, Negrar 37024, Verona, Italy
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Andrew R Burgoyne
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, United States
| | - Jean-François Gestin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, 44000 Nantes, France
| | - Nicholas P van der Meulen
- PSI Center for Life Sciences, 5232 Villigen-PSI, Switzerland; PSI Center for Nuclear Engineering and Sciences, 5232 Villigen-PSI, Switzerland
| | - Amirreza Jalilian
- Department of Nuclear Safety and Security, International Atomic Energy Agency, 1220 Vienna, Austria
| | - Ulli Köster
- Institut Laue-Langevin, 38042 Grenoble, France
| | - Mattia Asti
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
6
|
Huang X, Yi N, Zhu P, Gao J, Lv J. Sorafenib-induced macrophage extracellular traps via ARHGDIG/IL4/PADI4 axis confer drug resistance through inhibiting ferroptosis in hepatocellular carcinoma. Biol Direct 2024; 19:110. [PMID: 39529192 PMCID: PMC11555812 DOI: 10.1186/s13062-024-00560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common as well as leading causes of mortality worldwide, and sorafenib is the first-line treatment in HCC patients. Unfortunately, drug resistance to sorafenib often develops. However, the underlying mechanism remains unclear. Here, we reveal the important role of macrophage extracellular traps (METs)-mediated crosstalk between macrophages and tumor cells in sorafenib resistance. METHODS METs in HCC tumor tissues were detected using immunofluorescence. The concentrations of MPO-DNA, elastase and cytokines were measured using ELISA. The mRNA expression levels of genes were confirmed by qRT-PCR. The siRNAs were conducted to knock ARHGDIG in Hepa1-6 and Hep3B cells. Western Blot assay was performed to determine protein expression of Rho GDP dissociation inhibitor gamma (ARHGDIG, or RHOGDI-3), PADI2, and PADI4. Cell viability and migration were evaluated by CCK-8 assay and transwell assay, respectively. Cell ferroptosis was assessed by measurement of Fe2+ concentration, flow cytometry assay of lipid ROS, and western blot assay of GPX4. The functions of sorafenib, DNase I, IL4 neutralization antibody and GPX4 in tumor growth were explored through in vivo experiments. RESULTS Sorafenib induced MET formation in M2 macrophages rather than M1 macrophages derived from both human and mice. In Hepa1-6 HCC mice, METs clearance by DNase I improved response to sorafenib therapy, detected by tumor weight, tumor growth curve, tumor volume, and survival. By screening candidate cytokines that affect macrophage function, we found that sorafenib-promoting IL4 secretion by HCC cells plays a crucial role in sorafenib-induced MET formation. Understanding the critical role of IL4 in sorafenib-induced MET formation led us to find that IL4 neutralization significantly improved the efficiency of sorafenib in HCC models. Mechanistically, we discovered that sorafenib increased the expression of ARHGDIG in HCC cells, which led to the release of IL4. In M2 macrophages, IL4 triggered MET formation by elevating the mRNA and protein expression of peptidyl arginine deiminase 4 (PADI4) rather than PADI2. In HCC models, GSK484 inhibition of PADI4 could consistently weaken sorafenib resistance and improve sorafenib efficiency. Importantly, we discovered that METs contribute to sorafenib resistance by inhibiting the ferroptosis of HCC cells. Meanwhile, PADI4 inhibition or DNase I could reverse the sorafenib resistance caused by METs-inhibiting ferroptosis of HCC cells. CONCLUSION Our study concludes that sorafenib-induced METs inhibit the ferroptosis of tumor cells, suggesting that targeting the IL4/PADI4/METs axis in HCC could reduce or prevent sorafenib resistance.
Collapse
Affiliation(s)
- Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Pengfei Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, People's Republic of China.
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
7
|
Ndlovu H, Mokoala KMG, Lawal I, Emmett L, Sathekge MM. Prostate-specific Membrane Antigen: Alpha-labeled Radiopharmaceuticals. PET Clin 2024; 19:371-388. [PMID: 38658230 DOI: 10.1016/j.cpet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Novel prostate-specific membrane antigen (PSMA) ligands labeled with α-emitting radionuclides are sparking a growing interest in prostate cancer treatment. These targeted alpha therapies (TATs) have attractive physical properties that deem them effective in progressive metastatic castrate-resistant prostate cancer (mCRPC). Among the PSMA TAT radiopharmaceuticals, [225Ac]Ac-PSMA has been used extensively on a compassionate basis and is currently undergoing phase I trials. Notably, TAT has the potential to improve quality of life and has favorable antitumor activity and outcomes in multiple scenarios other than in mCRPC. In addition, resistance mechanisms to TAT may be amenable to combination therapies.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Louise Emmett
- Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Australia
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
8
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
9
|
Mattana F, Muraglia L, Barone A, Colandrea M, Saker Diffalah Y, Provera S, Cascio AS, Omodeo Salè E, Ceci F. Prostate-Specific Membrane Antigen-Targeted Therapy in Prostate Cancer: History, Combination Therapies, Trials, and Future Perspective. Cancers (Basel) 2024; 16:1643. [PMID: 38730595 PMCID: PMC11083597 DOI: 10.3390/cancers16091643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the last decades, the development of PET/CT radiopharmaceuticals, targeting the Prostate-Specific Membrane Antigen (PSMA), changed the management of prostate cancer (PCa) patients thanks to its higher diagnostic accuracy in comparison with conventional imaging both in staging and in recurrence. Alongside molecular imaging, PSMA was studied as a therapeutic agent targeted with various isotopes. In 2021, results from the VISION trial led to the Food and Drug Administration (FDA) approval of [177Lu]Lu-PSMA-617 as a novel therapy for metastatic castration-resistant prostate cancer (mCRPC) and set the basis for a radical change in the future perspectives of PCa treatment and the history of Nuclear Medicine. Despite these promising results, primary resistance in patients treated with single-agent [177Lu]Lu-PSMA-617 remains a real issue. Emerging trials are investigating the use of [177Lu]Lu-PSMA-617 in combination with other PCa therapies in order to cover the multiple oncologic resistance pathways and to overcome tumor heterogeneity. In this review, our aim is to retrace the history of PSMA-targeted therapy from the first preclinical studies to its future applications in PCa.
Collapse
Affiliation(s)
- Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Lorenzo Muraglia
- Division of Nuclear Medicine, Humanitas IRCCS, 20141 Milan, Italy;
| | - Antonio Barone
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Marzia Colandrea
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Yasmina Saker Diffalah
- Division of Nuclear Medicine, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
| | - Silvia Provera
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Alfio Severino Cascio
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Emanuela Omodeo Salè
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Song Y, Zou J, Castellanos EA, Matsuura N, Ronald JA, Shuhendler A, Weber WA, Gilad AA, Müller C, Witney TH, Chen X. Theranostics - a sure cure for cancer after 100 years? Theranostics 2024; 14:2464-2488. [PMID: 38646648 PMCID: PMC11024861 DOI: 10.7150/thno.96675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | | | - Naomi Matsuura
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - John A. Ronald
- Imaging Laboratories, Department of Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Adam Shuhendler
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timothy H. Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
11
|
Favaretto C, Grundler PV, Talip Z, Köster U, Johnston K, Busslinger SD, Sprung P, Hillhouse CC, Eichler R, Schibli R, Müller C, van der Meulen NP. Terbium-149 production: a focus on yield and quality improvement towards preclinical application. Sci Rep 2024; 14:3284. [PMID: 38332245 PMCID: PMC10853284 DOI: 10.1038/s41598-024-53610-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024] Open
Abstract
Terbium-149 (T1/2 = 4.1 h, Eα = 3.98 MeV (16.7%), 28 µm range in tissue) is a radionuclide with potential for targeted alpha therapy. Due to the negligible emission of α-emitting daughter nuclides, toxicity to healthy tissue may be reduced in comparison with other α-particle emitters. In this study, terbium-149 was produced via 1.4 GeV proton irradiation of a tantalum target at the CERN-ISOLDE facility. The spallation products were mass separated and implanted on zinc-coated foils and, later, radiochemically processed. Terbium-149 was separated from the co-produced isobaric radioisotopes and the zinc coating from the implantation foil, using cation-exchange and extraction chromatographic techniques, respectively. At the end of separation, up to 260 MBq terbium-149 were obtained with > 99% radionuclidic purity. Radiolabeling experiments were performed with DOTATATE, achieving 50 MBq/nmol apparent molar activity with radiochemical purity > 99%. The chemical purity was determined by inductively coupled plasma-mass spectrometry measurements, which showed lead, copper, iron and zinc only at ppb level. The radiolabeling of the somatostatin analogue DOTATATE with [149Tb]TbCl3 and the subsequent in vivo PET/CT scans conducted in xenografted mice, showing good tumor uptake, further demonstrated product quality and its ability to be used in a preclinical setting.
Collapse
Affiliation(s)
- C Favaretto
- Nuclear Medicine Department, University Hospital Basel, Basel, Switzerland
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - P V Grundler
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Z Talip
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - U Köster
- Institute Laue-Langevin, Grenoble, France
- Physics Department, ISOLDE/CERN, Geneva, Switzerland
| | - K Johnston
- Physics Department, ISOLDE/CERN, Geneva, Switzerland
| | - S D Busslinger
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - P Sprung
- Department Hot Laboratory, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - C C Hillhouse
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - R Eichler
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - R Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - C Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - N P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland.
| |
Collapse
|
12
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
14
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
15
|
Moiseeva AN, Makoveeva KA, Furkina EB, Artyushova EV, German MN, Khomenko IA, Konevega AL, Kormazeva ES, Novikov VI, Aksenov NV, Gustova NS, Aliev RA. Co-production of 155Tb and 152Tb irradiating 155Gd / 151Eu tandem target with a medium energy α-particle beam. Nucl Med Biol 2023; 126-127:108389. [PMID: 37783103 DOI: 10.1016/j.nucmedbio.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Four terbium isotopes 149,152,155,161Tb emitting various types of radiation can be used for both diagnostics and therapy. 152Tb emits positrons and is ideal for PET. 155Tb is considered a promising Auger emitter and a diagnostic pair for other terbium therapeutic isotopes. Several methods for the production of 155Tb using charged particle accelerators have been proposed, but they all have significant limitations. The restricted availability of this isotope hinders its medical applications. We have proposed a new method for production of 155Tb, irradiating enriched 155Gd by alpha particles. The possibility of simultaneous production of two isotopes of terbium, 152,155Tb, was also studied for more efficient cyclotron beam use. METHODS Irradiation of 155Gd enriched targets and 155Gd / 151Eu tandem target with alpha-particles with an energy of 54 MeV was carried out at the U-150 cyclotron at the NRC "Kurchatov Institute". The cross sections of nuclear reactions on enr-155Gd were measured by the stack foil technique, detecting the gamma-radiation of the activation products. The separation of rare earth elements was performed by extraction chromatography with the LN Resin. 155Tb was produced via 155Dy decay. RESULTS The cross sections for the 155,156Tb and 155,157Dy production were measured by the irradiation of a gadolinium target enriched with the 155Gd isotope with alpha-particles in an energy range of 54 → 33 MeV. The yield of 155Dy on a thick target at 54 MeV was 130 MBq/μAh, which makes it possible to obtain 1 GBq of 155Tb in 11 hour-irradiation with 20 μA beam current. The possibility of simultaneous production of 152,155Tb by irradiation of 155Gd and 151Eu tandem target with medium-energy alpha-particles is implemented. Optimal irradiation energy ranges of alpha -particles as 54 → 42 MeV for 155Tb and 42 → 34 MeV for 152Tb were suggested. Product activity and radionuclidic purity were calculated.
Collapse
Affiliation(s)
- A N Moiseeva
- National Research Center "Kurchatov Institute", Russia.
| | - K A Makoveeva
- National Research Center "Kurchatov Institute", Russia
| | - E B Furkina
- National Research Center "Kurchatov Institute", Russia
| | | | - M N German
- National Research Center "Kurchatov Institute", Russia
| | - I A Khomenko
- National Research Center "Kurchatov Institute", Russia
| | - A L Konevega
- National Research Center "Kurchatov Institute", Russia
| | - E S Kormazeva
- National Research Center "Kurchatov Institute", Russia
| | - V I Novikov
- National Research Center "Kurchatov Institute", Russia
| | - N V Aksenov
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Russia
| | - N S Gustova
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Russia
| | - R A Aliev
- National Research Center "Kurchatov Institute", Russia
| |
Collapse
|
16
|
Sharma S, Pandey MK. Radiometals in Imaging and Therapy: Highlighting Two Decades of Research. Pharmaceuticals (Basel) 2023; 16:1460. [PMID: 37895931 PMCID: PMC10610335 DOI: 10.3390/ph16101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The present article highlights the important progress made in the last two decades in the fields of molecular imaging and radionuclide therapy. Advancements in radiometal-based positron emission tomography, single photon emission computerized tomography, and radionuclide therapy are illustrated in terms of their production routes and ease of radiolabeling. Applications in clinical diagnostic and radionuclide therapy are considered, including human studies under clinical trials; their current stages of clinical translations and findings are summarized. Because the metalloid astatine is used for imaging and radionuclide therapy, it is included in this review. In regard to radionuclide therapy, both beta-minus (β-) and alpha (α)-emitting radionuclides are discussed by highlighting their production routes, targeted radiopharmaceuticals, and current clinical translation stage.
Collapse
Affiliation(s)
| | - Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
17
|
Radzina M, Saule L, Mamis E, Koester U, Cocolios TE, Pajuste E, Kalnina M, Palskis K, Sawitzki Z, Talip Z, Jensen M, Duchemin C, Leufgen K, Stora T. Novel radionuclides for use in Nuclear Medicine in Europe: where do we stand and where do we go? EJNMMI Radiopharm Chem 2023; 8:27. [PMID: 37823964 PMCID: PMC10570248 DOI: 10.1186/s41181-023-00211-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In order to support the ongoing research across Europe to facilitate access to novel radionuclides, the PRISMAP consortium (European medical radionuclides programme) was established to offer the broadest catalog of non-conventional radionuclides for medical and translational research. The aim of this article is to introduce readers with current status of novel radionuclides in Europe. MAIN BODY A consortium questionnaire was disseminated through the PRISMAP consortium and user community, professional associations and preclinical/clinical end users in Europe and the current status of clinical end-users in nuclear medicine were identified. A total of 40 preclinical/clinical users institutions took part in the survey. Clinical end users currently use the following radionuclides in their studies: 177Lu, 68 Ga, 111In, 90Y, other alpha emitters, 225Ac, 64Cu and Terbium isotopes. Radionuclides that would be of interest for users within the next 2-5 years are 64Cu, Terbium radionuclide "family" and alpha emitters, such as 225Ac. CONCLUSIONS Thanks to a questionnaire distributed by the PRISMAP consortium, the current status and needs of clinical end-users in nuclear medicine were identified.
Collapse
Affiliation(s)
- Maija Radzina
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
- Riga Stradins University, Riga, Latvia
| | - Laura Saule
- University of Latvia, Riga, Latvia.
- Riga Stradins University, Riga, Latvia.
| | - Edgars Mamis
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
| | | | | | | | | | - Kristaps Palskis
- CERN, Geneva, Switzerland
- Riga Technical University, Riga, Latvia
| | | | - Zeynep Talip
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Mikael Jensen
- Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
18
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
19
|
Deshayes E, Fersing C, Thibault C, Roumiguie M, Pourquier P, Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers (Basel) 2023; 15:3133. [PMID: 37370743 DOI: 10.3390/cancers15123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer represents the second cause of death by cancer in males in western countries. While early-stage diseases are accessible to surgery and/or external radiotherapy, advanced metastatic prostate cancers are primarily treated with androgen deprivation therapy, to which new generation androgen receptor antagonists or taxane-based chemotherapies are added in the case of tumor relapse. Nevertheless, patients become invariably resistant to castration with a median survival that rarely exceeds 3 years. This fostered the search for alternative strategies, independent of the androgen receptor signaling pathway. In this line, radionuclide therapies may represent an interesting option as they could target either the microenvironment of sclerotic bone metastases with the use of radiopharmaceuticals containing samarium-153, strontium-89 or radium-223 or tumor cells expressing the prostate-specific membrane antigen (PSMA), a protein found at the surface of prostate cancer cells. This review gives highlights the chemical properties of radioligands targeting prostate cancer cells and recapitulates the clinical trials evaluating the efficacy of radionuclide therapies, alone or in combination with other approved treatments, in patients with castration-resistant prostate tumors. It discusses some of the encouraging results obtained, especially the benefit on overall survival that was reported with [177Lu]-PSMA-617. It also addresses the specific requirements for the use of this particular class of drugs, both in terms of medical staff coordination and adapted infrastructures for efficient radioprotection.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre, 75015 Paris, France
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, 31059 Toulouse, France
| | - Philippe Pourquier
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
| | - Nadine Houédé
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Medical Oncology Department, Institute de Cancérologie du Gard-CHU Caremeau, 30009 Nîmes, France
| |
Collapse
|
20
|
Ling SW, de Blois E, Hooijman E, van der Veldt A, Brabander T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022; 14:2166. [PMID: 36297601 PMCID: PMC9607057 DOI: 10.3390/pharmaceutics14102166] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 08/26/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Astrid van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
21
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
22
|
Kazakov AG. Terbium Isotopes in Nuclear Medicine: Production, Recovery, and Application. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
24
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
25
|
Kristiansson A, Vilhelmsson Timmermand O, Altai M, Strand J, Strand SE, Åkerström B, Örbom A. Hematological Toxicity in Mice after High Activity Injections of 177Lu-PSMA-617. Pharmaceutics 2022; 14:pharmaceutics14040731. [PMID: 35456565 PMCID: PMC9032768 DOI: 10.3390/pharmaceutics14040731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PC) is one of the most common malignancies affecting men, with poor prognosis after progression to metastatic castration-resistant prostate cancer (mCRPC). Radioligand therapy (RLT) targeting the overexpressed PSMA on PC cells, with, e.g., 177Lu-PSMA-617, has been effective in reducing tumor burden and prolonging survival in mCRPC. However, it is not a curative method with kidney and bone marrow toxicity limiting the activity given to patients. Previous preclinical models have reported transient hematotoxicity for up to 120 MBq. This activity may still be too low to investigate the effect on renal function since it corresponds to an absorbed dose below 10 Gy, whereas the kidneys in a clinical setting usually receive an absorbed dose more than double. Here we investigated the hematotoxicity and recovery after administered activities of 120, 160, and 200 MBq in a 177Lu-PSMA-617 BALB/cAnNRj mouse model. The animals had an initial drop in white blood cells (WBC) starting 4 days post injection, which recovered after 21 days. The effect on red blood cells (RBC) and platelets was detected later; 17 days post-injection levels decreased compared to the control group. The reduction was restored again 32 days post injection. No correlation between injected activity and hematotoxicity was found. Our results suggest that activities up to 200 MBq of 177Lu-PSMA-617 give transient hematotoxicity from which animals recover within a month and no radiation-related deaths. Injecting these high activities could allow animal studies with increased clinical relevance when studying renal toxicity in animal models.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
- Correspondence:
| | - Oskar Vilhelmsson Timmermand
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
| | - Mohamed Altai
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
| | - Joanna Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
- Department of Hematology, Oncology, Radiation Physics, Skåne University Hospital, Lund University, 222 43 Lund, Sweden
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
- Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, 221 85 Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, 221 84 Lund, Sweden;
| | - Anders Örbom
- Department of Clinical Sciences Lund, Oncology, Lund University, 222 42 Lund, Sweden; (O.V.T.); (M.A.); (J.S.); (S.-E.S.); (A.Ö.)
| |
Collapse
|
26
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
27
|
Müller C, Schibli R, Bernhardt P, Köster U, van der Meulen NP. Terbium radionuclides for theranostics. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
van der Meulen NP, Talip Z. Non-conventional radionuclides: The pursuit for perfection. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
31
|
Lee BS, Kim MH, Chu SY, Jung WJ, Jeong HJ, Lee K, Kim HS, Kim MH, Kil HS, Han SJ, Lee YJ, Lee KC, Lim SM, Chi DY. Improving Theranostic Gallium-68/Lutetium-177-Labeled PSMA Inhibitors with an Albumin Binder for Prostate Cancer. Mol Cancer Ther 2021; 20:2410-2419. [PMID: 34725194 DOI: 10.1158/1535-7163.mct-21-0251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
We developed a novel therapeutic radioligand, [177Lu]1h, with an albumin binding motif and evaluated it in a prostate-specific membrane antigen (PSMA)-expressing tumor xenograft mouse model. Fourteen PSMA target candidates were synthesized, and binding affinity was evaluated with an in vitro competitive binding assay. First, four compound candidates were selected depending on binding affinity results. Next, we selected four compounds ([68Ga]1e, [68Ga]1g, [68Ga]1h, and [68Ga]1k) were screened for tumor targeting efficiency by micro-positron emission tomography/computed tomography (micro-PET/CT) imaging. Finally, [177Lu]1h compound was evaluated the tumor targeting efficiency and therapeutic efficiency by micro-single-photon emission computed tomography/computed tomography (micro-SPECT/CT), biodistribution, and radiotherapy studies. Estimated human effective dose was calculated by biodistribution data. Compound 1h showed a high binding affinity (Ki value = 4.08 ± 0.08 nmol/L), and [177Lu]1h showed extended blood circulation (1 hour = 10.32 ± 0.31, 6 hours = 2.68 ± 1.07%ID/g) compared to [177Lu]PSMA-617 (1 h = 0.17 ± 0.10%ID/g). [177Lu]1h was excreted via the renal pathway and showed high tumor uptake (24.43 ± 3.36%ID/g) after 1 hour, which increased over 72 hours (72 hours = 51.39 ± 9.26%ID/g). Mice treated with 4 and 6 MBq of [177Lu]1h showed a median survival rate of >61 days. In particular, all mice treated with 6 MBq of [177Lu]1h survived for the entire monitoring period. The estimated human effective dose of [177Lu]1h was 0.07 ± 0.01 and 0.03 ± 0.00 mSv/MBq in total body and kidney, respectively. The current study indicates that [177Lu]1h has the potential for further investigation of metastatic castration-resistant prostate cancer (mCRPC) therapy in clinical trials.
Collapse
Affiliation(s)
- Byoung Se Lee
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Min Hwan Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - So Young Chu
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Woon Jung Jung
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hyeon Jin Jeong
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Kyongkyu Lee
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hyeon Seok Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Mi Hyun Kim
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Hee Seup Kil
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Dae Yoon Chi
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
32
|
Favaretto C, Talip Z, Borgna F, Grundler PV, Dellepiane G, Sommerhalder A, Zhang H, Schibli R, Braccini S, Müller C, van der Meulen NP. Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharm Chem 2021; 6:37. [PMID: 34778932 PMCID: PMC8590989 DOI: 10.1186/s41181-021-00153-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Terbium-155 [T1/2 = 5.32 d, Eγ = 87 keV (32%) 105 keV (25%)] is an interesting radionuclide suitable for single photon emission computed tomography (SPECT) imaging with potential application in the diagnosis of oncological disease. It shows similar decay characteristics to the clinically established indium-111 and would be a useful substitute for the diagnosis and prospective dosimetry with biomolecules that are afterwards labeled with therapeutic radiolanthanides and pseudo-radiolanthanides, such as lutetium-177 and yttrium-90. Moreover, terbium-155 could form part of the perfect “matched pair” with the therapeutic radionuclide terbium-161, making the concept of true radiotheragnostics a reality. The aim of this study was the investigation of the production of terbium-155 via the 155Gd(p,n)155Tb and 156Gd(p,2n)155Tb nuclear reactions and its subsequent purification, in order to obtain a final product in quantity and quality sufficient for preclinical application. The 156Gd(p,2n)155Tb nuclear reaction was performed with 72 MeV protons (degraded to ~ 23 MeV), while the 155Gd(p,n)155Tb reaction was degraded further to ~ 10 MeV, as well as performed at an 18 MeV medical cyclotron, to demonstrate its feasibility of production. Result The 156Gd(p,2n)155Tb nuclear reaction demonstrated higher production yields of up to 1.7 GBq, however, lower radionuclidic purity when compared to the final product (~ 200 MBq) of the 155Gd(p,n)155Tb nuclear reaction. In particular, other radioisotopes of terbium were produced as side products. The radiochemical purification of terbium-155 from the target material was developed to provide up to 1.0 GBq product in a small volume (~ 1 mL 0.05 M HCl), suitable for radiolabeling purposes. The high chemical purity of terbium-155 was proven by radiolabeling experiments at molar activities up to 100 MBq/nmol. SPECT/CT experiments were performed in tumor-bearing mice using [155Tb]Tb-DOTATOC. Conclusion This study demonstrated two possible production routes for high activities of terbium-155 using a cyclotron, indicating that the radionuclide is more accessible than the exclusive mass-separated method previously demonstrated. The developed radiochemical purification of terbium-155 from the target material yielded [155Tb]TbCl3 in high chemical purity. As a result, initial cell uptake investigations, as well as SPECT/CT in vivo studies with [155Tb]Tb-DOTATOC, were successfully performed, indicating that the chemical separation produced a product with suitable quality for preclinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00153-w.
Collapse
Affiliation(s)
- C Favaretto
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Z Talip
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - F Borgna
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - P V Grundler
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - G Dellepiane
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory of High Energy Physics (LHEP), University of Bern, 3012, Bern, Switzerland
| | - A Sommerhalder
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - H Zhang
- Division Large Research Facilities, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - R Schibli
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - S Braccini
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory of High Energy Physics (LHEP), University of Bern, 3012, Bern, Switzerland
| | - C Müller
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - N P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland. .,Laboratory of Radiochemistry, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.
| |
Collapse
|
33
|
Gadelshin VM, Formento Cavaier R, Haddad F, Heinke R, Stora T, Studer D, Weber F, Wendt K. Terbium Medical Radioisotope Production: Laser Resonance Ionization Scheme Development. Front Med (Lausanne) 2021; 8:727557. [PMID: 34712678 PMCID: PMC8546115 DOI: 10.3389/fmed.2021.727557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd atoms, which is a typical target material for Tb generation, was considered, showing the necessity of radiochemical purification procedures before mass separation. Nevertheless, a 10-fold enhancement of the Tb ion beam using laser resonance ionization was observed even with Gd:Tb atomic ratio of 100:1.
Collapse
Affiliation(s)
- Vadim Maratovich Gadelshin
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
| | - Roberto Formento Cavaier
- Advanced Accelerator Applications, A Novartis Company, Origgio, Italy
- GIP ARRONAX, Nantes, France
| | | | - Reinhard Heinke
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- SY Department, CERN, Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
| | | | - Dominik Studer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Felix Weber
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Klaus Wendt
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
34
|
Baum RP, Singh A, Kulkarni HR, Bernhardt P, Rydén T, Schuchardt C, Gracheva N, Grundler PV, Köster U, Müller D, Pröhl M, Zeevaart JR, Schibli R, van der Meulen NP, Müller C. First-in-Humans Application of 161Tb: A Feasibility Study Using 161Tb-DOTATOC. J Nucl Med 2021; 62:1391-1397. [PMID: 33547209 PMCID: PMC8724898 DOI: 10.2967/jnumed.120.258376] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
161Tb has decay properties similar to those of 177Lu but, additionally, emits a substantial number of conversion and Auger electrons. The aim of this study was to apply 161Tb in a clinical setting and to investigate the feasibility of visualizing the physiologic and tumor biodistributions of 161Tb-DOTATOC. Methods:161Tb was shipped from Paul Scherrer Institute, Villigen-PSI, Switzerland, to Zentralklinik Bad Berka, Bad Berka, Germany, where it was used for the radiolabeling of DOTATOC. In 2 separate studies, 596 and 1,300 MBq of 161Tb-DOTATOC were administered to a 35-y-old male patient with a metastatic, well-differentiated, nonfunctional malignant paraganglioma and a 70-y-old male patient with a metastatic, functional neuroendocrine neoplasm of the pancreatic tail, respectively. Whole-body planar γ-scintigraphy images were acquired over a period of several days for dosimetry calculations. SPECT/CT images were reconstructed using a recently established protocol and visually analyzed. Patients were observed for adverse events after the application of 161Tb-DOTATOC. Results: The radiolabeling of DOTATOC with 161Tb was readily achieved with a high radiochemical purity suitable for patient application. Planar images and dosimetry provided the expected time-dependent biodistribution of 161Tb-DOTATOC in the liver, kidneys, spleen, and urinary bladder. SPECT/CT images were of high quality and visualized even small metastases in bones and liver. The application of 161Tb-DOTATOC was well tolerated, and no related adverse events were reported. Conclusion: This study demonstrated the feasibility of imaging even small metastases after the injection of relatively low activities of 161Tb-DOTATOC using γ-scintigraphy and SPECT/CT. On the basis of this essential first step in translating 161Tb to clinics, further efforts will be directed toward the application of 161Tb for therapeutic purposes.
Collapse
Affiliation(s)
- Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany;
| | - Aviral Singh
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harshad R Kulkarni
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, Gothenburg, Gothenburg, Sweden
| | - Tobias Rydén
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, Gothenburg, Gothenburg, Sweden
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Nadezda Gracheva
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | | | - Dirk Müller
- Department of Radiopharmacy, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Michael Pröhl
- Department of Radiopharmacy, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jan Rijn Zeevaart
- Radiochemistry, South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland;
| |
Collapse
|
35
|
Nava-Cabrera M, Azorín-Vega E, Oros-Pantoja R, Aranda-Lara L. Comparison between 177Lu-iPSMA and 225Ac-iPSMA dosimetry at a cellular level in an animal bone metastasis model. Appl Radiat Isot 2021; 176:109898. [PMID: 34418726 DOI: 10.1016/j.apradiso.2021.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The recent use of prostate-specific membrane antigen as a biological target have improved the theragnostic approach to prostate and other types of cancer. Radiopharmaceuticals based on PSMA inhibitors radiolabeled with beta emitters as Lutetium-177 have demonstrated remarkable efficacy and safety, however, their clinical evaluation have also shown that therapeutic response of bone located metastases is poorer than that presented by soft tissue lesions. These observations conducted to the development and study at different levels of PSMA-targeting alpha-particle therapy exhibiting effective and promising antitumor activity. However, some aspects of the use of alpha emitters such as cellular dosimetry should be considered before applying them safely. The aim of the present work was to compare and calculate the absorbed dose of 177Lu-iPSMA and 225Ac-iPSMA using an animal bone metastasis model and experimental data obtained from cellular fractionation. The number of disintegrations and the dose factors for the theragnostic iPSMA pair, molecule that can be radiolabeled with 177Lu or 225Ac, were determined based on MIRD methodology, and used to calculate the absorbed dose to cell nucleus. A five times difference between 225Ac-iPSMA and 177Lu-iPSMA average dose rate to the tumor was calculated, being 2.3 ± 0.037 for the first and 0.5 ± 0.018 Gy for the second, both for each activity unit (MBq) administered.
Collapse
Affiliation(s)
- Miguel Nava-Cabrera
- Facultad de Medicina. Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Erika Azorín-Vega
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, 52750, Ocoyoacac, Estado de México, Mexico.
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina. Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina. Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| |
Collapse
|
36
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Mokoala K, Lawal I, Lengana T, Kgatle M, Giesel FL, Vorster M, Sathekge M. PSMA Theranostics: Science and Practice. Cancers (Basel) 2021; 13:3904. [PMID: 34359805 PMCID: PMC8345360 DOI: 10.3390/cancers13153904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) causes significant morbidity and mortality in men globally. While localized PCa may be managed with curative intent by surgery and/or radiation therapy, the management of advanced hormone resistant metastatic disease (mCRPC) is more challenging. Theranostics is a principle based on the ability to use an organ specific ligand and label it to both a diagnostic and a therapeutic agent. The overexpression of prostate specific membrane antigen (PSMA) on prostate cancer cells creates a unique opportunity for development of targeted radionuclide therapy. The use of both beta and alpha emitting particles has shown great success. Several clinical trials have been initiated assessing the efficacy and safety profile of these radionuclide agents. The results are encouraging with PSMA directed radioligand therapy performing well in patients who have exhausted all other standard treatment options. Future studies need to assess the timing of introduction of these radionuclide therapies in the management schema of mCRPC. Drugs or therapies are not without side effects and targeted radionuclide therapies presents a new set of toxicities including xerostomia and myelosuppression. New therapeutic strategies are being explored to improve outcomes while keeping toxicities to a minimum. This review aims to look at the various PSMA labelled tracers that form part of the theragnostic approach and subsequently delve into the progress made in the area of radionuclide therapy.
Collapse
Affiliation(s)
- Kgomotso Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thabo Lengana
- KVNR Molecular Imaging, Pretoria 0001, South Africa;
| | - Mankgopo Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Duesseldorf, 40210 Duesseldorf, Germany;
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| |
Collapse
|
38
|
Banerjee SR, Lisok A, Minn I, Josefsson A, Kumar V, Brummet M, Boinapally S, Brayton C, Mease RC, Sgouros G, Hobbs RF, Pomper MG. Preclinical Evaluation of 213Bi- and 225Ac-Labeled Low-Molecular-Weight Compounds for Radiopharmaceutical Therapy of Prostate Cancer. J Nucl Med 2021; 62:980-988. [PMID: 33246975 PMCID: PMC8882883 DOI: 10.2967/jnumed.120.256388] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical therapy is a new option for patients with advanced prostate cancer refractory to other treatments. Previously, we synthesized a β-particle-emitting low-molecular-weight compound, 177Lu-L1 which demonstrated reduced off-target effects in a xenograft model of prostate cancer. Here, we leveraged that scaffold to synthesize α-particle-emitting analogs of L1, 213Bi-L1 and 225Ac-L1, to evaluate their safety and cell kill effect in PSMA-positive (+) xenograft models. Methods: The radiochemical synthesis, cell uptake, cell kill, and biodistribution of 213Bi-L1 and 225Ac-L1 were evaluated. The efficacy of 225Ac-L1 was determined in human PSMA+ subcutaneous and micrometastatic models. Subacute toxicity at 8 wk and chronic toxicity at 1 y after administration were evaluated for 225Ac-L1. The absorbed radiation dose of 225Ac-L1 was determined using the biodistribution data and α-camera imaging. Results:213Bi- and 225Ac-L1 demonstrated specific cell uptake and cell kill in PSMA+ cells. The biodistribution of 213Bi-L1 and 225Ac-L1 revealed specific uptake of radioactivity within PSMA+ lesions. Treatment studies of 225Ac-L1 demonstrated activity-dependent, specific inhibition of tumor growth in the PSMA+ flank tumor model. 225Ac-L1 also showed an increased survival benefit in the micrometastatic model compared with 177Lu-L1. Activity-escalated acute and chronic toxicity studies of 225Ac-L1 revealed off-target radiotoxicity, mainly in kidneys and liver. The estimated maximum tolerated activity was about 1 MBq/kg. α-Camera imaging of 225Ac-L1 revealed high renal cortical accumulation at 2 h followed by fast clearance at 24 h. Conclusion:225Ac-L1 demonstrated activity-dependent efficacy with minimal treatment-related organ radiotoxicity. 225Ac-L1 is a promising therapeutic for further clinical evaluation.
Collapse
Affiliation(s)
- Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland;
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vivek Kumar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cory Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert F Hobbs
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight". Pharmaceutics 2021; 13:pharmaceutics13060906. [PMID: 34207408 PMCID: PMC8234975 DOI: 10.3390/pharmaceutics13060906] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
Collapse
Affiliation(s)
- Romain Eychenne
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Férid Haddad
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Laboratoire Subatech, UMR 6457, Université de Nantes, IMT Atlantique, CNRS, Subatech, F-44000 Nantes, France
| | - François Guérard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Jean-François Gestin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| |
Collapse
|
40
|
Talip Z, Borgna F, Müller C, Ulrich J, Duchemin C, Ramos JP, Stora T, Köster U, Nedjadi Y, Gadelshin V, Fedosseev VN, Juget F, Bailat C, Fankhauser A, Wilkins SG, Lambert L, Marsh B, Fedorov D, Chevallay E, Fernier P, Schibli R, van der Meulen NP. Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Front Med (Lausanne) 2021; 8:643175. [PMID: 33968955 PMCID: PMC8100037 DOI: 10.3389/fmed.2021.643175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
The β--particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclidically pure 169Er. The quality of the 169Er product permitted radiolabeling and pre-clinical studies. A preliminary in vitro experiment was accomplished, using a 169Er-PSMA-617, to show the potential of 169Er to reduce tumor cell viability.
Collapse
Affiliation(s)
- Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jiri Ulrich
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Charlotte Duchemin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Joao P. Ramos
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Thierry Stora
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | | | - Youcef Nedjadi
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vadim Gadelshin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
| | | | - Frederic Juget
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adelheid Fankhauser
- Analytic Radioactive Materials, Paul Scherrer Institute, Villigen, Switzerland
| | - Shane G. Wilkins
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Laura Lambert
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Bruce Marsh
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Dmitry Fedorov
- Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
| | - Eric Chevallay
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Pascal Fernier
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
41
|
Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer. Cancers (Basel) 2021; 13:cancers13092011. [PMID: 33921956 PMCID: PMC8122331 DOI: 10.3390/cancers13092011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary A tremendous effort and rapid development of the prostate-specific membrane antigen (PSMA)-targeting radio ligands for radionuclide therapy has resulted in encouraging response rates for advanced prostate cancer. Different radionuclides have been utilized or suggested as suitable candidates. In this study, a dynamic model of metastatic progress was developed and utilized to estimate a radiopharmaceutical’s potential of obtaining metastatic control of advanced prostate cancer. The simulations performed demonstrated the advantage of utilizing radionuclides with short-range particle emission, i.e., alpha-emitters and low-energy electrons. The recently-proposed beta-emitting radionuclide terbium-161 demonstrates great potential of being a future candidate towards targeted radionuclide therapy of advanced prostate cancer. This is in line with recent encouraging preclinical results and development of upscaling the product quality. Recently, the first in-human application with a [161Tb]Tb-DOTATOC also demonstrated good SPECT image quality, which can enable dosimetry calculations for new 161Tb-based radiopharmaceuticals. Abstract The aim of this study was to analyze the required absorbed doses to detectable metastases (Dreq) when using radionuclides with prostate specific membrane antigen (PSMA)-targeting radioligands to achieve a high probability for metastatic control. The Monte Carlo based analysis was performed for the clinically-used radionuclides yttrium-90, iodine-131, lutetium-177, and actinium-225, and the newly-proposed low-energy electron emitter terbium-161. It was demonstrated that metastatic formation rate highly influenced the metastatic distribution. Lower values generated few large detectable metastases, as in the case with oligo metastases, while high values generated a distribution of multiple small detectable metastases, as observed in patients with diffused visualized metastases. With equal number of detectable metastases, the total metastatic volume burden was 4–6 times higher in the oligo metastatic scenario compared to the diffusely visualized scenario. The Dreq was around 30% higher for the situations with 20 detectable metastases compared to one detectable metastasis. The Dreq for iodine-131 and yttrium-90 was high (920–3300 Gy). The Dreq for lutetium-177 was between 560 and 780 Gy and considerably lower Dreq were obtained for actinium-225 and terbium-161, with 240–330 Gy and 210–280 Gy, respectively. In conclusion, the simulations demonstrated that terbium-161 has the potential for being a more effective targeted radionuclide therapy for metastases using PSMA ligands.
Collapse
|
42
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
43
|
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:779. [PMID: 33668474 PMCID: PMC7918517 DOI: 10.3390/cancers13040779] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months' survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β- therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
- Nucligen, Ullernchausséen 64, 0379 Oslo, Norway;
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
44
|
177Lu-PSMA-617 Therapy in Mice, with or without the Antioxidant α 1-Microglobulin (A1M), Including Kidney Damage Assessment Using 99mTc-MAG3 Imaging. Biomolecules 2021; 11:biom11020263. [PMID: 33579037 PMCID: PMC7916794 DOI: 10.3390/biom11020263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3–4 days and 3–4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.
Collapse
|
45
|
UÇAR B, ACAR T. Macroaggregated Albumin (MAA): Production, Size Optimization, Eu(III) and Tb(III) Complexes. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.808636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Grieve ML, Paterson BM. The Evolving Coordination Chemistry of Radiometals for Targeted Alpha Therapy. Aust J Chem 2021. [DOI: 10.1071/ch21184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Pereira PMR, Mandleywala K, Ragupathi A, Lewis JS. Acute Statin Treatment Improves Antibody Accumulation in EGFR- and PSMA-Expressing Tumors. Clin Cancer Res 2020; 26:6215-6229. [PMID: 32998959 DOI: 10.1158/1078-0432.ccr-20-1960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Statins are cholesterol-depleting drugs used to treat patients with hypercholesterolemia. Preclinically, statins disrupt trafficking of receptors present at the cell membrane. Membrane receptors, defined as tumor biomarkers and therapeutic targets, are often internalized by an endocytic pathway. Indeed, receptor endocytosis and recycling are dynamic mechanisms that often affect receptor density at the cell surface. In therapies using monoclonal antibodies (mAb), a downregulation in receptor density at the cell surface decreases antibody binding to the extracellular domain of the membrane receptor. Here, we determined the potential of lovastatin, simvastatin, and rosuvastatin in preclinically modulating epidermal growth factor receptor (EGFR) and prostate-specific membrane antigen (PSMA) receptor density at the tumor cell surface. EXPERIMENTAL DESIGN Small-animal PET was used to study the binding of 89Zr-labeled antibodies in ectopic xenografts. Ex vivo analyses were performed to determine changes in endocytic proteins, EGFR, and PSMA surface levels. RESULTS Acute statin treatment using lovastatin, simvastatin, or rosuvastatin enhanced tumors' avidity for the mAbs panitumumab, cetuximab, and huJ591. Statins temporarily modulated caveolin-1, cavin-1, endophilin, clathrin, and dynamin proteins in EGFR- and PSMA-overexpressing xenografts. CONCLUSIONS These data show the potential of statins as pharmacologic modulators of endocytic proteins for improved tumors' accumulation of mAbs. The translational significance of these findings lies in the potential of statins to temporarily modulate the heterogeneous presence of receptors at the cell membrane, a characteristic often associated with poor response in tumors to therapeutic antibodies.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
48
|
Filippi L, Chiaravalloti A, Schillaci O, Bagni O. The potential of PSMA-targeted alpha therapy in the management of prostate cancer. Expert Rev Anticancer Ther 2020; 20:823-829. [PMID: 32820953 DOI: 10.1080/14737140.2020.1814151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Alpha emitters present several advantages for cancer therapy. The radiopharmaceutical 223Ra-dichloride has been recently introduced for the targeted alpha therapy (TAT) of metastastic castration-resistant prostate cancer (mCRPC). However, since 223Ra-dichloride targets only skeletal lesions, its use in clinical practice is recommended only in subjects without visceral metastases. To overcome this, several efforts have been made to develop radiopharmaceuticals suitable for TAT and specifically directed toward the biomarker prostate specific membrane antigen (PSMA), overexpressed by both skeletal and visceral metastases from mCRPC. AREAS COVERED The radiobiological principles concerning TAT applications are covered, with particular emphasis on its pros and cons, especially in comparison with beta-emitter radionuclide therapy. Furthermore, the role of PSMA as a theranostic target for imaging and therapy is reviewed. Lastly, the pre-clinical and clinical applications of TAT through 225Actinium (225AC) and 213Bismuth (213Bi) are discussed. EXPERT OPINION PSMA-based TAT holds the promise of becoming a powerful tool for the management of mCRPC. Nevertheless, several issues have still to be addressed, especially concerning TAT toxicity. Furthermore, several efforts have to be made for identifying the more adequate alpha-emitter (225Ac vs 213Bi) with a view to the patient's tailored therapeutic approach.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata , Rome, Italy.,IRCCS Neuromed , Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata , Rome, Italy.,IRCCS Neuromed , Pozzilli, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| |
Collapse
|
49
|
Preliminary evaluation of the production of non-carrier added 111Ag as core of a therapeutic radiopharmaceutical in the framework of ISOLPHARM_Ag experiment. Appl Radiat Isot 2020; 164:109258. [PMID: 32819502 DOI: 10.1016/j.apradiso.2020.109258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
Abstract
Research in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro). Such technique foresees the employment of the SPES ISOL facility to produce isobarically pure Radioactive Ion Beams (RIBs), obtained thanks to electromagnetic mass separation and collected on appropriate substrates. The latter are successively recovered and dissolved, allowing thus the chemical separation and harvesting of the nuclides of interest, free from any isotopic contaminant. Although ISOLPHARM can be potentially employed for most of the routinely used medical radioisotopes, its innovation potential is better expressed considering its capability to provide carrier free unconventional nuclides, difficult to produce with state-of-art techniques, such as 111Ag, a β- emitter potentially interesting for therapeutic applications. Thus, in the framework of ISOLPHARM, INFN supported a two-years experiment, called ISOLPHARM_Ag, aimed at evaluating the feasibility of the production of a111Ag labelled radiopharmaceutical. The ISOL production yields are estimated by computing intensive Monte Carlo codes, that require an appropriate custom Information Technology infrastructure. The presented work is focused on the first part of the production chain including the capability to extract, ionize, and collect stable Ag beams with SPES technologies. MC calculations were used to estimate the expected 111Ag in-target yields, whereas experiments with stable Ag were performed to test the ionization, transport and collection of Ag beams.
Collapse
|
50
|
Abstract
Prostate-specific membrane antigen (PSMA)-targeting radio-ligand therapy with beta-emitting 177Lutetium has already been investigated in several early phase dosimetry studies, demonstrated promising results in phase-2, and recently the first phase-3 trial finished recruitment. In contrast, PSMA-targeting alpha-particle therapy (TAT) has only been evaluated in few preclinical experiments, preliminary dosimetry attempts and some retrospective observational studies, yet. First clinical experience with 225Ac-PSMA-617 demonstrates promising antitumor activity with a 63%-70% PSA>50%-response rate, 10-15 months duration of response and complete remissions in approximately ten percent of patients, some of them with enduring relapse-free survival. Nevertheless, without comparative trials there is no prove whether, applied in identical clinical situations, 225Ac-PSMA-617 is really more efficiently than 177Lu-PSMA-617 or vice versa. However, there is some good rationale, that PSMA-TAT might have advantages in particular clinical indications. This includes patients with diffuse type red-marrow infiltration by reducing off-target radiation to surrounding cells; ablation of micrometastases after favorable response to other previous therapy or someday in early stage disease. Also treatment escalation of patients, either with poor response to 177Lu-PSMA or harboring adverse prognostic biomarkers, appears promising. In preclinical research, alpha-radiation demonstrated stronger induction of abscopal effects than beta-radiation; favoring its usage as a combination partner with immunotherapies. So, further evaluation of PSMA-TAT is definitely warranted. Recently, de-escalated treatment protocols and application of 225Ac/177Lu-PSMA "cocktail"-regimens improved the tolerability of 225Ac-PSMA-617 TAT, reducing the risk for development dry-mouth syndrome. This opens new avenues for future application in earlier stage disease.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | |
Collapse
|