1
|
Welsh H, Batalha CMPF, Li W, Souza-Pinto NC, Duarte YAO, Naslavsky MS, Parra EJ. Age-related changes in DNA methylation in a sample of elderly Brazilians. Clin Epigenetics 2025; 17:17. [PMID: 39910411 PMCID: PMC11796210 DOI: 10.1186/s13148-025-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Age-related changes in DNA methylation (DNAm) play a critical role in regulating gene expression. However, most epigenome-wide association studies have predominantly focused on individuals of European descent. This study aims to characterize longitudinal changes in DNAm patterns in a cohort of elderly Brazilian participants. METHODS DNAm profiles were collected approximately nine years apart from 23 elderly Brazilian individuals using the Illumina Infinium MethyationEPIC BeadChip. Using mixed-effects models, we examined changes in DNAm patterns using both quantitative age and binary timepoint (e.g., baseline vs. follow-up) as predictors of interest to identify differentially methylated positions (DMPs). Significant DMPs were compared with a list of previously identified age-related DMPs. Differentially methylated regions (DMRs) were also identified using DMRcate. Gene ontology (GO) pathway enrichment analyses were performed to explore the functional significance of identified DMPs and DMRs. RESULTS Of the 586,229 autosomal probes included in the differential methylation analyses, 2768 significant (FDR < 0.05) age-associated DMPs (aDMPs) and 2757 significant (FDR < 0.05) timepoint-associated DMPs (tpDMPs) were identified. Of the 2768 aDMPs, 1471 were replicated from previous studies. Of the 1297 non-replicated CpGs, 77.4% were exclusive to the EPIC array. The DMR analyses identified 305 age-associated DMRs (aDMRs) and 372 timepoint-associated DMRs (tpDMRs). Both aDMPs and aDMRs exhibited age-related hypermethylation within CpG islands and promoter regions of the genome, whereas hypomethylation predominantly occurred in interCGI and intergenic regions and introns. The GO enrichment analyses identified several neurological and cognition-related pathways enriched for hypermethylated CpG islands, many of which were mapped near transcription start sites and first exon regions. CONCLUSIONS This longitudinal study identified age-associated and timepoint-associated DMPs and DMRs in a sample of elderly Brazilians. Most of the non-replicated CpGs were found to be on the new EPIC array, suggesting that more age-related studies using the EPIC array are required to validate these CpGs. The GO pathway enrichment analyses identified age-related enrichment of several gene sets related to cognitive and physical decline in elderly populations. The enrichment of these sites could provide evidence for age-related neurodegeneration and cognitive decline in elderly populations.
Collapse
Affiliation(s)
- Hayley Welsh
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada.
| | | | - Weili Li
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
| | | | - Yeda A O Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, Brazil
- Epidemiology Department, Public Health School, University of São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| |
Collapse
|
2
|
Velastegui E, Falconí IB, Garcia VI, Munizaga G, Matias de la Cruz C, Segura Y, Alcivar K, Valencia L, Vera E, Muñoz MS, Vanden Berghe W, Lebeer S, Orellana-Manzano A. Exploring HLA-C methylation patterns and nutritional status in Kichwa mothers and infants from Tena, Ecuador. Front Med (Lausanne) 2024; 11:1356646. [PMID: 39257885 PMCID: PMC11385616 DOI: 10.3389/fmed.2024.1356646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Environment and lifestyle can affect the epigenome passed down from generation to generation. A mother's nutrition can impact the methylation levels of her offspring's epigenome, but it's unclear which genes may be affected by malnutrition during gestation or early development. In this study, we examined the levels of methylated GC in the promoter region of HLA-C in mothers and infants from the Kichwa community in Ecuador. To do this, we analyzed saliva samples using bisulfite DNA sequencing. While we did not observe any significant differences in the mean methylation percentages in exon 1 of HLA-C between mothers and their infants after the first two years of lactation and life, respectively, we did find that infants tended to increase their methylation level during the first two years of life, while mothers tended to decrease it after the first two years of breastfeeding. When we compared methylation levels between mothers and infants using an ANOVA/posthoc Tukey test, we found that the average methylation for the entire population was less than 3% at T1 and T2. Although there was a tendency for infants to have higher methylation levels during their first two years of life and for mothers to have lower methylation levels after the first two years of breastfeeding, the mean values were not significantly different. However, we found a significant difference when we contrasted the data using a Kruskal-Wallis test at 0.05 for T1 AND T2 (p-value: 0.0148). Specifically, mothers had an average of X̅ = 2.06% and sons had X̅ = 1.57% at T2 (p-value: 0.7227), while the average for mothers was X̅ = 1.83% and for sons X̅ =1.77%. Finally, we identified three CpG motif nucleotide positions (32-33, 43-44, and 96-97) along the 122 bp analysis of HLA-C exon one, which was found to retain methylation patterns over time and is inherited from mother to offspring. Finally, our small pilot study did not reveal significant correlations between maternal and offspring nutritional status and DNA methylation levels of HLA-C exon one.
Collapse
Affiliation(s)
- Erick Velastegui
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Isaac B Falconí
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Valeria I Garcia
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gabriela Munizaga
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Carmen Matias de la Cruz
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Yaritza Segura
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Kerly Alcivar
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Luz Valencia
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Mindy S Muñoz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Wim Vanden Berghe
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| |
Collapse
|
3
|
Hodge KM, Burt AA, Camerota M, Carter BS, Check J, Conneely KN, Helderman J, Hofheimer JA, Hüls A, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, DellaGrotta SA, Dansereau LM, O'Shea TM, Marsit CJ, Lester BM, Everson TM. Epigenetic associations with neonatal age in infants born very preterm, particularly among genes involved in neurodevelopment. Sci Rep 2024; 14:18147. [PMID: 39103365 PMCID: PMC11300786 DOI: 10.1038/s41598-024-68071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
The time from conception through the first year of life is the most dynamic period in human development. This time period is particularly important for infants born very preterm (< 30 weeks gestation; VPT), as they experience a significant disruption in the normal developmental trajectories and are at heightened risk of experiencing developmental impairments and delays. Variations in the epigenetic landscape during this period may reflect this disruption and shed light on the interrelationships between aging, maturation, and the epigenome. We evaluated how gestational age (GA) and age since conception in neonates [post-menstrual age (PMA)], were related to DNA methylation in buccal cells collected at NICU discharge from VPT infants (n = 538). After adjusting for confounders and applying Bonferroni correction, we identified 2,366 individual CpGs associated with GA and 14,979 individual CpGs associated with PMA, as well as multiple differentially methylated regions. Pathway enrichment analysis identified pathways involved in axonogenesis and regulation of neuron projection development, among many other growth and developmental pathways (FDR q < 0.001). Our findings align with prior work, and also identify numerous novel associations, suggesting that genes important in growth and development, particularly neurodevelopment, are subject to substantial epigenetic changes during early development among children born VPT.
Collapse
Affiliation(s)
- Kenyaita M Hodge
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Amber A Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Marie Camerota
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anke Hüls
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Short AK, Weber R, Kamei N, Wilcox Thai C, Arora H, Mortazavi A, Stern HS, Glynn L, Baram TZ. Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome. Neurobiol Stress 2024; 31:100652. [PMID: 38962694 PMCID: PMC11219970 DOI: 10.1016/j.ynstr.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Adverse early-life experiences (ELA) affect a majority of the world's children. Whereas the enduring impact of ELA on cognitive and emotional health is established, there are no tools to predict vulnerability to ELA consequences in an individual child. Epigenetic markers including peripheral-cell DNA-methylation profiles may encode ELA and provide predictive outcome markers, yet the interindividual variance of the human genome and rapid changes in DNA methylation in childhood pose significant challenges. Hoping to mitigate these challenges we examined the relation of several ELA dimensions to DNA methylation changes and outcome using a within-subject longitudinal design and a high methylation-change threshold. DNA methylation was analyzed in buccal swab/saliva samples collected twice (neonatally and at 12 months) in 110 infants. We identified CpGs differentially methylated across time for each child and determined whether they associated with ELA indicators and executive function at age 5. We assessed sex differences and derived a sex-dependent 'impact score' based on sites that most contributed to methylation changes. Changes in methylation between two samples of an individual child reflected age-related trends and correlated with executive function years later. Among tested ELA dimensions and life factors including income to needs ratios, maternal sensitivity, body mass index and infant sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, high early-life unpredictability interacted with methylation changes to presage executive function. Thus, longitudinal, within-subject changes in methylation profiles may provide a signature of ELA and a potential predictive marker of individual outcome.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ryan Weber
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Noriko Kamei
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
| | - Christina Wilcox Thai
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hina Arora
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA, 92697, USA
| | - Hal S. Stern
- Department of Statistics, University of California-Irvine, Irvine, CA, 92697, USA
| | - Laura Glynn
- Department of Psychology, Chapman University, Orange, CA, 92866, USA
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, ersity of California- Irvine, Irvine, CA, 92697, USA
- Departments of Pediatrics and Neurology, University of California-Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Frazer LC, Yamaguchi Y, Singh DK, Akopyants NS, Good M. DNA methylation in necrotizing enterocolitis. Expert Rev Mol Med 2024; 26:e16. [PMID: 38557638 PMCID: PMC11140546 DOI: 10.1017/erm.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC). NEC is a severe intestinal inflammatory disease, but the key factors that precede disease development remain to be determined. This knowledge gap has led to a failure to design effective targeted therapies and identify specific biomarkers of disease. Recent literature has identified altered DNA methylation patterns in the stool and intestinal tissue of neonates with NEC. These findings provide the foundation for a new avenue in NEC research. In this review, we will provide a general overview of DNA methylation and then specifically discuss the recent literature related to methylation patterns in neonates with NEC. We will also discuss how DNA methylation is used as a biomarker for other disease states and how, with further research, methylation patterns may serve as potential biomarkers for NEC.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yukihiro Yamaguchi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalia S. Akopyants
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Petroff RL, Dolinoy DC, Wang K, Montrose L, Padmanabhan V, Peterson KE, Ruden DM, Sartor MA, Svoboda LK, Téllez-Rojo MM, Goodrich JM. Translational toxicoepigenetic Meta-Analyses identify homologous gene DNA methylation reprogramming following developmental phthalate and lead exposure in mouse and human offspring. ENVIRONMENT INTERNATIONAL 2024; 186:108575. [PMID: 38507935 PMCID: PMC11463831 DOI: 10.1016/j.envint.2024.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Luke Montrose
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Douglas M Ruden
- Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Maureen A Sartor
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Annunzi E, Cannito L, Bellia F, Mercante F, Vismara M, Benatti B, Di Domenico A, Palumbo R, Adriani W, Dell'Osso B, D'Addario C. Mild internet use is associated with epigenetic alterations of key neurotransmission genes in salivary DNA of young university students. Sci Rep 2023; 13:22192. [PMID: 38092954 PMCID: PMC10719329 DOI: 10.1038/s41598-023-49492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
The potentially problematic use of the Internet is a growing concern worldwide, which causes and consequences are not completely understood yet. The neurobiology of Internet addiction (IA) has attracted much attention in scientific research, which is now focusing on identifying measurable biological markers. Aim of this study was to investigate epigenetic and genetic regulation of oxytocin receptor (OXTR), dopamine transporter (DAT1) and serotonin transporter (SERT) genes using DNA obtained from saliva samples of young university students: the Internet Addiction Test (IAT) was administered to evaluate the potential existence and intensity of IA. Significant changes in DNA methylation levels at OXTR, DAT1 and SERT genes were observed in the 30 < IAT < 49 group (mild-risk internet users) compared to the IAT < 29 subjects (complete control of internet use) and IAT > 50 subjects (considered as moderately addicted). Moreover, epigenetic markers were significantly correlated, either directly (for OXTR and DAT1) or inversely (OXTR and DAT1 versus SERT), to the psychometric properties. Our data confirmed the association of OXTR, DAT1 and SERT genes in processes related to behavioural addictions and might be of relevance to suggest possible biological predictors of altered behaviours and the eventual vulnerability to develop an IA. Different other genetic pathways have been suggested to play a role in IA and research is ongoing to better define them, in order to help in the early diagnosis as well as in the development of new potential treatments.
Collapse
Affiliation(s)
- Eugenia Annunzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Loreta Cannito
- Department of Humanities, University of Foggia, Foggia, Italy
- Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Fabio Bellia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Matteo Vismara
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
| | - Beatrice Benatti
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Riccardo Palumbo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Walter Adriani
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, ASST Fatebenefratelli-Sacco, 20019, Milan, Italy
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institute, 10316, Stockholm, Sweden.
| |
Collapse
|
9
|
Lerin C, Collado MC, Isganaitis E, Arning E, Wasek B, Demerath EW, Fields DA, Bottiglieri T. Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine. Nutrients 2023; 15:282. [PMID: 36678154 PMCID: PMC9863976 DOI: 10.3390/nu15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.
Collapse
Affiliation(s)
- Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, The University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
10
|
Dolinko AV, Schultz BM, Ghosh J, Kalliora C, Mainigi M, Coutifaris C, Sapienza C, Senapati S. Disrupted methylation patterns at birth persist in early childhood: a prospective cohort analysis. Clin Epigenetics 2022; 14:129. [PMID: 36243864 PMCID: PMC9568969 DOI: 10.1186/s13148-022-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alterations in the epigenome are a risk factor in multiple disease states. We have demonstrated in the past that disruption of the epigenome during early pregnancy or periconception, as demonstrated by altered methylation, may be associated with both assisted reproductive technology and undesirable clinical outcomes at birth, such as low birth weight. We have previously defined this altered methylation, calculated based on statistical upper and lower limits of outlier CpGs compared to the population, as an 'outlier methylation phenotype' (OMP). Our aim in this study was to determine whether children thus identified as possessing an OMP at birth by DNA methylation in cord blood persist as outliers in early childhood based on salivary DNA methylation. RESULTS A total of 31 children were included in the analysis. Among 24 children for whom both cord blood DNA and salivary DNA were available, DNA methylation patterns, analyzed using the Illumina Infinium MethylationEPIC BeadChip (850 K), between cord blood at birth and saliva in childhood at age 6-12 years remain stable (R2 range 0.89-0.97). At birth, three out of 28 children demonstrated an OMP in multiple cord blood datasets and hierarchical clustering. Overall DNA methylation among all three OMP children identified as outliers at birth was remarkably stable (individual R2 0.908, 0.92, 0.915), even when only outlier CpG sites were considered (R2 0.694, 0.738, 0.828). CONCLUSIONS DNA methylation signatures in cord blood remain stable over time as demonstrated by a strong correlation with epigenetic salivary signatures in childhood. Future work is planned to identify whether a clinical phenotype is associated with OMP and, if so, could undesirable clinical outcomes in childhood and adulthood be predicted at birth.
Collapse
Affiliation(s)
- Andrey V Dolinko
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryant M Schultz
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Temple University, Philadelphia, PA, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Baker EC, Earnhardt AL, Cilkiz KZ, Collins HC, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. DNA methylation patterns and gene expression from amygdala tissue of mature Brahman cows exposed to prenatal stress. Front Genet 2022; 13:949309. [PMID: 35991551 PMCID: PMC9389044 DOI: 10.3389/fgene.2022.949309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal stress can alter postnatal performance and temperament of cattle. These phenotypic effects may result from changes in gene expression caused by stress-induced epigenetic alterations. Specifically, shifts in gene expression caused by DNA methylation within the brain’s amygdala can result in altered behavior because it regulates fear, stress response and aggression in mammals Thus, the objective of this experiment was to identify DNA methylation and gene expression differences in the amygdala tissue of 5-year-old prenatally stressed (PNS) Brahman cows compared to control cows. Pregnant Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 days of gestation. A non-transported group (n = 48) were controls (Control). Amygdala tissue was harvested from 6 PNS and 8 Control cows at 5 years of age. Overall methylation of gene body regions, promoter regions, and cytosine-phosphate-guanine (CpG) islands were compared between the two groups. In total, 202 genes, 134 promoter regions, and 133 CpG islands exhibited differential methylation (FDR ≤ 0.15). Following comparison of gene expression in the amygdala between the PNS and Control cows, 2 differentially expressed genes were identified (FDR ≤ 0.15). The minimal differences observed could be the result of natural changes of DNA methylation and gene expression as an animal ages, or because this degree of transportation stress was not severe enough to cause lasting effects on the offspring. A younger age may be a more appropriate time to assess methylation and gene expression differences produced by prenatal stress.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Audrey L. Earnhardt
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Haley C. Collins
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX, United States
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- *Correspondence: David G. Riley,
| |
Collapse
|
12
|
D'Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, Vismara M, Benatti B, Ferrara L, Fasciana F, Celebre L, Viganò C, Elli L, Sergi M, Maccarrone M, Buzzelli V, Trezza V, Dell'Osso B. Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenetics 2022; 14:47. [PMID: 35361281 PMCID: PMC8973787 DOI: 10.1186/s13148-022-01264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent and severe clinical condition. Robust evidence suggests a gene-environment interplay in its etiopathogenesis, yet the underlying molecular clues remain only partially understood. In order to further deepen our understanding of OCD, it is essential to ascertain how genes interact with environmental risk factors, a cross-talk that is thought to be mediated by epigenetic mechanisms. The human microbiota may be a key player, because bacterial metabolites can act as epigenetic modulators. We analyzed, in the blood and saliva of OCD subjects and healthy controls, the transcriptional regulation of the oxytocin receptor gene and, in saliva, also the different levels of major phyla. We also investigated the same molecular mechanisms in specific brain regions of socially isolated rats showing stereotyped behaviors reminiscent of OCD as well as short chain fatty acid levels in the feces of rats. RESULTS Higher levels of oxytocin receptor gene DNA methylation, inversely correlated with gene expression, were observed in the blood as well as saliva of OCD subjects when compared to controls. Moreover, Actinobacteria also resulted higher in OCD and directly correlated with oxytocin receptor gene epigenetic alterations. The same pattern of changes was present in the prefrontal cortex of socially-isolated rats, where also altered levels of fecal butyrate were observed at the beginning of the isolation procedure. CONCLUSIONS This is the first demonstration of an interplay between microbiota modulation and epigenetic regulation of gene expression in OCD, opening new avenues for the understanding of disease trajectories and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
| | | | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | | | | | - Federico Fanti
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Beatrice Benatti
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Laura Celebre
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Elli
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Manuel Sergi
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy. .,Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", Psychiatry Unit 2, ASST Sacco-Fatebenefratelli, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
13
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100208. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called 'wear and tear'. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
| |
Collapse
|
14
|
Pellicano GR, Carola V, Bussone S, Cecchini M, Tambelli R, Lai C. Beyond the dyad: the role of mother and father in newborns' global DNA methylation during the first month of life-a pilot study. Dev Psychobiol 2021; 63:1345-1357. [PMID: 33350469 DOI: 10.1002/dev.22072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
The study aimed to longitudinally explore the effects of parental prenatal attachment and psychopathological symptomatology on neonatal global DNA methylation (5-mC) variation between birth and the first month of life. Eighteen mothers and thirteen fathers were assessed before childbirth (t0) by Perceived Stress Scale (PSS), Prenatal-Attachment Inventory, and Paternal Antenatal Attachment Scale; 48 hr after childbirth (t1) by SCL-90-R; and one month after childbirth (t2) by PSS. At t1 and t2, buccal swabs from parents and newborns were collected. In newborns' 5-mC and single nucleotide polymorphisms (SNPs) of DAT, MAOA, BDNF, and 5-HTTLPR genes were detected, while in parents only SNPs were measured. At t1, newborns' 5-mC was negatively associated with maternal psychopathological symptoms, while at t2, newborns' 5-mC was positively associated with paternal psychopathological symptoms and negatively with paternal prenatal attachment. The variation of newborns' 5-mC from t1 to t2 was predicted by paternal psychopathological symptoms. No significant correlations among parental SNPs and 5-mC levels were found. Results highlight parent-specific influences on newborn's DNA methylation. At birth, maternal psychological symptoms seem to have an effect on newborns' 5-mC, while after one month of life, paternal psychological characteristics could have a specific role in modulating the newborns' epigenetic responses to the environment.
Collapse
Affiliation(s)
- Gaia Romana Pellicano
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Valeria Carola
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Silvia Bussone
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Cecchini
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Renata Tambelli
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Carlo Lai
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
16
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
17
|
Moccia C, Popovic M, Isaevska E, Fiano V, Trevisan M, Rusconi F, Polidoro S, Richiardi L. Birthweight DNA methylation signatures in infant saliva. Clin Epigenetics 2021; 13:57. [PMID: 33741061 PMCID: PMC7980592 DOI: 10.1186/s13148-021-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Low birthweight has been repeatedly associated with long-term adverse health outcomes and many non-communicable diseases. Our aim was to look-up cord blood birthweight-associated CpG sites identified by the PACE Consortium in infant saliva, and to explore saliva-specific DNA methylation signatures of birthweight. Methods DNA methylation was assessed using Infinium HumanMethylation450K array in 135 saliva samples collected from children of the NINFEA birth cohort at an average age of 10.8 (range 7–17) months. The association analyses between birthweight and DNA methylation variations were carried out using robust linear regression models both in the exploratory EWAS analyses and in the look-up of the PACE findings in infant saliva. Results None of the cord blood birthweight-associated CpGs identified by the PACE Consortium was associated with birthweight when analysed in infant saliva. In saliva EWAS analyses, considering a false discovery rate p-values < 0.05, birthweight as continuous variable was associated with DNA methylation in 44 CpG sites; being born small for gestational age (SGA, lower 10th percentile of birthweight for gestational age according to WHO reference charts) was associated with DNA methylation in 44 CpGs, with only one overlapping CpG between the two analyses. Despite no overlap with PACE results at the CpG level, two of the top saliva birthweight CpGs mapped at genes associated with birthweight with the same direction of the effect also in the PACE Consortium (MACROD1 and RPTOR). Conclusion Our study provides an indication of the birthweight and SGA epigenetic salivary signatures in children around 10 months of age. DNA methylation signatures in cord blood may not be comparable with saliva DNA methylation signatures at about 10 months of age, suggesting that the birthweight epigenetic marks are likely time and tissue specific. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01053-1.
Collapse
Affiliation(s)
- Chiara Moccia
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy.
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy
| | - Valentina Fiano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy
| | - Morena Trevisan
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy
| | - Franca Rusconi
- Unit of Epidemiology, 'Anna Meyer' Children's University Hospital, Florence, Italy
| | - Silvia Polidoro
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.,MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO Piemonte, Via Santena 7, 10126, Turin, Italy
| |
Collapse
|
18
|
Bicho RC, Scott-Fordsmand JJ, Amorim MJB. Developing an epigenetics model species - From blastula to mature adult, life cycle methylation profile of Enchytraeus crypticus (Oligochaete). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139079. [PMID: 32428769 DOI: 10.1016/j.scitotenv.2020.139079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an epigenetic mechanism of particular importance in developmental biology, but methylation also varies along organisms' life cycle. Recent studies have deliberated copper (Cu) exposure induced epigenetic changes in Enchytraeus crypticus, a standard species belonging to one of the most common and important genera of soil invertebrates in many ecosystems. There is however no information on how DNA methylation levels change within the life cycle of this species. We here investigate the global DNA methylation profile along the life cycle of E. crypticus and compare this to the expression of target genes involved in methylation. Results showed that after the lowest DNA methylation level at day 3 (early embryonic stage, blastula) there was an increase by day 7 (organogenesis) after which levels were maintained at days 11, 18 and 25. DNA methyltransferase associated protein 1 (DMPA1) and Methyl Binding Domain 2 (MBD2) gene expression was highest during embryo stages (3 to 7 days), then decreasing (11, 18 days) and finally unregulated in adults (25 days). Hence, we here show that DNA methylation in E. crypticus changes among the different life stages, from cocoons to adults. Such information is a key knowledge to use this endpoint and tool in an ecotoxicology context. This means that it is almost implicit that gene expression levels are age specific for a given stressor. It seems logic to recommend to always compare individuals with the same age between treatments, and to be careful when extrapolating results among life stages. Once, we understand more of these effects we may even be able to predict which life stage is more sensitive to specific stressors. An experimental design that aims to cover epigenetics of stressors in a multigenerational exposure, including transgenerational effects, should ensure the synchronous age of organisms for sampling analysis purposes.
Collapse
Affiliation(s)
- Rita C Bicho
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Johnson RK, Vanderlinden LA, Dong F, Carry PM, Seifert J, Waugh K, Shorrosh H, Fingerlin T, Frohnert BI, Yang IV, Kechris K, Rewers M, Norris JM. Longitudinal DNA methylation differences precede type 1 diabetes. Sci Rep 2020; 10:3721. [PMID: 32111940 PMCID: PMC7048736 DOI: 10.1038/s41598-020-60758-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
DNA methylation may be involved in development of type 1 diabetes (T1D), but previous epigenome-wide association studies were conducted among cases with clinically diagnosed diabetes. Using multiple pre-disease peripheral blood samples on the Illumina 450 K and EPIC platforms, we investigated longitudinal methylation differences between 87 T1D cases and 87 controls from the prospective Diabetes Autoimmunity Study in the Young (DAISY) cohort. Change in methylation with age differed between cases and controls in 10 regions. Average longitudinal methylation differed between cases and controls at two genomic positions and 28 regions. Some methylation differences were detectable and consistent as early as birth, including before and after the onset of preclinical islet autoimmunity. Results map to transcription factors, other protein coding genes, and non-coding regions of the genome with regulatory potential. The identification of methylation differences that predate islet autoimmunity and clinical diagnosis may suggest a role for epigenetics in T1D pathogenesis; however, functional validation is warranted.
Collapse
Affiliation(s)
- Randi K Johnson
- University of Colorado Anschutz Medical Campus, Division of Biomedical Informatics and Personalized Medicine, Aurora, CO, USA
| | - Lauren A Vanderlinden
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick M Carry
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Jennifer Seifert
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hanan Shorrosh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Brigitte I Frohnert
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- University of Colorado Anschutz Medical Campus, Division of Biomedical Informatics and Personalized Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA.
| |
Collapse
|