1
|
Chen Y, Chen YY, Chien KL, Lin YJ, Chen FY, Hsieh YC, Lip GYH, Chen SA. Long-term trajectories of apolipoprotein A1 and major adverse cardiovascular events and mortality in a community cohort. Lipids Health Dis 2025; 24:137. [PMID: 40211283 PMCID: PMC11983767 DOI: 10.1186/s12944-025-02552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a major component of high-density lipoprotein cholesterol and plays a critical role in reverse cholesterol transport. Dynamic changes in ApoA1 levels may be associated with major adverse cardiovascular events. This study aimed to evaluate the impact of ApoA1 trajectories over three early assessments. METHODS Participants in the Chin-Shan Community Cardiovascular Cohort with dyslipidemia and receiving three early ApoA1 assessments were enrolled. Group-based multivariate trajectory modeling was used to classify participants into distinct trajectories after multivariable adjustment. The follow-up duration was from April 1990 to August 2022, and the long-term outcomes of major adverse cardiovascular events (MACE) and death outcomes were evaluated. RESULTS A total of 1,080 participants were included (median [interquartile range] age 66.14 [57.93-75.04] years, 43.2% males). Participants were classified into four ApoA1 trajectories: Trajectory 1 (low-level persistence pattern); Trajectory 2 (fall-then-rise pattern); Trajectory 3 (rise-then-fall pattern); and Trajectory 4 (elevated stable pattern). The cumulative incidence of MACE was ranked as Trajectory 4 (7.9%) < Trajectory 2 (9.3%) < Trajectory 3 (9.4%) < Trajectory 1 (12.7%). Comparing to Trajectory 4, both Trajectory 1 and Trajectory 2 had significantly higher risks of MACE (Trajectory 1: hazard ratio [HR] = 2.06, 95% confidence interval [CI] 1.10-3.86; Trajectory 2: HR = 2.38, 95% CI 1.03-5.48). For cardiovascular death, similar results were present. There were no significant differences in composite outcome, all-cause death, non-cardiovascular death across ApoA1 trajectories. CONCLUSION The trajectory changes of ApoAI levels significantly influences MACE risk during long-term follow-up, particularly in the low-stable and J-shaped trajectories. Dynamic monitoring of ApoAI may serve as a valuable tool for early risk stratification in high-risk populations, facilitating more individualised interventions.
Collapse
Affiliation(s)
- Yang Chen
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Yun-Yu Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan.
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fang-Yi Chen
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Hsieh
- Department of Medical Research, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Medical University of Bialystok, Bialystok, Poland
| | - Shih-Ann Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Malin Igra A, Ekström S, Andersson N, Ljungman P, Melén E, Kull I, Risérus U, Bergström A. Biomarkers of dietary PUFA intake in childhood and adolescence in relation to cardiometabolic risk factors in young adulthood: a prospective cohort study in Sweden. Am J Clin Nutr 2025; 121:558-566. [PMID: 40044394 PMCID: PMC11923371 DOI: 10.1016/j.ajcnut.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND PUFAs, especially from vegetable fat sources, have been suggested to contribute to weight regulation and be protective to cardiometabolic health. However, a few longitudinal studies on childhood exposure are available, with short follow-up time and conflicting results. OBJECTIVES To study the relationship between plasma proportions of PUFA in childhood and adolescence and cardiometabolic risk factors in young adulthood, such as obesity, body composition, blood pressure (BP), and blood lipids in a prospective cohort study. METHODS We included n = 688 participants of the BAMSE (Barn, Allergi, Miljö, Stockholm, Epidemiologi) cohort in Stockholm, Sweden, with data on plasma phospholipid proportions of n-3 and n-6 fatty acids [α-linolenic acid (ALA), EPA, docosapentaenoic acid, DHA, linoleic acid (LA), and arachidonic acid (AA)] at 8 and 16 y and body mass index (BMI), waist circumference, fat mass %, BP, and blood lipids at 24 y. Associations between PUFAs and cardiometabolic health outcomes were assessed with sex-stratified multivariable-adjusted linear and logistic regression models. RESULTS In females, LA and ALA at 16 y were inversely associated with BMI [B: -0.35 (-0.54, -0.17) and B: -6.1 (-11, -1.5), respectively], and similarly with waist circumference and fat mass at 24 y. Also in females, LA was inversely associated with BP, triglycerides, LDL-cholesterol), and total cholesterol (e.g., B -0.044 [-0.079, -0.0099] for LA at 16 y and LDL-cholesterol), whereas ALA was only inversely associated with LDL-cholesterol. No associations were found between long chain n-3 fatty acids or AA and any of the studied outcomes. CONCLUSIONS Plasma phospholipid proportions of LA and ALA, biomarkers of vegetable oil intake, during childhood and adolescence were inversely associated with measures of obesity and cardiometabolic health in young adulthood, with a potential sex difference. These findings accord with short-term feeding trials suggesting a possible preventive role of LA on body fat accumulation.
Collapse
Affiliation(s)
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Danderyd, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
3
|
Cuchillo-Hilario M, Fournier-Ramírez MI, Díaz Martínez M, Montaño Benavides S, Calvo-Carrillo MC, Carrillo Domínguez S, Carranco-Jáuregui ME, Hernández-Rodríguez E, Mora-Pérez P, Cruz-Martínez YR, Delgadillo-Puga C. Animal Food Products to Support Human Nutrition and to Boost Human Health: The Potential of Feedstuffs Resources and Their Metabolites as Health-Promoters. Metabolites 2024; 14:496. [PMID: 39330503 PMCID: PMC11434278 DOI: 10.3390/metabo14090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Recent attention has been given to animal feeding and its impact on human nutrition. Animal feeding is essential for meeting human dietary needs, making it a subject of significant interest and investigation. This review seeks to outline the current understanding of this disciplinary area, with a focus on key research areas and their potential implications. The initial part of the paper discusses the importance of animal feed resources and recognizes their crucial role in guaranteeing sufficient nutrition for both humans and animals. Furthermore, we analyzed the categorization of animal feeds based on the guidelines established by the National Research Council. This approach offers a valuable structure for comprehending and classifying diverse types of animal feed. Through an examination of this classification, we gain an understanding of the composition and nutritional content of various feedstuffs. We discuss the major categories of metabolites found in animal feed and their impact on animal nutrition, as well as their potential health advantages for humans. Flavonoids, polyphenols, tannins, terpenoids, vitamins, antioxidants, alkaloids, and essential oils are the primary focus of the examination. Moreover, we analyzed their possible transference into animal products, and later we observed their occurrence in foods from animal sources. Finally, we discuss their potential to promote human health. This review offers an understanding of the connections among the major metabolites found in feedstuffs, their occurrence in animal products, and their possible impact on the health of both animals and humans.
Collapse
Affiliation(s)
- Mario Cuchillo-Hilario
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Mareli-Itzel Fournier-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores de Cuautitlán, Universidad Nacional Autónoma de México, Km 3.5 Carretera Teoloyucan-Cuautitlán, Estado de México 54000, Mexico
| | - Margarita Díaz Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Sara Montaño Benavides
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Concepción Calvo-Carrillo
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Silvia Carrillo Domínguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - María-Elena Carranco-Jáuregui
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Elizabeth Hernández-Rodríguez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Patricia Mora-Pérez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Yesica R Cruz-Martínez
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| |
Collapse
|
4
|
Dia KKH, Escobar AR, Qin H, Ye F, Jimenez A, Hasan MA, Hajiaghajani A, Dautta M, Li L, Tseng P. Passive Wireless Porous Biopolymer Sensors for At-Home Monitoring of Oil and Fatty Acid Nutrition. ACS APPLIED BIO MATERIALS 2024; 7:5452-5460. [PMID: 39031088 DOI: 10.1021/acsabm.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.
Collapse
Affiliation(s)
- Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Huiting Qin
- Material and Manufacturing Technology Program, University of California, Irvine, California 92617, United States
| | - Fan Ye
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Md Abeed Hasan
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Lei Li
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| |
Collapse
|
5
|
Tsuruta H, Sugahara S, Kume S. Nutrient quality in dietary therapy for diabetes and diabetic kidney disease. J Diabetes Investig 2024; 15:973-981. [PMID: 38591876 PMCID: PMC11292394 DOI: 10.1111/jdi.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Dietary therapy is crucial for diabetes care with the aim of preventing the onset and progression of diabetes and its complications. The traditional approach to dietary therapy for diabetes has primarily focused on restricting the intake of the three major nutrients and rigorously controlling blood glucose levels. However, advancements in nutritional science have shown that within the three major nutrients - carbohydrates, proteins and lipids - there exist multiple types, each with distinct impacts on type 2 diabetes and its complications, sometimes even showing conflicting effects. In light of this, the present review shifts its focus from the quantity to the quality of the three major nutrients. It aims to provide an overview of how the differences in nutrient quality can influence onset and progression of type 2 diabetes and diabetic kidney disease, highlighting the diverse effects and, at times, contradictory impacts associated with each nutrient type.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| | - Sho Sugahara
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| | - Shinji Kume
- Department of MedicineShiga University of Medical ScienceOtsuShigaJapan
| |
Collapse
|
6
|
Caballero FF, Lana A, Struijk EA, Arias-Fernández L, Yévenes-Briones H, Cárdenas-Valladolid J, Salinero-Fort MÁ, Banegas JR, Rodríguez-Artalejo F, Lopez-Garcia E. Prospective Association Between Plasma Concentrations of Fatty Acids and Other Lipids, and Multimorbidity in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1763-1770. [PMID: 37156635 DOI: 10.1093/gerona/glad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/10/2023] Open
Abstract
Biological mechanisms that lead to multimorbidity are mostly unknown, and metabolomic profiles are promising to explain different pathways in the aging process. The aim of this study was to assess the prospective association between plasma fatty acids and other lipids, and multimorbidity in older adults. Data were obtained from the Spanish Seniors-ENRICA 2 cohort, comprising noninstitutionalized adults ≥65 years old. Blood samples were obtained at baseline and after a 2-year follow-up period for a total of 1 488 subjects. Morbidity was also collected at baseline and end of the follow-up from electronic health records. Multimorbidity was defined as a quantitative score, after weighting morbidities (from a list of 60 mutually exclusive chronic conditions) by their regression coefficients on physical functioning. Generalized estimating equation models were employed to assess the longitudinal association between fatty acids and other lipids, and multimorbidity, and stratified analyses by diet quality, measured with the Alternative Healthy Eating Index-2010, were also conducted. Among study participants, higher concentrations of omega-6 fatty acids [coef. per 1-SD increase (95% CI) = -0.76 (-1.23, -0.30)], phosphoglycerides [-1.26 (-1.77, -0.74)], total cholines [-1.48 (-1.99, -0.96)], phosphatidylcholines [-1.23 (-1.74, -0.71)], and sphingomyelins [-1.65 (-2.12, -1.18)], were associated with lower multimorbidity scores. The strongest associations were observed for those with a higher diet quality. Higher plasma concentrations of omega-6 fatty acids, phosphoglycerides, total cholines, phosphatidylcholines, and sphingomyelins were prospectively associated with lower multimorbidity in older adults, although diet quality could modulate the associations found. These lipids may serve as risk markers for multimorbidity.
Collapse
Affiliation(s)
- Francisco Félix Caballero
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Alberto Lana
- Department of Medicine, Universidad de Oviedo/ISPA, Oviedo, Spain
| | - Ellen A Struijk
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
| | | | - Humberto Yévenes-Briones
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Juan Cárdenas-Valladolid
- Dirección Técnica de Sistemas de Información. Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Fundación de Investigación e Innovación Biosanitaria de Atención Primaria, Madrid, Spain
- Enfermería, Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain
| | - Miguel Ángel Salinero-Fort
- Subdirección General de Investigación Sanitaria, Consejería de Sanidad, Fundación de Investigación e Innovación Sanitaria de Atención Primaria, Madrid, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas, Grupo de Envejecimiento y Fragilidad de las personas mayores. IdIPAZ, Madrid, Spain
| | - José R Banegas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
- IMDEA-Food Institute. CEI UAM+CSIC, Madrid, Spain
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBER of Epidemiology and Public Health, Madrid, Spain
- IMDEA-Food Institute. CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
7
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
8
|
Regan-Smith S, Fritzen R, Hierons SJ, Ajjan RA, Blindauer CA, Stewart AJ. Strategies for Therapeutic Amelioration of Aberrant Plasma Zn2+ Handling in Thrombotic Disease: Targeting Fatty Acid/Serum Albumin-Mediated Effects. Int J Mol Sci 2022; 23:ijms231810302. [PMID: 36142215 PMCID: PMC9499645 DOI: 10.3390/ijms231810302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70–85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.
Collapse
Affiliation(s)
| | - Remi Fritzen
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | | - Ramzi A. Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Correspondence: ; Tel.: +44-(0)1334-463546
| |
Collapse
|
9
|
Ren XL, Liu Y, Chu WJ, Li ZW, Zhang SS, Zhou ZL, Tang J, Yang B. Blood levels of omega-6 fatty acids and coronary heart disease: a systematic review and metaanalysis of observational epidemiology. Crit Rev Food Sci Nutr 2022; 63:7983-7995. [PMID: 35380474 DOI: 10.1080/10408398.2022.2056867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individual omega-6 polyunsaturated fatty acids (PUFAs), principally linoleic acid (LA) and arachidonic acid (AA), may have differential impacts on cardiovascular risk. We aimed to summarize the up-to-date epidemiology evidence on the relationship between blood levels of omega-6 PUFAs and the risk of coronary heart disease (CHD). Population-based studies determining PUFA levels in blood were identified until May 2021 in PubMed, Embase, Web of Science, and Cochrane Library. Random-effects meta-analyses of cohorts comparing the highest versus lowest category were conducted to combine study-specific risk ratios (RRs) with 95% confidence intervals (CIs). Blood levels of omega-6 PUFAs were compared between the CHD case and non-case, presented as a weight mean difference (WMD). Twenty-one cohorts and eleven case-control studies were included. The WMD was -0.71 (95% CI: -1.20, -0.21) for LA and 0.08 (95% CI: -0.28, 0.43) for AA. LA levels were inversely associated with total CHD risk (RR: 0.85, 95% CI: 0.71, 1.00), but not AA. Each one-SD increase in LA levels resulted in 10% reductions in the risk of fatal CHD (RR: 0.90, 95% CI: 0.86, 0.95), but not in non-fatal CHD. Such findings highlight that the current recommendation for optimal intakes of omega-6 PUFAs (most LA) may offer a coronary benefit in primary prevention.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2056867 .
Collapse
Affiliation(s)
- Xiao-Li Ren
- The Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yang Liu
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wei-Jie Chu
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Ze-Wang Li
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shuang-Shuang Zhang
- The 1st School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Liang Zhou
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Tang
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Food Science & Nutrition, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Kruse AB, Gärtner M, Vach K, Grueninger D, Peikert SA, Ratka-Krüger P, Tennert C, Woelber JP. An exploratory study on the role of serum fatty acids in the short-term dietary therapy of gingivitis. Sci Rep 2022; 12:4022. [PMID: 35256737 PMCID: PMC8901712 DOI: 10.1038/s41598-022-07989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
A previous randomised controlled trial showed that an anti-inflammatory diet (AID) significantly reduced gingival inflammation despite constant plaque values. This exploratory study investigated the role of serum fatty acids in relation to the observed clinical effects. Therefore, data of thirty participants with gingivitis, following either a pro-inflammatory dietary pattern (PID) rich in saturated fat, omega 6 fatty acids, and refined carbohydrates or an AID for 4 weeks, were correlated with corresponding serum samples for a variety of fatty acids. Changes in the fatty acid profile and effects on clinical periodontal parameters were analysed. Results showed that the polyunsatured:saturated fatty acids ratio (PUFA:SFA ratio) and nervonic acid level were significantly higher in the AID group than in the PID group at the end of the study. Significant intragroup differences were seen only in the AID group. Diverse fatty acids showed heterogeneous relations to clinical parameters. This study demonstrated that the serum fatty acid profile was not fundamentally associated with the clinical gingivitis-lowering effects of an AID in short-term, although some fatty acids showed individual relations to clinical parameters with respect to inflammation. Hence, short-term effects of dietary therapy on gingivitis may be rather based on carbohydrate-related effects and/or micronutrients.
Collapse
Affiliation(s)
- Anne B Kruse
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Maximilian Gärtner
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kirstin Vach
- Department of Medical Biometry and Medical Informatics, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Dirk Grueninger
- Centre of Laboratory Diagnostics MVZ Clotten, Merzhauser Str. 112 a, 79100, Freiburg, Germany
| | - Stefanie A Peikert
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Petra Ratka-Krüger
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Tennert
- Department of Restorative, Preventive and Pediatric Dentistry, University of Berne, Freiburgstrasse 7, 3010, Berne, Switzerland
| | - Johan P Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
11
|
Wang C, Enssle J, Pietzner A, Schmöcker C, Weiland L, Ritter O, Jaensch M, Elbelt U, Pagonas N, Weylandt KH. Essential Polyunsaturated Fatty Acids in Blood from Patients with and without Catheter-Proven Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23020766. [PMID: 35054948 PMCID: PMC8775772 DOI: 10.3390/ijms23020766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Statins reduce morbidity and mortality of CAD. Intake of n-3 polyunsaturated fatty acid (n-3 PUFAs), particularly eicosapentaenoic acid (EPA), is associated with reduced morbidity and mortality in patients with CAD. Previous data indicate that a higher conversion of precursor fatty acids (FAs) to arachidonic acid (AA) is associated with increased CAD prevalence. Our study explored the FA composition in blood to assess n-3 PUFA levels from patients with and without CAD. We analyzed blood samples from 273 patients undergoing cardiac catheterization. Patients were stratified according to clinically relevant CAD (n = 192) and those without (n = 81). FA analysis in full blood was performed by gas chromatography. Indicating increased formation of AA from precursors, the ratio of dihomo-gamma-linolenic acid (DGLA) to AA, the delta-5 desaturase index (D5D index) was higher in CAD patients. CAD patients had significantly lower levels of omega-6 polyunsaturated FAs (n-6 PUFA) and n-3 PUFA, particularly EPA, in the blood. Thus, our study supports a role of increased EPA levels for cardioprotection.
Collapse
Affiliation(s)
- Chaoxuan Wang
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Jörg Enssle
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14469 Potsdam, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
| | - Christoph Schmöcker
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
| | - Linda Weiland
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Oliver Ritter
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Monique Jaensch
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Nikolaos Pagonas
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)3391-39-3210
| |
Collapse
|
12
|
Nutrients and Dietary Approaches in Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease: A Narrative Review. Nutrients 2021; 13:nu13114150. [PMID: 34836405 PMCID: PMC8622886 DOI: 10.3390/nu13114150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of morbidity and mortality in developed countries. The prevalence of CVD is much higher in patients with type 2 diabetes mellitus (T2DM), who may benefit from lifestyle changes, which include adapted diets. In this review, we provide the role of different groups of nutrients in patients with T2DM and CVD, as well as dietary approaches that have been associated with better and worse outcomes in those patients. Many different diets and supplements have proved to be beneficial in T2DM and CVD, but further studies, guidelines, and dietary recommendations are particularly required for patients with both diseases.
Collapse
|
13
|
Huang NK, Biggs ML, Matthan NR, Djoussé L, Longstreth WT, Mukamal KJ, Siscovick DS, Lichtenstein AH. Serum Nonesterified Fatty Acids and Incident Stroke: The CHS. J Am Heart Assoc 2021; 10:e022725. [PMID: 34755529 PMCID: PMC8751910 DOI: 10.1161/jaha.121.022725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Significant associations between total nonesterified fatty acid (NEFA) concentrations and incident stroke have been reported in some prospective cohort studies. We evaluated the associations between incident stroke and serum concentrations of nonesterified saturated, monounsaturated, polyunsaturated, and trans fatty acids. Methods and Results CHS (Cardiovascular Health Study) participants (N=2028) who were free of stroke at baseline (1996–1997) and had an archived fasting serum sample were included in this study. A total of 35 NEFAs were quantified using gas chromatography. Cox proportional hazards regression models were used to evaluate associations of 5 subclasses (nonesterified saturated, monounsaturated, omega (n)‐6 polyunsaturated, n‐3 polyunsaturated, and trans fatty acids) of NEFAs and individual NEFAs with incident stroke. Sensitivity analysis was conducted by excluding cases with hemorrhagic stroke (n=45). A total of 338 cases of incident stroke occurred during the median 10.5‐year follow‐up period. Total n‐3 (hazard ratio [HR], 0.77 [95% CI, 0.61–0.97]) and n‐6 (HR, 1.32 [95% CI, 1.01–1.73]) subclasses of NEFA were negatively and positively associated with incident stroke, respectively. Among individual NEFAs, dihomo‐γ‐linolenic acid (20:3n‐6) was associated with higher risk (HR, 1.29 [95% CI, 1.02–1.63]), whereas cis‐7‐hexadecenoic acid (16:1n‐9c) and arachidonic acid (20:4n‐6) were associated with a lower risk (HR, 0.67 [95% CI, 0.47–0.97]; HR, 0.81 [95% CI. 0.65–1.00], respectively) of incident stroke per standard deviation increment. After the exclusion of cases with hemorrhagic stroke, these associations did not remain significant. Conclusions A total of 2 NEFA subclasses and 3 individual NEFAs were associated with incident stroke. Of these, the NEFA n‐3 subclass and dihomo‐γ‐linolenic acid are diet derived and may be potential biomarkers for total stroke risk.
Collapse
Affiliation(s)
- Neil K Huang
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| | - Mary L Biggs
- Department of Biostatistics University of Washington Seattle WA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| | - Luc Djoussé
- Division of Aging Brigham and Women's Hospital Harvard Medical School Boston MA
| | - W T Longstreth
- Departments of Neurology and Epidemiology University of Washington Seattle WA
| | - Kenneth J Mukamal
- Division of General Medicine Beth Israel Deaconess Medical Center Boston MA
| | | | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| |
Collapse
|
14
|
Chen Y, Miura Y, Sakurai T, Chen Z, Shrestha R, Kato S, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Imai H, Minami H, Mizuta M, Hui SP. Comparison of dimension reduction methods on fatty acids food source study. Sci Rep 2021; 11:18748. [PMID: 34548525 PMCID: PMC8455623 DOI: 10.1038/s41598-021-97349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Serum fatty acids (FAs) exist in the four lipid fractions of triglycerides (TGs), phospholipids (PLs), cholesteryl esters (CEs) and free fatty acids (FFAs). Total fatty acids (TFAs) indicate the sum of FAs in them. In this study, four statistical analysis methods, which are independent component analysis (ICA), factor analysis, common principal component analysis (CPCA) and principal component analysis (PCA), were conducted to uncover food sources of FAs among the four lipid fractions (CE, FFA, and TG + PL). Among the methods, ICA provided the most suggestive results. To distinguish the animal fat intake from endogenous fatty acids, FFA variables in ICA and factor analysis were studied. ICA provided more distinct suggestions of FA food sources (endogenous, plant oil intake, animal fat intake, and fish oil intake) than factor analysis. Moreover, ICA was discovered as a new approach to distinguish animal FAs from endogenous FAs, which will have an impact on epidemiological studies. In addition, the correlation coefficients between a published dataset of food FA compositions and the loading values obtained in the present ICA study suggested specific foods as serum FA sources. In conclusion, we found that ICA is a useful tool to uncover food sources of serum FAs.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Yusuke Miura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Rojeet Shrestha
- Patients Choice Laboratories, 7026 Corporate Dr, Indianapolis, IN, 46278, USA
| | - Sota Kato
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Shigekazu Ukawa
- Research Unit of Advanced Interdisciplinary Care Science, Osaka City University Graduate School of Human Life Science, Osaka, 558-8585, Japan
| | | | - Koshi Nakamura
- Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Akiko Tamakoshi
- Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, 007-0894, Japan
| | - Hideyuki Imai
- Faculty of Information Science and Technology, Computer Science and Information Technology Mathematical Science, Hokkaido University, Sapporo, 060-0814, Japan
| | - Hiroyuki Minami
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Masahiro Mizuta
- Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan.
| |
Collapse
|
15
|
Donis N, Jiang Z, D'Emal C, Dulgheru R, Giera M, Blomberg N, Delvenne P, Nchimi A, Lancellotti P, Oury C. Regular Dietary Intake of Palmitate Causes Vascular and Valvular Calcification in a Rabbit Model. Front Cardiovasc Med 2021; 8:692184. [PMID: 34250045 PMCID: PMC8261064 DOI: 10.3389/fcvm.2021.692184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Aims: Palmitic acid (PA) and oleic acid (OA) are two main dietary fatty acids. Dietary intake of PA has been associated with cardiovascular disease risk, and the effect of OA remains uncertain. Our study aimed to assess the effect of a short-term intake of lard, as source of PA and OA, on aorta and aortic valve. Methods and Results: Rabbits were fed with two lard-enriched diets, containing either elevated levels of PA or of both PA and OA as compared to chow diet. After 16 weeks of each diet, calcification was observed in the aortic intima and in the aortic valve. The extent of calcification did not differ between the two diets. In contrast, rabbits fed chow diet did not develop any calcification. In blood, PA enrichment resulted in decreased lymphocyte and monocyte counts and increased levels of hemoglobin and haematocrit. Levels of the calcification inhibitor fetuin-A were also diminished, whereas creatinine levels were raised. Of note, none of the diets changed cholesterol levels in LDL or HDL. Comprehensive quantitative lipidomics analysis identified diet-related changes in plasma lipids. Dietary PA enrichment led to a drop of polyunsaturated fatty acids (PUFA), in particular of linoleic acid in cholesteryl esters, triglycerides and diacylglycerols (DAG). Ratios of PA to 18-carbon PUFA in DAG were positively correlated with the extent of aortic valve calcification, and inversely with monocyte counts. PA content in blood correlated with aorta calcification. Conclusions: Regular dietary PA intake induces vascular and valvular calcification independently of traditional risk factors. Our findings raise awareness about PA-rich food consumption and its potential deleterious effect on cardiovascular health.
Collapse
Affiliation(s)
- Nathalie Donis
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| | - Zheshen Jiang
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| | - Céline D'Emal
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| | - Raluca Dulgheru
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Philippe Delvenne
- Department of Pathology, Centre Hospitalier Universitaire (CHU) University Hospital, Liège University, Liège, Belgium.,Laboratory of Experimental Pathology, Groupe Interdisciplinaire de Géno-protéomique Appliquée (GIGA) Institute, Liege University, Liège, Belgium
| | - Alain Nchimi
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium.,Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, Italy.,Anthea Hospital, Bari, Italy
| | - Cécile Oury
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, CHU Sart Tilman, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int J Mol Sci 2020; 21:ijms21093248. [PMID: 32375338 PMCID: PMC7247327 DOI: 10.3390/ijms21093248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to analyze relevant endogenous lipid processing pathways, in the context of the impact that lipids have on drug absorption, their therapeutic use, and utilization in drug delivery. Lipids may serve as biomarkers of some diseases, but they can also provide endogenous therapeutic effects for certain pathological conditions. Current uses and possible clinical benefits of various lipids (fatty acids, steroids, triglycerides, and phospholipids) in cancer, infectious, inflammatory, and neurodegenerative diseases are presented. Lipids can also be conjugated to a drug molecule, accomplishing numerous potential benefits, one being the improved treatment effect, due to joined influence of the lipid carrier and the drug moiety. In addition, such conjugates have increased lipophilicity relative to the parent drug. This leads to improved drug pharmacokinetics and bioavailability, the ability to join endogenous lipid pathways and achieve drug targeting to the lymphatics, inflamed tissues in certain autoimmune diseases, or enable overcoming different barriers in the body. Altogether, novel mechanisms of the lipid role in diseases are constantly discovered, and new ways to exploit these mechanisms for the optimal drug design that would advance different drug delivery/therapy aspects are continuously emerging.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|