1
|
Géczi D, Klekner Á, Balogh I, Penyige A, Szilágyi M, Virga J, Bakó A, Nagy B, Torner B, Birkó Z. Identification of Deregulated miRNAs and mRNAs Involved in Tumorigenesis and Detection of Glioblastoma Patients Applying Next-Generation RNA Sequencing. Pharmaceuticals (Basel) 2025; 18:431. [PMID: 40143207 PMCID: PMC11944724 DOI: 10.3390/ph18030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
(1) Background: Glioblastoma (GBM) is one of the most aggressive brain tumors with a poor prognosis. Therefore, new insights into GBM diagnosis and treatment are required. In addition to differentially expressed mRNAs, miRNAs may have the potential to be applied as diagnostic biomarkers. (2) Methods: In this study, profiling of human miRNAs in combination with mRNAs was performed on total RNA isolated from tissue samples of five control and five GBM patients, using a high-throughput RNA sequencing (RNA-Seq) approach. (3) Results: A total of 35 miRNAs and 365 mRNAs were upregulated, while 82 miRNAs and 1225 mRNAs showed significant downregulation between tissue samples of GBM patients compared to the control samples using the iDEP tool to analyze RNA-Seq data. To validate our results, the expression of five miRNAs (hsa-miR-196a-5p, hsa-miR-21-3p, hsa-miR-10b-3p, hsa-miR-383-5p, and hsa-miR-490-3p) and fourteen mRNAs (E2F2, HOXD13, VEGFA, CDC45, AURKB, HOXC10, MYBL2, FABP6, PRLHR, NEUROD6, CBLN1, HRH3, HCN1, and RELN) was determined by RT-qPCR assay. The miRNet tool was used to build miRNA-target interaction. Furthermore, a protein-protein interaction (PPI) network was created from the miRNA targets by applying the NetworkAnalyst 3.0 tool. Based on the PPI network, a functional enrichment analysis of the target proteins was also carried out. (4) Conclusions: We identified an miRNA panel and several deregulated mRNAs that could play an important role in tumor development and distinguish GBM patients from healthy controls with high sensitivity and specificity using total RNA isolated from tissue samples.
Collapse
Affiliation(s)
- Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - József Virga
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (J.V.); (A.B.)
| | - Andrea Bakó
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (J.V.); (A.B.)
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Bernadett Torner
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (D.G.); (I.B.); (A.P.); (M.S.); (B.N.); (B.T.)
| |
Collapse
|
2
|
Buch AM, Liston C, Grosenick L. Simple and Scalable Algorithms for Cluster-Aware Precision Medicine. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2024; 238:136-144. [PMID: 39015742 PMCID: PMC11251711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
AI-enabled precision medicine promises a transformational improvement in healthcare outcomes. However, training on biomedical data presents significant challenges as they are often high dimensional, clustered, and of limited sample size. To overcome these challenges, we propose a simple and scalable approach for cluster-aware embedding that combines latent factor methods with a convex clustering penalty in a modular way. Our novel approach overcomes the complexity and limitations of current joint embedding and clustering methods and enables hierarchically clustered principal component analysis (PCA), locally linear embedding (LLE), and canonical correlation analysis (CCA). Through numerical experiments and real-world examples, we demonstrate that our approach outperforms fourteen clustering methods on highly underdetermined problems (e.g., with limited sample size) as well as on large sample datasets. Importantly, our approach does not require the user to choose the desired number of clusters, yields improved model selection if they do, and yields interpretable hierarchically clustered embedding dendrograms. Thus, our approach improves significantly on existing methods for identifying patient subgroups in multiomics and neuroimaging data and enables scalable and interpretable biomarkers for precision medicine.
Collapse
Affiliation(s)
- Amanda M Buch
- Dept. of Psychiatry & BMRI, Weill Cornell Medicine, Cornell University
| | - Conor Liston
- Dept. of Psychiatry & BMRI, Weill Cornell Medicine, Cornell University
| | - Logan Grosenick
- Dept. of Psychiatry & BMRI, Weill Cornell Medicine, Cornell University
| |
Collapse
|
3
|
Su F, Liu Y, Zong Y, Gao Z, Zhou G, Deng C, Liu Y, Zeng Y, Ma X, Wang Y, Wu Y, Xu F, Guan L, Liu B. Identification of circulating miRNA as early diagnostic molecular markers in malignant glioblastoma base on decision tree joint scoring algorithm. J Cancer Res Clin Oncol 2023; 149:17823-17836. [PMID: 37943358 DOI: 10.1007/s00432-023-05448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE The lack of clinical markers prevents early diagnosis of glioblastoma (GBM). Many studies have found that circulating microRNAs (miRNAs) can be used as early diagnostic markers of malignant tumours. Therefore, the identification of novel circulating miRNA biomolecular markers could be beneficial to clinicians in the early diagnosis of GBM. METHODS We developed a decision tree joint scoring algorithm (DTSA), systematically integrating significance analysis of microarray (SAM), Pearson hierarchical clustering, T test, Decision tree and Entropy weight score algorithm, to screen out circulating miRNA molecular markers with high sensitivity and accuracy for early diagnosis of GBM. RESULTS DTSA was developed and applied for GBM datasets and three circulating miRNA molecular markers were identified, namely, hsa-miR-2278, hsa-miR-555 and hsa-miR-892b. We have found that hsa-miR-2278 and hsa-miR-892b regulate the GBM pathway through target genes, promoting the development of GBM and affecting the survival of patients. DTSA has better classification effect in all data sets than other classification algorithms, and identified miRNAs are better than existing markers of GBM. CONCLUSION These results suggest that DTSA can effectively identify circulating miRNA, thus contributing to the early diagnosis and personalised treatment of GBM.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Yueyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghua Zong
- Department of Modern Medicine, University of Tibetan Medicine, Lhasa, 850000, China
| | - Ziyu Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Guiqin Zhou
- Department of Immunology, Harbin Medical University, Harbin, 150081, China
| | - Chao Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yuyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yue Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Ma
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yongxia Wang
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Yinwei Wu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Fusheng Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China
| | - Lili Guan
- Department of Information Management, Shanghai Lixin University of Accounting and Finance, Shanghai, 200438, China.
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, Harbin, 150081, China.
- Department of Modern Medicine and Pharmacy, University of Tibetan Medicine, Lhasa, 850000, China.
| |
Collapse
|
4
|
Nicola Candia AJ, Garcia Fallit M, Peña Agudelo JA, Pérez Küper M, Gonzalez N, Moreno Ayala MA, De Simone E, Giampaoli C, Casares N, Seilicovich A, Lasarte JJ, Zanetti FA, Candolfi M. Targeting FOXP3 Tumor-Intrinsic Effects Using Adenoviral Vectors in Experimental Breast Cancer. Viruses 2023; 15:1813. [PMID: 37766222 PMCID: PMC10537292 DOI: 10.3390/v15091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.
Collapse
Affiliation(s)
- Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Matías Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Mariela A. Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología “Dr. Cesar Milstein”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo C1440FFX, Buenos Aires, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| |
Collapse
|
5
|
Peña Agudelo JA, Pidre ML, Garcia Fallit M, Pérez Küper M, Zuccato C, Nicola Candia AJ, Marchesini A, Vera MB, De Simone E, Giampaoli C, Amorós Morales LC, Gonzalez N, Romanowski V, Videla-Richardson GA, Seilicovich A, Candolfi M. Mitochondrial Peptide Humanin Facilitates Chemoresistance in Glioblastoma Cells. Cancers (Basel) 2023; 15:4061. [PMID: 37627089 PMCID: PMC10452904 DOI: 10.3390/cancers15164061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Humanin (HN) is a mitochondrial-derived peptide with robust cytoprotective effects in many cell types. Although the administration of HN analogs has been proposed to treat degenerative diseases, its role in the pathogenesis of cancer is poorly understood. Here, we evaluated whether HN affects the chemosensitivity of glioblastoma (GBM) cells. We found that chemotherapy upregulated HN expression in GBM cell lines and primary cultures derived from GBM biopsies. An HN analog (HNGF6A) boosted chemoresistance, increased the migration of GBM cells and improved their capacity to induce endothelial cell migration and proliferation. Chemotherapy also upregulated FPR2 expression, an HN membrane-bound receptor, and the HNGF6A cytoprotective effects were inhibited by an FPR2 receptor antagonist (WRW4). These effects were observed in glioma cells with heterogeneous genetic backgrounds, i.e., glioma cells with wild-type (wtIDH) and mutated (mIDH) isocitrate dehydrogenase. HN silencing using a baculoviral vector that encodes for a specific shRNA for HN (BV.shHN) reduced chemoresistance, and impaired the migration and proangiogenic capacity of GBM cells. Taken together, our findings suggest that HN boosts the hallmark characteristics of GBM, i.e., chemoresistance, migration and endothelial cell proliferation. Thus, strategies that inhibit the HN/FPR2 pathway may improve the response of GBM to standard therapy.
Collapse
Affiliation(s)
- Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Matias Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Camila Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Mariana B. Vera
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, Argentina; (M.B.V.); (G.A.V.-R.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina; (E.D.S.); (C.G.)
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina; (E.D.S.); (C.G.)
| | - Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata B1900, Argentina; (M.L.P.); (A.M.); (L.C.A.M.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, Argentina; (M.B.V.); (G.A.V.-R.)
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1121A6B, Argentina; (J.A.P.A.); (M.G.F.); (M.P.K.); (C.Z.); (A.J.N.C.); (N.G.); (A.S.)
| |
Collapse
|
6
|
Cuesta-Casanovas L, Delgado-Martínez J, Cornet-Masana JM, Carbó JM, Banús-Mulet A, Guijarro F, Esteve J, Risueño RM. Prolactin receptor signaling induces acquisition of chemoresistance and reduces clonogenicity in acute myeloid leukemia. Cancer Cell Int 2023; 23:97. [PMID: 37208719 DOI: 10.1186/s12935-023-02944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Development of precision medicine requires the identification of easily detectable and druggable biomarkers. Despite recent targeted drug approvals, prognosis of acute myeloid leukemia (AML) patients needs to be greatly improved, as relapse and refractory disease are still difficult to manage. Thus, new therapeutic approaches are needed. Based on in silico-generated preliminary data and the literature, the role of the prolactin (PRL)-mediated signaling was interrogated in AML. METHODS Protein expression and cell viability were determined by flow cytometry. Repopulation capacity was studied in murine xenotransplantation assays. Gene expression was measured by qPCR and luciferase-reporters. SA-β-Gal staining was used as a senescence marker. RESULTS The prolactin receptor (PRLR) was upregulated in AML cells, as compared to their healthy counterpart. The genetic and molecular inhibition of this receptor reduced the colony-forming potential. Disruption of the PRLR signaling, either using a mutant PRL or a dominant-negative isoform of PRLR, reduced the leukemia burden in vivo, in xenotransplantation assays. The expression levels of PRLR directly correlated with resistance to cytarabine. Indeed, acquired cytarabine resistance was accompanied with the induction of PRLR surface expression. The signaling associated to PRLR in AML was mainly mediated by Stat5, in contrast to the residual function of Stat3. In concordance, Stat5 mRNA was significantly overexpressed at mRNA levels in relapse AML samples. A senescence-like phenotype, measured by SA-β-gal staining, was induced upon enforced expression of PRLR in AML cells, partially dependent on ATR. Similar to the previously described chemoresistance-induced senescence in AML, no cell cycle arrest was observed. Additionally, the therapeutic potential of PRLR in AML was genetically validated. CONCLUSIONS These results support the role of PRLR as a therapeutic target for AML and the further development of drug discovery programs searching for specific PRLR inhibitors.
Collapse
Affiliation(s)
- Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep M Cornet-Masana
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - José M Carbó
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Antònia Banús-Mulet
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Francesca Guijarro
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Department of Hematology, Hospital Clínic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
- Department of Hematology, Hospital Clínic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruth M Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP, Crta Can Ruti, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
7
|
Jang Y, Cheong W, Park G, Kim Y, Ha J, Ahn S. Tumor Microenvironment and Genes Affecting the Prognosis of Temozolomide-Treated Glioblastoma. J Pers Med 2023; 13:jpm13020188. [PMID: 36836422 PMCID: PMC9966340 DOI: 10.3390/jpm13020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent primary brain tumor in adults and has a poor prognosis due to its resistance to Temozolomide (TMZ). However, there is limited research regarding the tumor microenvironment and genes related to the prognosis of TMZ-treated GBM patients. This study aimed to identify putative transcriptomic biomarkers with predictive value in patients with GBM who were treated with TMZ. Publicly available datasets from The Cancer Genome Atlas and Gene Expression Omnibus were analyzed using CIBERSORTx and Weighted Gene Co-expression Network Analysis (WGCNA) to obtain types of highly expressed cell types and gene clusters. Differentially Expressed Genes analysis was performed and was intersected with the WGCNA results to obtain a candidate gene list. Cox proportional-hazard survival analysis was performed to acquire genes related to the prognosis of TMZ-treated GBM patients. Inflammatory microglial cells, dendritic cells, myeloid cells, and glioma stem cells were highly expressed in GBM tissue, and ACP7, EPPK1, PCDHA8, RHOD, DRC1, ZIC3, and PRLR were significantly associated with survival. While the listed genes have been previously reported to be related to glioblastoma or other types of cancer, ACP7 was identified as a novel gene related to the prognosis of GBM. These findings may have potential implications for developing a diagnostic tool to predict GBM resistance and optimize treatment decisions.
Collapse
Affiliation(s)
- Yena Jang
- Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Wooyong Cheong
- Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Gyurin Park
- Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Yeongmin Kim
- Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Junbeom Ha
- Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
- Correspondence:
| |
Collapse
|
8
|
Carrasco-Ceballos JM, Barrera-Hernández D, Locia-Espinosa J, Sampieri CL, Lara-Reyes JA, Hernández-Aguilar ME, Aranda-Abreu GE, Toledo-Cárdenas MR, Chi-Castañeda LD, Pérez-Estudillo CA, Rojas-Durán F. Involvement of the PRL-PAK1 Pathway in Cancer Cell Migration. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:17-25. [PMID: 36632591 PMCID: PMC9801455 DOI: 10.21873/cdp.10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022]
Abstract
Prolactin (PRL) is a polypeptide hormone synthesized in the lactotrophs of the adenohypophysis and in extrahypophyseal glands (such as the prostate and breasts) where it promotes their development. PRL is also involved in cancer development in these glands. It has been shown to stimulate cancer cell migration, suggesting its possible involvement in metastasis, in which cell migration plays an essential role. However, the role of PRL in cell migration is still unclear. Moreover, the intracellular mechanisms activated by PRL to carry out cell migration are less well understood. PRL exerts its effects via the PRL receptor (PRLR), which leads intracellularly to phosphorylation of Janus protein kinase 2 (JAK2), which in turn phosphorylates p21-activated protein kinase (PAK1), leading to an increase in cell migration. Although several studies have described the involvement of the PRL-PAK1 pathway in breast cancer cell migration, the molecular mechanisms have not been fully elucidated and there is no integration of these into signaling pathways. This study was conducted based on literature search of review articles and original research in the PubMed database, using the following keywords: PRL, cell migration, PRL and cell migration, PAK1 and signaling pathways. The aim of this review article was to describe the major signaling pathways controlled by PRL-PAK1 and propose a comprehensive model of the signaling pathways associated with PRL-PAK1.
Collapse
Affiliation(s)
| | - David Barrera-Hernández
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - José Locia-Espinosa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, México
| | | | | | | | | | | | | | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, México
| |
Collapse
|
9
|
Ruxolitinib enhances cytotoxic and apoptotic effects of temozolomide on glioblastoma cells by regulating WNT signaling pathway-related genes. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:37. [PMID: 36460932 DOI: 10.1007/s12032-022-01897-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
Although temozolomide is the primary chemotherapeutic agent in glioblastoma, current studies have focused on its combinational applications to overcome resistance by targeting multiple pathways. JAK/STAT and WNT are among the essential cancer-related signaling pathways. Ruxolitinib, the first approved JAK1/2 inhibitor, has promise in glioblastoma with its blood-brain barrier (BBB) crossing ability. The mentioned study aims to evaluate the anti-cancer potential of ruxolitinib individually and in combination with temozolomide on glioblastoma cells, brain cancer stem cells (BCSCs), and BBB-forming healthy cells. It also intends to determine the effects of JAK inhibitor treatment in combination with temozolomide on WNT signaling, which is known to cross-talk with the JAK/STAT pathway. The U87MG, BCSC, and HBMEC cell lines were the in vitro models. The cytotoxic and apoptotic effects of ruxolitinib and the combination were determined by the WST-1 test and Annexin V assay, respectively. The expression level changes of WNT signaling pathway genes caused by ruxolitinib and the combination treatments were defined by the qRT-PCR method. Network analysis of significantly upregulated and downregulated genes was performed via the GO KEGG pathway enrichment module of the String V11.5 database. The IC50 value of the ruxolitinib on U87MG glioblastoma cells was determined as 94.07 µM at 24th h. The combination of temozolomide and ruxolitinib had a synergistic effect on U87MG cells at 24th h. The combination index (CI) was determined as 0.796, and ED60 values of ruxolitinib and temozolomide were determined as 89.75 and 391.48 µM, respectively. Ruxolitinib improves the apoptotic effect of temozolomide on glioblastoma cells and brain cancer stem cells. Ruxolitinib regulates the WNT signaling pathway both individually and in combination with temozolomide. Our study indicates the potential of ruxolitinib to increase the cytotoxic and apoptotic activity of temozolomide in glioblastoma cells, also considering CSCs and healthy BBB-forming cells. As supported by gene expression and network analyses, the BBB-crossing agent ruxolitinib promises the potential to increase the efficacy of temozolomide in glioblastoma by affecting multiple signaling pathways in both cancer cells and CSCs.
Collapse
|
10
|
Zhang X, Liu Y. Sparse Laplacian shrinkage for nonparametric transformation survival model. COMMUN STAT-THEOR M 2022. [DOI: 10.1080/03610926.2022.2042025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xiao Zhang
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| | - Yiming Liu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
11
|
Sex Differences in Glioblastoma—Findings from the Swedish National Quality Registry for Primary Brain Tumors between 1999–2018. J Clin Med 2022; 11:jcm11030486. [PMID: 35159938 PMCID: PMC8837060 DOI: 10.3390/jcm11030486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sex disparities in glioblastoma (GBM) have received increasing attention. Sex-related differences for several molecular markers have been reported, which could impact on clinical factors and outcomes. We therefore analyzed data on all patients with GBM reported to the Swedish National Quality Registry for Primary Brain Tumors, according to sex, with a focus on prognostic factors and survival. All glioma patients registered during 20 years, from 1 January 1999 until 31 December 2018, with SNOMED codes 94403, 94413, and 94423, were analyzed. Chi2-test, log-rank test, and Kaplan–Meier analyses were performed. We identified 5243 patients, of which 2083 were females and 3160 males, resulting in a ratio of 1:1.5. We found sex related differences, with women having diagnostic surgery at a significantly higher age (p = 0.001). Women were also reported to have a worse preoperative performance status (PPS) (<0.001). There was no gender difference for the type of surgery performed. For women with radical surgery, overall survival was slightly better than for men (p = 0.045). The time period did not influence survival, neither for 1999–2005 nor 2006–2018, after temozolomide treatment was introduced (p = 0.35 and 0.10, respectively). In the multivariate analysis including sex, age, surgery, and PPS, a survival advantage was noted for women, but this was not clinically relevant (HR = 0.92, p = 0.006). For patients with GBM; sex-related differences in clinical factors could be identified in a population-based cohort. In this dataset, for survival, the only advantage noted was for women who had undergone radical surgery, although this was clinically almost negligible.
Collapse
|
12
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Standing D, Dandawate P, Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2022; 13:1112987. [PMID: 36714582 PMCID: PMC9880166 DOI: 10.3389/fendo.2022.1112987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Prolactin (PRL) is a peptide hormone mainly secreted from the anterior pituitary gland. PRL is reported to play a role in pregnancy, mammary gland development, immune modulation, reproduction, and differentiation of islet cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class I cytokine receptor that has no intrinsic kinase activity. In canonical signaling, PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT and MAPK pathways. This leads to increased cell proliferation, stemness, migration, apoptosis inhibition, and resistance to chemotherapy. PRL-signaling is upregulated in numerous hormone-dependent cancers including breast, prostate, ovarian, and endometrial cancer. However, more recently, the pathway has been reported to play a tumor-promoting role in other cancer types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling pathway is an attractive target for drug development with blockade of the receptor being a potential therapeutic approach. Different strategies have been developed to target this receptor including modification of PRL peptides (Del1-9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804) and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR and CD3, an in vivo half-life extended fusion protein containing PRLR antagonist PrlRA and albumin binding domain. There have also been attempts to discover and develop small molecular inhibitors targeting PRLR. Recently, using structure-based virtual screening, we identified a few antipsychotic drugs including penfluridol as a molecule that inhibits PRL-signaling to inhibit PDAC tumor progression. In this review, we will summarize the recent advances in the biology of this receptor in cancer and give an account of PRLR antagonist development for the treatment of cancer.
Collapse
|
14
|
Gonzalez N, Asad AS, Gómez Escalante J, Peña Agudelo JA, Nicola Candia AJ, García Fallit M, Seilicovich A, Candolfi M. Potential of IDH mutations as immunotherapeutic targets in gliomas: a review and meta-analysis. Expert Opin Ther Targets 2021; 25:1045-1060. [PMID: 34904924 DOI: 10.1080/14728222.2021.2017422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gliomas are stratified by the presence of a hotspot mutation in the enzyme isocitrate dehydrogenase genes (IDH1/2). While mutated IDH (mIDH) correlates with better prognosis, the role of this mutation in antitumor immunity and the response to immunotherapy is not completely understood. Understanding the relationship between the genetic features of these tumors and the tumor immune microenvironment (TIME) may help to develop appropriate therapeutic strategies. AREAS COVERED In this review we discussed the available literature related to the potential role of IDH mutations as an immunotherapeutic target in gliomas and profiled the immune transcriptome of glioma biopsies. We aimed to shed light on the role of mIDH on the immunological landscape of the different subtypes of gliomas, taking into account the most recent WHO classification of tumors of the central nervous system (CNS). We also discussed different immunotherapeutic approaches to target mIDH tumors and to overcome their immunosuppressive microenvironment. EXPERT OPINION Data presented here indicates that the TIME not only differs in association with IDH mutation status, but also within glioma subtypes, suggesting that the cellular context affects the overall effect of this genetic lesion. Thus, specific therapeutic combinations may help patients diagnosed with different glioma subtypes.
Collapse
Affiliation(s)
- Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Gómez Escalante
- Unidad Funcional de Neurooncologia y Banco de Tumores, Instituto de Oncología Ángel H. Roffo, Buenos Aires, Argentina
| | - Jorge A Peña Agudelo
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abstract
In this study, differential mRNA expression patterns of prolactin receptor (PRLR) in the hypothalamus and gonads, and the correlation with follicle stimulating hormone (FSH) and luteinizing hormone (LH) in striped hamster serum from spring, summer, autumn and winter were analyzed. Mature female and male striped hamsters in oestrus were used. Expression levels of PRLR in the hypothalamus, ovaries and testis from the summer and winter individuals were significantly higher compared with levels from the spring and autumn, whereas FSH and LH serum concentrations from summer and winter individuals were significantly lower compared with that from the spring and autumn. PRLR expression levels in hypothalamus, ovaries and testis were negatively correlated with FSH and LH serum concentrations, illustrating that PRLR might negatively regulate seasonal reproductive activity. PRLR expression levels in ovaries and testes were significantly higher compared with levels in the hypothalamus, suggesting that the regulative effects of PRLR in gonads might be significantly higher compared with that in the hypothalamus. Furthermore, PRLR expression levels from the spring, summer, autumn and winter seasons in the hypothalamus and gonads were significantly higher in females compared with levels in males, indicating that the regulative effect of PRLR might be sex dependent. Taken together, this study helps to understand in depth the seasonal regulative reproduction mechanism of striped hamsters to reasonably control population abundance.
Collapse
|
16
|
Wang W, Liu W. PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Brief Bioinform 2021; 22:6291946. [PMID: 34086850 DOI: 10.1093/bib/bbab212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
For high-dimensional expression data, most prognostic models perform feature selection based on individual genes, which usually lead to unstable prognosis, and the identified risk genes are inherently insufficient in revealing complex molecular mechanisms. Since most genes carry out cellular functions by forming protein complexes-basic representatives of functional modules, identifying risk protein complexes may greatly improve our understanding of disease biology. Coupled with the fact that protein complexes have been shown to have innate resistance to batch effects and are effective predictors of disease phenotypes, constructing prognostic models and selecting features with protein complexes as the basic unit should improve the robustness and biological interpretability of the model. Here, we propose a protein complex-based, group lasso-Cox model (PCLasso) to predict patient prognosis and identify risk protein complexes. Experiments on three cancer types have proved that PCLasso has better prognostic performance than prognostic models based on individual genes. The resulting risk protein complexes not only contain individual risk genes but also incorporate close partners that synergize with them, which may promote the revealing of molecular mechanisms related to cancer progression from a comprehensive perspective. Furthermore, a pan-cancer prognostic analysis was performed to identify risk protein complexes of 19 cancer types, which may provide novel potential targets for cancer research.
Collapse
Affiliation(s)
- Wei Wang
- Heilongjiang Institute of Technology, Harbin 150050, China
| | - Wei Liu
- School of Science at Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
17
|
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Ramachandran MA, Anitha TS. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr Mol Pharmacol 2021; 15:338-360. [PMID: 33881978 DOI: 10.2174/1874467214666210420115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. OBJECTIVE In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. METHODS We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. RESULTS It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. CONCLUSION To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Collapse
Affiliation(s)
- Daisy S Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory - Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku. Finland
| | | | | |
Collapse
|
18
|
Estevez H, Garcia-Calvo E, Rivera-Torres J, Vallet-Regí M, González B, Luque-Garcia JL. Transcriptome Analysis Identifies Novel Mechanisms Associated with the Antitumor Effect of Chitosan-Stabilized Selenium Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13030356. [PMID: 33800318 PMCID: PMC8000472 DOI: 10.3390/pharmaceutics13030356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have been receiving special attention in recent years due to their antioxidant capacity and antitumor properties. However, the mechanisms associated with these properties remain to be elucidated. For this reason, a global transcriptome analysis has been designed in this work and it was carried out using human hepatocarcinoma cells and chitosan-stabilized SeNPs (Ch-SeNPs) to identify new targets and pathways related to the antitumor mechanisms associated with Ch-SeNPs. The results obtained confirm the alteration of the cell cycle and the effect of Ch-SeNPs on different tumor suppressors and other molecules involved in key mechanisms related to cancer progression. Furthermore, we demonstrated the antioxidant properties of these nanoparticles and their capacity to induce senescence, which was further confirmed through the measurement of β-galactosidase activity.
Collapse
Affiliation(s)
- Hector Estevez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
| | - Jose Rivera-Torres
- Department of Pharmacy and Biotechnology, School of Biomedical and Health Sciences, European University of Madrid, 28670 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Complutense University of Madrid, 28040 Madrid, Spain; (M.V.-R.); (B.G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Complutense University of Madrid, 28040 Madrid, Spain; (M.V.-R.); (B.G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|
19
|
Ramírez-de-Arellano A, Villegas-Pineda JC, Hernández-Silva CD, Pereira-Suárez AL. The Relevant Participation of Prolactin in the Genesis and Progression of Gynecological Cancers. Front Endocrinol (Lausanne) 2021; 12:747810. [PMID: 34745013 PMCID: PMC8566755 DOI: 10.3389/fendo.2021.747810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone's modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
20
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|