1
|
Zhang YL, Yang HY, Gou J, Qi XM, Qiao YB, Li QS. Carvacrol/thymol derivatives as highly selective BuChE inhibitors with anti-inflammatory activities: Discovery and bio-evaluation. Bioorg Chem 2025; 160:108430. [PMID: 40209354 DOI: 10.1016/j.bioorg.2025.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
In this study, nine novel carvacrol/thymol derivatives incorporating carbamate groups were designed, synthesized, and evaluated as multifunctional anti-AD agents. These derivatives displayed superior BuChE inhibitory and anti-inflammatory characteristics compared to the parent compounds. While the derivatives exhibited AChE IC50 values exceeding the detectable limit (>100 μM), they demonstrated high potency as BuChE inhibitors, with IC50 values ranging from 0.05 to 9.62 μM. In an inflammation model of BV2 microglial cells induced by lipopolysaccharide (LPS), the derivatives effectively reduced the levels of the pro-inflammatory cytokine interleukin-1β (IL1β), with inhibition rates of IL1β exceeding 50 % at 10 μM. Notably, compound SXF3 attained the highest BuChE inhibition efficacy (eqBuChE IC50 = 0.05 ± 0.003 μM, hBuChE IC50 = 0.04 ± 0.001 μM), the highest selectivity for BuChE (with a selectivity index, SI, exceeding 2000, calculated as the ratio of eeAChE IC50 to eqBuChE IC50) and high anti-inflammatory activity (inhibition of IL1β, IC50 = 8.33 ± 0.08 μM). In a scopolamine-induced AD mouse model, SXF3 (15 mg/kg) significantly reduced the latency to the platform and attenuated memory deficits. Biochemical analysis confirmed that SXF3 significantly increased acetylcholine (ACh) levels in the mice hippocampus, primarily due to the inhibition of BuChE rather than AChE, and that SXF3 significantly reduced IL1β levels to normal, further confirming its anti-inflammatory activities. Hence, the selective BuChE inhibitory properties and anti-inflammatory attributes of SXF3 render it a promising candidate for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Hao-Yan Yang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Jie Gou
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Xiao-Ming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China.
| |
Collapse
|
2
|
Tok F. Recent Studies on Heterocyclic Cholinesterase Inhibitors Against Alzheimer's Disease. Chem Biodivers 2025; 22:e202402837. [PMID: 39587940 DOI: 10.1002/cbdv.202402837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's disease is a progressive and neurodegenerative disease characterized by impairment in emotion, language, memory, and cognitive judgment. There are many factors related to Alzheimer's disease, such as amyloid beta plaques (Aβ) due to impaired metabolism of amyloid precursor protein (APP), tau hyperphosphorylation, and accumulation of neurofibrillary tangles, and disruption of the cholinergic system. Disruption of the cholinergic system responsible for cognitive function and memory processes is one of the important causes of Alzheimer's disease. Therefore, cholinesterase (acetylcholinesterase and butyrylcholinesterase) inhibitors that maintain choline (acetylcholine and butyrylcholine) levels in the synaptic gap play an important role in the symptomatic treatment of Alzheimer's disease. Numerous studies have been carried out against Alzheimer's disease involving acetylcholinesterase and butyrylcholinesterase inhibitors. However, there are very few drugs (tacrine, rivastigmine, galantamine, and donepezil) approved as cholinesterase inhibitors. Therefore, cholinesterase inhibitors are needed against Alzheimer's disease. This review is focused on using heterocyclic rings that show remarkable cholinesterase inhibitory activity for Alzheimer's disease. In this review, chemical structures and structure-activity relationships of recently reported cholinesterase inhibitors are emphasized. This review will give important ideas to medicinal chemists in the discovery and development of potent cholinesterase inhibitors in their future studies.
Collapse
Affiliation(s)
- Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Türkiye
| |
Collapse
|
3
|
Schäker-Hübner L, Toledano-Pinedo M, Eimermacher S, Krasniqi V, Porro-Pérez A, Tan K, Horn G, Stegen P, Elsinghorst PW, Wille T, Pietsch M, Gütschow M, Marco-Contelles J, Hansen FK. Contilisant-Belinostat Hybrids: Polyfunctionalized Indole Derivatives as Multineurotarget Drugs for the Potential Treatment of Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:831-840. [PMID: 40109740 PMCID: PMC11915037 DOI: 10.1021/acsptsci.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
In this work, we designed, synthesized, and evaluated two types of multineurotargeting compounds using a pharmacophore merging strategy, aiming to develop potential treatments for Alzheimer's disease. We combined belinostat, an FDA-approved unselective histone deacetylase (HDAC) inhibitor, with the 5-substituted indole core of contilisant, known for its antioxidant and neuroprotective properties as well as its potent inhibitory activity against monoamine oxidases (MAOs), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Among these, compounds 8c (HDAC1, IC50 = 0.019 μM; HDAC6, IC50 = 0.040 μM; AChE, IC50 = 20.06 μM; BChE, IC50 = 17.10 μM; MAO-B, IC50 = 2.14 μM), and 9c (HDAC1, IC50 = 0.126 μM; HDAC6, IC50 = 0.020 μM; AChE, IC50 = 2.73 μM; BChE, IC50 = 4.03 μM; MAO-B, IC50 = 1.18 μM) emerged as the most promising candidates. These compounds warrant further investigation as potential treatments for Alzheimer's disease due to their unique inhibition profiles and favorable mode of inhibition.
Collapse
Affiliation(s)
- Linda Schäker-Hübner
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mireia Toledano-Pinedo
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Sophia Eimermacher
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
| | - Vesa Krasniqi
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
| | - Alicia Porro-Pérez
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Kathrin Tan
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, München D-80937, Germany
| | - Philipp Stegen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Paul W Elsinghorst
- Bundeswehr Medical Academy, Neuherbergstraße 11, München D-80937, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, München D-80937, Germany
| | - Markus Pietsch
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne D-50931, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Finn K Hansen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
4
|
Shankar G, Kumar P, Rai S, Ghosh A, Varma T, Wani MA, Kumar S, Mandloi U, Singh GK, Garg P, Kulkarni O, Srikrishna S, Kumar S, Modi G. Discovery of novel hybrid tryptamine-rivastigmine molecules as potent AChE and BChE inhibitors exhibiting multifunctional properties for the management of Alzheimer's disease. Eur J Med Chem 2025; 283:117066. [PMID: 39667052 DOI: 10.1016/j.ejmech.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease. To address the limitations associated with rivastigmine (RIV), a marketed drug for AD, a series of tryptamine derivatives was designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. Enzyme inhibition studies identified compounds 6d and 6e as the lead molecules with potent inhibitors against AChE (6d, IC50: 0.99 ± 0.009 nM and 6e IC50: 7.97 ± 0.016 nM and BChE (6d, IC50: 27.79 ± 0.21 nM and 6e, IC50: 0.79 ± 0.005 nM), compared to the marketed drug Riv (AChE, IC50: 6630 ± 0.76 nM, BChE IC50 = 91 ± 0.40 nM). The molecular docking and dynamics studies corroborated the enzyme inhibition studies. The PAMPA assay strongly suggested the BBB crossing ability of the lead molecules. Further, 6d and 6e demonstrated the capability to counteract oxidative stress and Aβ1-42 in various in-vitro studies. Compound 6e exhibited remarkable radical scavenging activity in the DPPH assay (IC50: 22.91 ± 1.73 μM) compared to rivastigmine (% radical scavenging activity: 3.71 ± 0.09 at 200 μM). Interestingly, 6d and 6e exhibited promising activity in the AD Drosophila model by protecting eye phenotypes from degeneration induced by Aβ1-42 toxicity and reduced mitochondrial and cellular oxidative stress in this model. Furthermore, upon oral administration, 6d and 6e could reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice at 0.3 and 0.5 mg/kg compared to rivastigmine at 3 mg/kg and were found to have potent ex-vivo anti-ChEs properties, which are correlated with the observed pro-cognitive effects in the Morris Water Maze, likely mediated through the inhibition of both cholinesterases. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Upesh Mandloi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India.
| |
Collapse
|
5
|
Guerguer FZ, Rossafi B, Abchir O, Raouf YS, Albalushi DB, Samadi A, Chtita S. Potential Azo-8-hydroxyquinoline derivatives as multi-target lead candidates for Alzheimer's disease: An in-depth in silico study of monoamine oxidase and cholinesterase inhibitors. PLoS One 2025; 20:e0317261. [PMID: 39883631 PMCID: PMC11781659 DOI: 10.1371/journal.pone.0317261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Cognitive dysfunction in Alzheimer's disease results from a complex interplay of various pathological processes, including the dysregulation of key enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). This study proposes and designs a series of novel molecules derived from 8-hydroxyquinoline (Azo-8HQ) as potential multi-target lead candidates for treating AD. An exhaustive in silico analysis was conducted, encompassing docking studies, ADMET analysis, density functional theory (DFT) studies, molecular dynamics simulations, and subsequent MM-GBSA calculations to examine the pharmacological potential of these molecules with the specific targets of interest. Out of the 63 Azo-8HQ derivatives analysed, two molecules, 14c and 17c, demonstrated strong affinities for AChE, BuChE, and MAO-B, along with favourable pharmacokinetic profiles and electronic properties. Molecular dynamics simulations confirmed the stability of these molecules within the active sites of the targets, and MM-GBSA calculations revealed low binding energies, indicating robust interactions. These findings identify molecules 14c and 17c as promising multi-target candidates for the treatment of AD, based on an in-depth computational study aimed at minimizing drug development costs and time. Future work will include the synthesis of these molecules followed by in-depth in vitro and in vivo testing to validate their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Fatima Zahra Guerguer
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Bouchra Rossafi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Yasir S Raouf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dhabya Bakhit Albalushi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
6
|
Singh A, Sharma A, Singh K, Kaur K, Mohana P, Prajapati J, Kaur U, Goswami D, Arora S, Chadha R, Singh Bedi PM. Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent in vivo efficacy. RSC Med Chem 2024:d4md00782d. [PMID: 39790122 PMCID: PMC11707525 DOI: 10.1039/d4md00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized via a click chemistry approach and preliminarily screened for cholinesterase and Aβ1-42 aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC50 = 0.047 μM) over butyrylcholinesterase (BuChE: IC50 ≥ 10 μM) with desired Aβ1-42 aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H2O2. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ1-42 monomer desired for their inhibition. AS15 exhibited an LD50 value of 300 mg kg-1 and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University Gharuan 140413 India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
7
|
Mohammadi-Farani A, Moradi F, Hosseini A, Aliabadi A. Synthesis, docking, pharmacokinetic prediction, and acetylcholinesterase inhibitory evaluation of N-(2-(piperidine-1-yl)ethyl)benzamide derivatives as potential anti-Alzheimer agents. Res Pharm Sci 2024; 19:698-711. [PMID: 39911894 PMCID: PMC11792719 DOI: 10.4103/rps.rps_257_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/01/2024] [Accepted: 11/17/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Alzheimer's disease is the most common form of dementia and the sixth most common cause of death in the US according to the Alzheimer's Association. As regards, to date, no effective treatments are available because of the multifactorial nature of the disease, therefore, a large body of recent research has been allocated to the design and development of multi-target-directed ligands that can become effective drug candidates. Experimental approach A novel series of benzamide derivatives (5a-5l) containing piperidine core were synthesized in the current work. After identification of the chemical structures of the members of this series using 1H NMR, IR, and MS spectra, their anti-acetylcholinesterase activity was assessed by the Ellman᾽s test. Docking studies were also performed to investigate the binding mode and determine the interacting amino acids with the corresponding ligands. Finally, the pharmacokinetic (ADME parameters) of the most potent derivative (5d) was predicted and compared with donepezil. Findings/Results Compound 5d possessing the fluorine atom substitution at position ortho was the most active compound in these series (IC50 = 13 ± 2.1 nM). This compound demonstrated superior activity than the reference drug donepezil (IC50 = 0.6 ± 0.05 µM). Molecular docking showed a significant hydrogen bonding of the carbonyl group of compounds 5d with tyrosine 121 into the active site of acetylcholinesterase. Fortunately, this compound showed better promising ADME properties than donepezil. Conclusion and implication The benzamide derivatives introduced in this paper could be proposed as potential anti-acetylcholinesterase.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord, University of Medical Sciences, Shahrekord, Iran
- Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzaneh Moradi
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Hosseini
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gastalho CM, Sena AM, López Ó, Fernández-Bolaños JG, García-Sosa AT, Pereira F, Antunes CM, Costa AR, Burke AJ, Carreiro EP. Assessing the Potential of 1,2,3-Triazole-Dihydropyrimidinone Hybrids Against Cholinesterases: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2024; 25:11153. [PMID: 39456935 PMCID: PMC11508620 DOI: 10.3390/ijms252011153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Combining the pharmacological properties of the 1,2,3-triazole and dihydropyrimidinone classes of compounds, two small families of mono- and di(1,2,3-triazole)-dihydropyrimidinone hybrids, A and B, were previously synthesized. The main objective of this work was to investigate the potential anti-Alzheimer effects of these hybrids. The inhibitory activities of cholinesterases (AChE and BuChE), antioxidant activity, and the inhibitory mechanism through in silico (molecular docking) and in solution (STD-NMR) experiments were evaluated. The 1,2,3-triazole-dihydropyrimidinone hybrids (A and B) showed moderate in vitro inhibitory activity on eqBuChE (IC50 values between 1 and 58.4 μM). The best inhibitor was the hybrid B4, featuring two 1,2,3-triazole cores, which exhibited stronger inhibition than galantamine, with an IC50 of 1 ± 0.1 μM for eqBuChE, through a mixed inhibition mechanism. Among the hybrids A, the most promising inhibitor was A1, exhibiting an IC50 of 12 ± 2 µM, similar to that of galantamine. Molecular docking and STD-NMR experiments revealed the key binding interactions of these promising inhibitors with BuChE. Hybrids A and B did not display Artemia salina toxicity below 100 μM.
Collapse
Affiliation(s)
- Carlos M. Gastalho
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana M. Sena
- Department of Chemistry and Biochemistry, School of Sciences and Technologies, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal;
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain; (Ó.L.); (J.G.F.-B.)
| | | | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Célia M. Antunes
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Ana R. Costa
- Institute of Earth Sciences, Institute of Research and Advanced Training, University of Évora, 7000-671 Évora, Portugal; (C.M.A.); (A.R.C.)
- Academic Clinical Center of Alentejo, C-TRAIL, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
- Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Departamento de Química, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Polo I, 1ºandar, 3004-504 Coimbra, Portugal
| | - Elisabete P. Carreiro
- LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; (C.M.G.); (A.J.B.)
| |
Collapse
|
9
|
Laghchioua F, da Silva CFM, Pinto DCGA, Cavaleiro JA, Mendes RF, Paz FAA, Faustino MAF, Rakib EM, Neves MGPMS, Pereira F, Moura NMM. Design of Promising Thiazoloindazole-Based Acetylcholinesterase Inhibitors Guided by Molecular Docking and Experimental Insights. ACS Chem Neurosci 2024; 15:2853-2869. [PMID: 39037949 PMCID: PMC11311138 DOI: 10.1021/acschemneuro.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 μM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 μM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Collapse
Affiliation(s)
- Fatima
Ezzahra Laghchioua
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Carlos F. M. da Silva
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.
S. Cavaleiro
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - El Mostapha Rakib
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Higher
School of Technology, Sultan Moulay Slimane
University, BP 336, Fkih Ben Salah, Morocco
| | | | - Florbela Pereira
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Chen XF, Li SS, Bai YJ, Zhao ZF, Bai YJ, Gong G, He XR, Zheng XH. Design and synthesis of ligustrazine derivatives as potential anti-Alzheimer's agents. Nat Prod Res 2024; 38:2825-2835. [PMID: 37505222 DOI: 10.1080/14786419.2023.2241155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
A novel series of ligustrazine derivatives was designed, synthesized, and evaluated as acetylcholinesterase (AChE) and butylcholinesterase (BuChE) inhibitors for the treatment of Alzheimer's disease (AD). In vitro studies displayed that some of the synthesized compounds revealed promising AChE and BuChE inhibitory effects. Particularly, compounds E12 and E27, indicated highly AChE inhibitory activity with IC50 values of 1.85 μM and 0.98 μM, respectively and showed noteworthy protective effects against on glutamate-induced SH-SY5Y cells damage at 1 μM and 10 μM concentrations. Furthermore, molecular simulation docking elucidates compounds E12 and E27 interacting with residues in the binding site of AChE (PDB code: 4EY7) and BuChE (PDB code: 1P0I), emphasizing the protein residues that participate in the main interactions with the two targets. Taken together, these results revealed that compounds E12 and E27 might be potential lead compounds for further structure optimization in the drug-discovery process against AD.
Collapse
Affiliation(s)
- Xu-Fei Chen
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, China
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Shan-Shan Li
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yu-Jun Bai
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Ze-Feng Zhao
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Ya-Jun Bai
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Gu Gong
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, China
| | - Xi-Rui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Xiao-Hui Zheng
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Yadav N, Kumar R, Sangwan S, Dhanda V, Rani R, Devi S, Duhan A, Sindhu J, Chauhan S, Malik VK, Yadav S, Banakar P. Design, Synthesis, Nematicidal Evaluation, and Molecular Docking Study of Pyrano[3,2- c]pyridones against Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15512-15522. [PMID: 38959331 DOI: 10.1021/acs.jafc.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Root-knot nematodes pose a serious threat to crops by affecting production and quality. Over a period of time, substantial work has been done toward the development of effective and environmentally benign nematicidal compounds. However, due to the inefficiencies of previously reported synthetics in achieving the target of safe, selective, and effective treatment, it is necessary to develop new efficacious and safer nematicidal agents considering human health and environment on top priority. This work aims to highlight the efficient and convenient l-proline catalyzed synthesis of pyrano[3,2-c]pyridone and their use as potential nematicidal agents. In vitro results of larval mortality and egg hatching inhibition revealed maximum nematicidal activity against Meloidogyne incognita from compounds 15b, 15m, and 15w with LC50 values of 28.8, 46.8, and 49.18 μg/mL at 48 h, respectively. Under similar conditions, pyrano[3,2-c]pyridones derivatives 15b (LC50 = 28.8 μg/mL) was found at par with LC50 (26.92 μg/mL) of commercial nematicide carbofuran. The in vitro results were further validated with in silico studies with the most active compound 15b nematicidal within the binding to the pocket of acetylcholine esterase (AChE). In docking, binding free energy values for compound 15b were found to be -6.90 kcal/mol. Results indicated that pyrano[3,2-c]pyridone derivatives have the potential to control M. incognita.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Ravi Kumar
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
- MAP Section, Department of Genetics and Plant Breeding, Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
- Center for Bio-Nanotechnology, Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Sarita Sangwan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Vidhi Dhanda
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Reena Rani
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Sheetu Devi
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Jayant Sindhu
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Sonu Chauhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Vinod Kumar Malik
- Department of Plant Pathology, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Saroj Yadav
- Department of Nematology, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| | - Prakash Banakar
- Center for Bio-Nanotechnology, Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
- Department of Nematology, Chaudhary Charan Singh Haryana Agricultural University Hisar, Haryana, India 125004
| |
Collapse
|
12
|
Pastene-Burgos S, Muñoz-Nuñez E, Quiroz-Carreño S, Pastene-Navarrete E, Espinoza Catalan L, Bustamante L, Alarcón-Enos J. Ceanothanes Derivatives as Peripheric Anionic Site and Catalytic Active Site Inhibitors of Acetylcholinesterase: Insights for Future Drug Design. Int J Mol Sci 2024; 25:7303. [PMID: 39000410 PMCID: PMC11242892 DOI: 10.3390/ijms25137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.
Collapse
Affiliation(s)
- Sofía Pastene-Burgos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Evelyn Muñoz-Nuñez
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Soledad Quiroz-Carreño
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Edgar Pastene-Navarrete
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Luis Espinoza Catalan
- Departamento de Química, Universidad Federico Santa María, Valparaíso 2340000, Chile;
| | - Luis Bustamante
- Departamento Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Julio Alarcón-Enos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| |
Collapse
|
13
|
Kongkaew N, Hengphasatporn K, Shigeta Y, Rungrotmongkol T, Harada R. Preferential Door for Ligand Binding and Unbinding Pathways in Inhibited Human Acetylcholinesterase. J Phys Chem Lett 2024; 15:5696-5704. [PMID: 38768263 DOI: 10.1021/acs.jpclett.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rising global population and increased food demands have resulted in the increased use of organophosphate pesticides (OPs), leading to toxin accumulation and transmission to humans. Pralidoxime (2-PAM), an FDA-approved drug, serves as an antidote for OP therapy. However, the atomic-level detoxification mechanisms regarding the design of novel antidotes remain unclear. This is the first study to examine the binding and unbinding pathways of 2-PAM to human acetylcholinesterase (HuAChE) through three identified doors using an enhanced sampling method called ligand-binding parallel cascade selection molecular dynamics (LB-PaCS-MD). Remarkably, LB-PaCS-MD could identify a predominant in-line binding mechanism through the acyl door at 63.79% ± 6.83%, also implicating it in a potential unbinding route (90.14% ± 4.22%). Interestingly, crucial conformational shifts in key residues, W86, Y341, and Y449, and the Ω loop significantly affect door dynamics and ligand binding modes. The LB-PaCS-MD technique can study ligand-binding pathways, thereby contributing to the design of antidotes and covalent drugs.
Collapse
Affiliation(s)
- Nalinee Kongkaew
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
14
|
Zhao F, Guo H, Yang W, Guo L, Li J, Chen H. Determination of Acetylcholinesterase Activity Based on Ratiometric Fluorescence Signal Sensing. J Fluoresc 2024:10.1007/s10895-024-03703-y. [PMID: 38613708 DOI: 10.1007/s10895-024-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Acetylcholinesterase (AChE) plays an important role in the treatment of human diseases, environmental security and global food supply. In this study, the simple fluorescent indicators and MnO2 nanosheets were developed and integrated to establish a ratiometric fluorescence sensing system for the detection of AChE activity. Two fluorescence signals could be recorded independently at the same excitation wavelength, which extended the detection range and enhanced the visibility of results. Fluorescence of F-PDA was quenched by MnO2 nanosheets on account of inner filtering effect. Meanwhile, the nonfluorescent OPD was catalytically oxidized to 2,3-diaminophenazine by MnO2 nanosheets. The acetylcholine (ATCh) was catalytically hydrolyzed by AChE to enzymatic thiocholine, which decomposed MnO2 to Mn2+, recovered the fluorescence of F-PDA and reduced the emission of ox-OPD. Utilizing the fluorescence intensity ratio F468/F558 as the signal readout, the ratiometric fluorescence method was established to detect AChE activity. Under the excitation wavelength of 410 nm, the ratio F460/F558 against the AChE concentration demonstrated two linear relationships in the range 0.05 -1.0 and 1.0-50 U·L- 1 with a limit of detection (LOD) of 0.073 U·L- 1. The method was applied to the detection of AChE activity and the analysis of the inhibitor Huperzine-A. Due to the advantages of high sensitivity and favorable selectivity, the method possesses an application prospect in the activity deteceion of AChE and the screening of inhibitors.
Collapse
Affiliation(s)
- Fengju Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
| | - Wei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Lili Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Jiaxin Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Hanqi Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| |
Collapse
|
15
|
Asadipour A, Pourshojaei Y, Mansouri M, Mahdavizadeh E, Irajie C, Mottaghipisheh J, Faghih-Mirzaei E, Mahdavi M, Iraji A. Amino-7,8-dihydro-4H-chromenone derivatives as potential inhibitors of acetylcholinesterase and butyrylcholinesterase for Alzheimer's disease management; in vitro and in silico study. BMC Chem 2024; 18:70. [PMID: 38600537 PMCID: PMC11007943 DOI: 10.1186/s13065-024-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
In this article, we present the design and synthesis of amino-7,8-dihydro-4H-chromenone derivatives as possible inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) for the management of Alzheimer's disease (AD). The target compounds were evaluated against AChE and BChE in vitro, and 4k exhibited good potency against BChE (IC50 = 0.65 ± 0.13 µM) compared with donepezil used as a positive control. Kinetic studies revealed that compound 4k exhibited a competitive-type inhibition with a Ki value of 0.55 µM. Molecular docking and molecular dynamics simulations further supported the rationality of our design strategy, as 4k showed promising binding interactions with the active sites of BChE. Overall, our findings highlight the potential of amino-7,8-dihydro-4H-chromenone derivatives as promising candidates for developing novel therapeutics targeting cholinesterase in managing AD.
Collapse
Affiliation(s)
- Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Mansouri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Mahdavizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Faghih-Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Boulaamane Y, Kandpal P, Chandra A, Britel MR, Maurady A. Chemical library design, QSAR modeling and molecular dynamics simulations of naturally occurring coumarins as dual inhibitors of MAO-B and AChE. J Biomol Struct Dyn 2024; 42:1629-1646. [PMID: 37199265 DOI: 10.1080/07391102.2023.2209650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Coumarins are a highly privileged scaffold in medicinal chemistry. It is present in many natural products and is reported to display various pharmacological properties. A large plethora of compounds based on the coumarin ring system have been synthesized and were found to possess biological activities such as anticonvulsant, antiviral, anti-inflammatory, antibacterial, antioxidant as well as neuroprotective properties. Despite the wide activity spectrum of coumarins, its naturally occurring derivatives are yet to be investigated in detail. In the current study, a chemical library was created to assemble all chemical information related to naturally occurring coumarins from the literature. Additionally, a multi-stage virtual screening combining QSAR modeling, molecular docking, and ADMET prediction was conducted against monoamine oxidase B and acetylcholinesterase, two relevant targets known for their neuroprotective properties and 'disease-modifying' potential in Parkinson's and Alzheimer's disease. Our findings revealed ten coumarin derivatives that may act as dual-target drugs against MAO-B and AChE. Two coumarin candidates were selected from the molecular docking study: CDB0738 and CDB0046 displayed favorable interactions for both proteins as well as suitable ADMET profiles. The stability of the selected coumarins was assessed through 100 ns molecular dynamics simulations which revealed promising stability through key molecular interactions for CDB0738 to act as dual inhibitor of MAO-B and AChE. However, experimental studies are necessary to evaluate the bioactivity of the proposed candidate. The current results may generate an increasing interest in bioprospecting naturally occurring coumarins as potential candidates against relevant macromolecular targets by encouraging virtual screening studies against our chemical library.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | | | | | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
17
|
Xia J, Dong S, Yang L, Wang F, Xing S, Du J, Li Z. Design, synthesis, and biological evaluation of novel tryptanthrin derivatives as selective acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:106980. [PMID: 38006789 DOI: 10.1016/j.bioorg.2023.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Two novel series of tryptanthrin (TRYP) derivatives were designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD). Inhibition assay against cholinesterase (ChE) indicated that these derivatives can act as acetylcholinesterase (AChE) inhibitors with selectivity over butyrylcholinesterase (BuChE). Among them, n1 exhibited the most excellent ChE inhibitory potency (AChE, IC50 = 12.17 ± 1.50 nM; BuChE, IC50 = 6.29 ± 0.48 μΜ; selectivity index = 517). Molecular docking studies indicated that compound n1 can interact with amino acid residues in the catalytic active site and peripheral anionic site of AChE and the molecular dynamics (MD) simulation studies demonstrated that the AChE-n1 complex had good stability. N1 also exhibited anti-amyloid-β (Aβ) aggregation (63.48 % ± 1.02 %, 100 μΜ) and anti-neuroinflammation activity (NO, IL-1β, TNF-α; IC50 = 2.13 ± 0.54 μΜ, 2.21 ± 0.37 μΜ, 2.47 ± 0.07 μΜ, respectively), and n1 had neuroprotective and metal-chelating properties. Further studies indicated n1 had proper blood-brain barrier permeability in the Parallel artificial membrane permeation assay. In vivo studies found that n1 effectively improved learning and memory impairment in scopolamine-induced AD mouse models. Nissl staining ofmice hippocampaltissue sections revealed that n1 restored neuronal cells in the hippocampus CA3 and CA1 regions. These findings suggested that n1 can be a promising compound for further development of multifunctional agents for AD treatment.
Collapse
Affiliation(s)
- Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Lili Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
18
|
Dawood DH, Srour AM, Omar MA, Farghaly TA, El-Shiekh RA. Synthesis and molecular docking simulation of new benzimidazole-thiazole hybrids as cholinesterase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300201. [PMID: 37937360 DOI: 10.1002/ardp.202300201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023]
Abstract
Dementia is a cognitive disturbance that is generally correlated with central nervous system diseases, especially Alzheimer's disease. The limited number of medications available is insufficient to improve the lifestyle of the patients suffering from this disease. Thus, new benzimidazole-thiazole hybrids (3-10) were designed and synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory agents. The in vitro evaluation displayed that the derivatives 4b, 4d, 5b, 6a, 7a, and 8b demonstrated dual inhibitory efficiency against both AChE with IC50 ranging from 4.55 to 8.62 µM and BChE with IC50 ranging from 3.50 to 8.32 µM. By analyzing the Lineweaver-Burk plot, an uncompetitive form of inhibition was determined for the highly active compound 4d, revealing its inhibition type. The human telomerase reverse transcriptase-immortalized retinal pigment epithelial cell line was used to ensure the safety of the most potent cholinesterase inhibitors. Furthermore, compounds 4b, 4d, 5b, 6a, 7a, and 8b were evaluated for their neuroprotective and antioxidant properties, as well as their ability to suppress COX-2. The results demonstrated that compounds 4d, 5b, and 8b presented significant neuroprotection efficiency against H2 O2 -induced damage in SH-SY5Y cells with % cell viability of 67.42 ± 7.90%, 62.51 ± 6.71%, and 72.61 ± 8.10%, respectively, while the tested candidates did not reveal significant antioxidant activity. Otherwise, compounds 4b, 6a, 7a, and 8b displayed outstanding COX-2 inhibition effects with IC50 ranging from 0.050 to 0.080 μM relative to celecoxib (IC50 = 0.050 µM). In addition, molecular docking was carried out for the potent benzimidazole-thiazole hybrids with the active sites of both AChE (PDB ID: 4EY7) and BChE (PDB code: 1P0P). The tested candidates fit well in the active sites of both portions, with docking scores ranging from -8.65 to -6.64 kcal/mol (for AChE) and -8.71 to -7.73 kcal/mol (for BChE). In silico results show that the synthesized benzimidazole-thiazole hybrids have good physicochemical and pharmacokinetic properties with no Lipinski rule violations. The preceding results exhibited that compound 4d could be used as a new template for developing more significant cholinesterase inhibitors in the future.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Giza, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Zaib S, Younas MT, Khan I, Ali HS, McAdam CJ, White JM, Jaber F, Awwad NS, Ibrahium HA. Pyrimidine-morpholine hybrids as potent druggable therapeutics for Alzheimer's disease: Synthesis, biochemical and in silico analyses. Bioorg Chem 2023; 141:106868. [PMID: 37738768 DOI: 10.1016/j.bioorg.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The identification of effective and druggable cholinesterase inhibitors to treat progressive neurodegenerative Alzheimer's disorder remains a continuous drug discovery hunt. In this perspective, the present study investigates the design and discovery of pyrimidine-morpholine hybrids (5a-l) as potent cholinesterase inhibitors. Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction was employed to introduce the structural diversity on the pyrimidine heterocyclic core. A range of commercially available boronic acids was successfully coupled showing a high functional group tolerance. In vitro cholinesterase inhibitory potential using Ellman's method revealed significantly strong potency. Compound 5h bearing a meta-tolyl substituent at 2-position of pyrimidine ring emerged as a lead candidate against AChE with an inhibitory potency of 0.43 ± 0.42 µM, ∼38-fold stronger value than neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 5h also showed the lead inhibition against BuChE with an IC50 value of 2.5 ± 0.04 µM. The kinetics analysis of 5h revealed the non-competitive mode of inhibition against AChE whereas computational modelling results of potent leads depicted diverse contacts with the binding site amino acid residues. Molecular dynamics simulations revealed the stability of biomolecular system, while, ADME analysis demonstrated druglikeness behaviour of potent compounds. Overall, the investigated pyrimidine-morpholine scaffold presented a remarkable potential to be developed as efficacious anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | - Jonathan M White
- School of Chemistry and Bio-21 Institute, University of Melbourne, 3052 Parkville, Australia
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
20
|
Kongkaew N, Hengphasatporn K, Injongkol Y, Mee-Udorn P, Shi L, Mahalapbutr P, Maitarad P, Harada R, Shigeta Y, Rungrotmongkol T, Vangnai AS. Design of electron-donating group substituted 2-PAM analogs as antidotes for organophosphate insecticide poisoning. RSC Adv 2023; 13:32266-32275. [PMID: 37928857 PMCID: PMC10620644 DOI: 10.1039/d3ra03087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
The use of organophosphate (OPs) pesticides is widespread in agriculture and horticulture, but these chemicals can be lethal to humans, causing fatalities and deaths each year. The inhibition of acetylcholinesterase (AChE) by OPs leads to the overstimulation of cholinergic receptors, ultimately resulting in respiratory arrest, seizures, and death. Although 2-pralidoxime (2-PAM) is the FDA-approved drug for treating OP poisoning, there is difficulty in blood-brain barrier permeation. To address this issue, we designed and evaluated a series of 2-PAM analogs by substituting electron-donating groups on the para and/or ortho positions of the pyridinium core using in silico techniques. Our PCM-ONIOM2 (MP2/6-31G*:PM7//B3LYP/6-31G*:UFF) binding energy results demonstrated that 13 compounds exhibited higher binding energy than 2-PAM. The analog with phenyl and methyl groups substituted on the para and ortho positions, respectively, showed the most favorable binding characteristics, with aromatic residues in the active site (Y124, W286, F297, W338, and Y341) and the catalytic residue S203 covalently bonding with paraoxon. The results of DS-MD simulation revealed a highly favorable apical conformation of the potent analog, which has the potential to enhance reactivation of AChE. Importantly, newly designed compound demonstrated appropriate drug-likeness properties and blood-brain barrier penetration. These results provide a rational guide for developing new antidotes to treat organophosphate insecticide toxicity.
Collapse
Affiliation(s)
- Nalinee Kongkaew
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yuwanda Injongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Pitchayathida Mee-Udorn
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Pathumthani 12120 Thailand
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
21
|
Paolino M, de Candia M, Purgatorio R, Catto M, Saletti M, Tondo AR, Nicolotti O, Cappelli A, Brizzi A, Mugnaini C, Corelli F, Altomare CD. Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity. Molecules 2023; 28:5857. [PMID: 37570828 PMCID: PMC10421270 DOI: 10.3390/molecules28155857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1b-h with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes.
Collapse
Affiliation(s)
- Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Mario Saletti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Anna Rita Tondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| |
Collapse
|
22
|
Abolhasani F, Pourshojaei Y, Mohammadi F, Esmaeilpour K, Asadipour A, Ilaghi M, Shabani M. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia. Neurosci Lett 2023; 810:137332. [PMID: 37302565 DOI: 10.1016/j.neulet.2023.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, often characterized by progressive deficits in memory and cognitive functions. Cholinesterase inhibitors have been introduced as promising agents to enhance cognition and memory in both human patients and animal models of AD. In the current study, we assessed the effects of a synthetic phenoxyethyl piperidine derivative, compound 7c, as a novel dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), on learning and memory, as well as serum and hippocampal AChE levels in an animal model of AD. The model of dementia was induced by intracerebroventricular injection of streptozotocin (STZ, 2 mg/kg) to male Wistar rats. STZ-treated rats received compound 7c (3, 30, and 300 µg/kg) for five consecutive days. Passive avoidance (PA) learning and memory, as well as spatial learning and memory using Morris water maze, were evaluated. The level of AChE was measured in the serum and the left and right hippocampus. Findings demonstrated that compound 7c (300 µg/kg) was able to reverse STZ-induced impairments in PA memory, while also reduced the increased AChE level in the left hippocampus. Taken together, compound 7c appeared to act as a central AChE inhibitor, and its role in alleviating cognitive deficits in the AD animal model suggests that it may have therapeutic potential in AD dementia. Further research is required to assess the effectiveness of compound 7c in more reliable models of AD in light of these preliminary findings.
Collapse
Affiliation(s)
- Fatemeh Abolhasani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Khadijeh Esmaeilpour
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Sanchis I, Spinelli R, Dias J, Brazzolotto X, Rietmann Á, Aimaretti F, Siano ÁS. Inhibition of Human Cholinesterases and in vitro β-Amyloid Aggregation by Rationally Designed Peptides. ChemMedChem 2023; 18:e202200691. [PMID: 36995341 DOI: 10.1002/cmdc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
The multifactorial nature of Alzheimer's disease (AD) is now widely recognized, which has increased the interest in compounds that can address more than one AD-associated targets. Herein, we report the inhibitory activity on the human cholinesterases (acetylcholinesterase, hAChE and butyrylcholinesterase, hBChE) and on the AChE-induced β-amyloid peptide (Aβ) aggregation by a series of peptide derivatives designed by mutating aliphatic residues for aromatic ones. We identified peptide W3 (LGWVSKGKLL-NH2 ) as an interesting scaffold for the development of new anti-AD multitarget-directed drugs. It showed the lowest IC50 value against hAChE reported for a peptide (0.99±0.02 μM) and inhibited 94.2 %±1.2 of AChE-induced Aβ aggregation at 10 μM. Furthermore, it inhibited hBChE (IC50 , 15.44±0.91 μM), showed no in vivo toxicity in brine shrimp and had shown moderated radical scavenging and Fe2+ chelating capabilities in previous studies. The results are in line with multiple reports showing the utility of the indole moiety for the development of cholinesterase inhibitors.
Collapse
Affiliation(s)
- Ivan Sanchis
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Roque Spinelli
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA) 1, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées (IRBA) 1, Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Álvaro Rietmann
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Florencia Aimaretti
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| | - Álvaro S Siano
- Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina
- National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz, 2290, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
24
|
Madhav H, Abdel-Rahman SA, Hashmi MA, Rahman MA, Rehan M, Pal K, Nayeem SM, Gabr MT, Hoda N. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer's agents: In-silico design, synthesis, and characterization. Eur J Med Chem 2023; 254:115354. [PMID: 37043996 DOI: 10.1016/j.ejmech.2023.115354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 μM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aβ42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 μM and 1.09 μM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 μM and 2.71 μM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Somaya A Abdel-Rahman
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Mohammad Rehan
- Max-Planck-Institute für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
25
|
Vignaux PA, Lane TR, Urbina F, Gerlach J, Puhl AC, Snyder SH, Ekins S. Validation of Acetylcholinesterase Inhibition Machine Learning Models for Multiple Species. Chem Res Toxicol 2023; 36:188-201. [PMID: 36737043 PMCID: PMC9945174 DOI: 10.1021/acs.chemrestox.2c00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetylcholinesterase (AChE) is an important enzyme and target for human therapeutics, environmental safety, and global food supply. Inhibitors of this enzyme are also used for pest elimination and can be misused for suicide or chemical warfare. Adverse effects of AChE pesticides on nontarget organisms, such as fish, amphibians, and humans, have also occurred as a result of biomagnifications of these toxic compounds. We have exhaustively curated the public data for AChE inhibition data and developed machine learning classification models for seven different species. Each set of models were built using up to nine different algorithms for each species and Morgan fingerprints (ECFP6) with an activity cutoff of 1 μM. The human (4075 compounds) and eel (5459 compounds) consensus models predicted AChE inhibition activity using external test sets from literature data with 81% and 82% accuracy, respectively, while the reciprocal cross (76% and 82% percent accuracy) was not species-specific. In addition, we also created machine learning regression models for human and eel AChE inhibition to return a predicted IC50 value for a queried molecule. We did observe an improved species specificity in the regression models, where a human support vector regression model of human AChE inhibition (3652 compounds) predicted the IC50s of the human test set to a better extent than the eel regression model (4930 compounds) on the same test set, based on mean absolute percentage error (MAPE = 9.73% vs 13.4%). The predictive power of these models certainly benefits from increasing the chemical diversity of the training set, as evidenced by expanding our human classification model by incorporating data from the Tox21 library of compounds. Of the 10 compounds we tested that were predicted active by this expanded model, two showed >80% inhibition at 100 μM. This machine learning approach therefore offers the ability to rapidly score massive libraries of molecules against the models for AChE inhibition that can then be selected for future in vitro testing to identify potential toxins. It also enabled us to create a public website, MegaAChE, for single-molecule predictions of AChE inhibition using these models at megaache.collaborationspharma.com.
Collapse
Affiliation(s)
- Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Scott H Snyder
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
Shaikh S, Dhavan P, Singh P, Uparkar J, Vaidya SP, Jadhav BL, Ramana MMV. Design, synthesis and biological evaluation of novel antipyrine based α-aminophosphonates as anti-Alzheimer and anti-inflammatory agent. J Biomol Struct Dyn 2023; 41:386-401. [PMID: 34878960 DOI: 10.1080/07391102.2021.2006088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, a series of novel antipyrine based α-aminophosphonates derivatives were synthesized and characterized. The synthesized derivatives were subjected for in vitro cholinesterase inhibition, enzyme kinetic studies, protein denaturation assay, proteinase inhibitory assay and cell viability assay. For cholinesterase inhibition, the results inferred that the test compounds possess better AChE activity (0.46 to 6.67 µM) than BuChE (2.395 to 12.47 µM). Compound 4j inhibited both AChE and BuChE (IC50 = 0.475 ± 0.12 µM and 2.95 ± 0.16 µM, respectively), implying that it serves as a dual AChE/BuChE inhibitor. Also, kinetic studies revealed that compound 4j exhibits mixed-type inhibition against both AChE and BuChE, with Ki values of 3.003 µM and 5.750 µM, respectively. Further, protein denaturation and proteinase inhibitory assays were used to test in vitro anti-inflammatory potential. It was found that compound 4o exhibited highest activity against protein denaturation (IC50 = 42.64 ± 0.19 µM) and proteinase inhibition (IC50 = 37.57 ± 0.19 µM) when compared to diclofenac. In addition, cell viability assay revealed that active compounds possess no cytotoxicity against N2a cell and RAW 264.7 macrophages. Finally, molecular docking experiments for AChE, BuChE, and COX-2 were conducted to better understand the binding modes of active compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarfaraz Shaikh
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| | - Pratik Dhavan
- Department of Life sciences, University of Mumbai, Santacruz East, Mumbai, India
| | - Pinky Singh
- Department of Microbiology, Haffkine Institute, Parel, Mumbai, India
| | - Jasmin Uparkar
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| | - S P Vaidya
- Department of Microbiology, Haffkine Institute, Parel, Mumbai, India
| | - B L Jadhav
- Department of Life sciences, University of Mumbai, Santacruz East, Mumbai, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| |
Collapse
|
27
|
α-Glucosidase and cholinesterase inhibiting potential of a series of semisynthetic nitrogen triterpenic derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
29
|
Gonzalez G, Kvasnica M, Svrčková K, Štěpánková Š, Santos JRC, Peřina M, Jorda R, Lopes SMM, Melo TMVDPE. Ring-fused 3β-acetoxyandrost-5-enes as novel neuroprotective agents with cholinesterase inhibitory properties. J Steroid Biochem Mol Biol 2023; 225:106194. [PMID: 36162631 DOI: 10.1016/j.jsbmb.2022.106194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer´s disease (AD) is an intellectual disorder caused by organic brain damage and cerebral atrophy, characterized by the loss of memory, judgment, and abstract thinking followed by declining cognitive functions, language, and the ability to perform daily living activities. Many efforts have been made to decrease the effects of the disease but also to block the neurodegenerative process. Cholinesterase inhibitors (ChEIs) are a group of medicines that act at the neurotransmission of acetylcholine, preventing its excessive breakdown and helping to improve cognitive functions in patients with AD. In this work, 16 chiral steroids, namely ring-fused 3β-acetoxyandrost-5-ene derivatives, their precursor and two 16-dehydroprogesterone-derived dioximes, were assessed as cholinesterase inhibitors and neuroprotective agents. The results demonstrated that some of the tested steroids are cholinesterase inhibitors and the majority selective for acetylcholinesterase inhibition. Albeit, one ring-fused 3β-acetoxyandrost-5-ene containing N-methylpiperidine ring (compound 2g) demonstrated to be a selective and potent inhibitor of the butyrylcholinesterase enzyme. (S)- 4,4a,5,6,7,8-(hexahydronaphthalen-2-one)-fused 3β-acetoxyandrost-5-ene (compound 6) showed high neuroprotective effect, high ability to restore the mitochondrial membrane potential from glutamate intoxication, and dramatic improvement in cell morphology. The described results provided relevant structure-activity relationship data.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Joana R C Santos
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Miroslav Peřina
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Susana M M Lopes
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
30
|
Pyrazoline scaffold: hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med Chem 2023; 15:9-24. [PMID: 36655571 DOI: 10.4155/fmc-2022-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Mining of novel scaffolds as potential DPP-IV inhibitors for future development of potential candidates as antidiabetic agents to address global issues. Methodology: The identified hit KB-10 from a previously reported study was taken as a lead for designing a library of analogues and screened initially based on in silico parameters and docking score. A series of selected (2[4-(1-acetyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy]-1-phenylethanone derivatives were synthesized and evaluated through in vitro studies. Compounds KB-23, KB-22 and KB-06 were found to be as potent, with IC50 values of 0.10 μM, 0.12 μM and 0.35 μM, respectively. They also showed promising antihyperglycemic potential in in vivo studies (oral glucose tolerance tests) in Wistar rats. Conclusion: This work establishes pyrazoline analogues KB-23, KB-22 and KB-06 as promising starting points for the development of potential antidiabetic agents.
Collapse
|
31
|
Liu W, Zhao D, He Z, Hu Y, Zhu Y, Zhang L, Jin L, Guan L, Wang S. Synthesis, Characterization and Biological Evaluation of Benzothiazole-Isoquinoline Derivative. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249062. [PMID: 36558194 PMCID: PMC9782539 DOI: 10.3390/molecules27249062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Currently, no suitable clinical drugs are available for patients with neurodegenerative diseases complicated by depression. Based on a fusion technique to create effective multi-target-directed ligands (MTDLs), we synthesized a series of (R)-N-(benzo[d]thiazol-2-yl)-2-(1-phenyl-3,4-dihydroisoquinolin-2(1H)-yl) acetamides with substituted benzothiazoles and (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline. All compounds were tested for their inhibitory potency against monoamine oxidase (MAO) and cholinesterase (ChE) by in vitro enzyme activity assays, and further tested for their specific inhibitory potency against monoamine oxidase B (MAO-B) and butyrylcholinesterase (BuChE). Among them, six compounds (4b-4d, 4f, 4g and 4i) displayed excellent activity. The classical antidepressant forced swim test (FST) was used to verify the in vitro results, revealing that six compounds reduced the immobility time significantly, especially compound 4g. The cytotoxicity of the compounds was assessed by the MTT method and Acridine Orange (AO) staining, with cell viability found to be above 90% at effective compound concentrations, and not toxic to L929 cells reversibility, kinetics and molecular docking studies were also performed using compound 4g, which showed the highest MAO-B and BuChE inhibitory activities. The results of these studies showed that compound 4g binds to the primary interaction sites of both enzymes and has good blood-brain barrier (BBB) penetration. This study provides new strategies for future research on neurodegenerative diseases complicated by depression.
Collapse
Affiliation(s)
- Weihua Liu
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Donghai Zhao
- Pharmacy College, Jilin Medical University, Jilin 132013, China
| | - Zhiwen He
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiming Hu
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuxia Zhu
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lingjian Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lianhai Jin
- Pharmacy College, Jilin Medical University, Jilin 132013, China
| | - Liping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (L.G.); (S.W.)
| | - Sihong Wang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functiaonal Molecules, Ministry of Education, Yanbian University, Yanji 133000, China
- Correspondence: (L.G.); (S.W.)
| |
Collapse
|
32
|
Prikhodko VA, Sysoev YI, Gerasimova EV, Okovityi SV. Novel Chromone-Containing Allylmorpholines Induce Anxiolytic-like and Sedative Effects in Adult Zebrafish. Biomedicines 2022; 10:2783. [PMID: 36359303 PMCID: PMC9687339 DOI: 10.3390/biomedicines10112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
Chromone-containing allylmorpholines (CCAMs) are a novel class of compounds that have demonstrated acetyl- and butyryl-cholinesterase-inhibiting and N-methyl-D-aspartate (NMDA) receptor-blocking properties in vitro, but their in vivo pharmacological activity remains underexplored. In this work, we evaluated the psychotropic activity of five different CCAMs (1 (9a), 2 (9j), 3 (9l), 4 (33a), and 5 (33b)) using the novel tank test (NTT) and light/dark box (LDB) test in adult zebrafish. The CCAMs were screened in the NTT at a range of concentrations, and they were found to induce a dose-dependent sedative effect. Compound 4 (33a) was also evaluated using the LDB test, and it was found to have anxiolytic-like properties at low concentrations. To assess the potential contribution of the glutamate and cholinergic mechanisms in the effects of the CCAMs, we conducted experiments with pre-exposure to putative antagonists, NMDA and biperiden. Neither biperiden nor NMDA were able to diminish or cancel the effects of the CCAMs, countering the in vitro data obtained in previous studies. The apparent discrepancy could be related to the specifics of CCAM metabolism or to the interspecies differences between the putative target proteins, possibly due to the relatively low identity percentage of their sequences. Although further research in mammals is required in order to establish their pharmacological properties, novel CCAMs may represent an appealing group of psychoactive drug candidates.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
- Laboratory of Neuromodulation of Motor and Visceral Functions, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
33
|
Ramalingam A, Kuppusamy M, Sambandam S, Medimagh M, Oyeneyin OE, Shanmugasundaram A, Issaoui N, Ojo ND. Synthesis, spectroscopic, topological, hirshfeld surface analysis, and anti-covid-19 molecular docking investigation of isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Heliyon 2022; 8:e10831. [PMID: 36211997 PMCID: PMC9526874 DOI: 10.1016/j.heliyon.2022.e10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Isopropyl 1-benzoyl-4-(benzoyloxy)-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate (IDPC) was synthesized and characterized via spectroscopic (FT-IR and NMR) techniques. Hirshfeld surface and topological analyses were conducted to study structural and molecular properties. The energy gap (Eg), frontier orbital energies (EHOMO, ELUMO) and reactivity parameters (like chemical hardness and global hardness) were calculated using density functional theory with B3LYP/6-311++G (d,p) level of theory. Molecular docking of IDPC at the active sites of SARS-COVID receptors was investigated. IDPC molecule crystallized in the centrosymmetric triclinic ( P 1 ¯ ) space group. The topological and Hirshfeld surface analysis revealed that covalent, non-covalent and intermolecular H-bonding interactions, and electron delocalization exist in the molecular framework. Higher binding score (-6.966 kcal/mol) of IDPC at the active site of SARS-COVID main protease compared to other proteases suggests that IDPC has the potential of blocking polyprotein maturation. H-bonding and π-cationic and interactions of the phenyl ring and carbonyl oxygen of the ligand indicate the effective inhibiting potential of the compound against the virus.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, 117583, Singapore
| | - Murugavel Kuppusamy
- PG & Research Department of Chemistry, Government Arts College, Chidambaram, Tamil Nadu, India
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Mouna Medimagh
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | - Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | | | - Noureddine Issaoui
- University of Monastir, Faculty of Sciences, Laboratory of Quantum and Statistical Physics (LR18ES18), Monastir, 5079, Tunisia
| | | |
Collapse
|
34
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
35
|
Shaikh SF, Uparkar JJ, Pavale GS, Ramana MMV. Synthesis and Evaluation of 1,3-Dimethylbarbituric Acid Based Enamine Derivatives as Anti-Alzheimer Agent. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
4-(4-(((1H-Benzo[d][1,2,3]triazol-1-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)-7-chloroquinoline. MOLBANK 2022. [DOI: 10.3390/m1404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 1,2,3-triazole ring system can be easily obtained by widely used copper-catalyzed click reaction of azides with alkynes. 1,2,3-triazole exhibits myriad of biological activities, including antibacterial antimalarial, and antiviral activities. We herein reported the synthesis of quinoline-based [1,2,3]-triazole hybrid derivative via Cu(I)-catalyzed click reaction of 4-azido-7-chloroquinoline with alkyne derivative of hydroxybenzotriazole (HOBt). The compound was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), correlated spectroscopy (1H-1H-COSY), heteronuclear single quantum coherence (HSQC) and distortionless enhancement by polarization transfer (DEPT-135 and DEPT-90) NMR, ultraviolet (UV) and Fourier-transform infrared (FTIR) spectroscopies, and high-resolution mass spectrometry (HRMS). Computational studies were enrolled to predict the interaction of the synthesized compound with acetylcholinesterase, a target of primary relevance for developing new therapeutic options to counteract neurodegeneration. Moreover, the drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.
Collapse
|
37
|
Uparkar JJ, Dhavan PP, Jadhav BL, Pawar SD. Design, synthesis and biological evaluation of furan based α-aminophosphonate derivatives as anti-Alzheimer agent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Aguilar-Barrientos JP, Moo-Puc RE, Villanueva-Toledo JR, Murillo F, Cáceres-Castillo D, Mirón-López G, De Los Santos MG, Sandoval-Ramírez J, Zeferino-Díaz R, Fernández-Herrera MA. Microwave-enhanced synthesis of 26-amino-22-oxocholestanes and their cytotoxic activity. Steroids 2022; 183:109030. [PMID: 35367251 DOI: 10.1016/j.steroids.2022.109030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
The synthesis of a series of 26-amino-22-oxocholestanes derived from diosgenin was accomplished via the substitution of an iodine atom at C-26 by primary and secondary amines. The reactions were conducted in refluxing acetonitrile and through microwave-assisted heating. The latter shows significant improvements in terms of reaction times going from hours to a few minutes or even seconds for completion. Only one of the selected amines, 4-aminourazole, did not yield the substitution product and the imine formation pathway was investigated instead, achieving the 26-iminourazole-22-oxocholestane. All the final products have been characterized and the cytotoxic activity of three of them has been evaluated in SiHa, MCF-7 and MDA tumor cell lines by the sulforhodamine B assay.
Collapse
Affiliation(s)
- Juan P Aguilar-Barrientos
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - Rosa E Moo-Puc
- Unidad de Investigacion Medica Yucatan, Unidad Medica de Alta Especialidad, Centro Medico Ignacio Garcia Tellez, Instituto Mexicano del Seguro Social (IMSS). Calle 41 No. 439 Col. Industrial, 97150, Merida, Yuc., Mexico
| | - Jairo R Villanueva-Toledo
- Catedras CONACYT-Fundacion IMSS, A.C., CONACYT. Avenida Insurgentes Sur 1582, Alcaldia Benito Juarez, Col. Credito Constructor, 03940 Ciudad de Mexico, Mexico
| | - Fernando Murillo
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - David Cáceres-Castillo
- Facultad de Quimica, Universidad Autonoma de Yucatan. Calle 43 No. 613 Col. Inalambrica, 97069 Merida, Yuc., Mexico
| | - Gumersindo Mirón-López
- Facultad de Quimica, Universidad Autonoma de Yucatan. Calle 43 No. 613 Col. Inalambrica, 97069 Merida, Yuc., Mexico
| | - María G De Los Santos
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., Mexico
| | - Reyna Zeferino-Díaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Ciudad Universitaria, 72570, Puebla, Pue., Mexico; Area Académica de Quimica, ICBI. Universidad Autonoma del Estado de Hidalgo. Ciudad del Conocimiento, 42184, Pachuca de Soto, Hgo., Mexico.
| | - María A Fernández-Herrera
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Merida, Yuc., Mexico.
| |
Collapse
|
39
|
A novel dual three and five-component reactions between dimedone, aryl aldehydes, and 1-naphthylamine: synthesis and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Sivaraman B, Raji V, Velmurugan BA, Natarajan R. Acetylcholinesterase Enzyme Inhibitor Molecules with Therapeutic Potential for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:427-449. [PMID: 34602041 DOI: 10.2174/1871527320666210928160159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase (AchE), hydrolase enzyme, regulates the hydrolysis of acetylcholine neurotransmitter in the neurons. AchE is found majorly in the central nervous system at the site of cholinergic neurotransmission. It is involved in the pathophysiology of Alzheimer's diseasecausing dementia, cognitive impairment, behavioral and psychological symptoms. Recent findings involved the inhibition of AchE that could aid in the treatment of Alzheimer's. Many drugs of different classes are being analyzed in the clinical trials and examined for their potency. Drugs that are used in the treatment of Alzheimer's disease are donepezil, galantamine, tacrine, rivastigmine showing major adverse effects. To overcome this, researchers work on novel drugs to elicit inhibition. This review comprises many hybrids and non-hybrid forms of heteroaromatic and nonheteroaromatic compounds that were designed and evaluated for AchE inhibition by Ellman's method of assay. These novel compounds may assist future perspectives in the discovery of novel moieties against Alzheimer's disease by the inhibition of AchE.
Collapse
Affiliation(s)
- Bhuvaneswari Sivaraman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Vijaykumar Raji
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Bala Aakash Velmurugan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| |
Collapse
|
41
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
42
|
Hardon SF, Kooijmans A, Horeman R, van der Elst M, Bloemendaal ALA, Horeman T. Validation of the portable virtual reality training system for robotic surgery (PoLaRS): a randomized controlled trial. Surg Endosc 2021; 36:5282-5292. [PMID: 34873652 PMCID: PMC9160149 DOI: 10.1007/s00464-021-08906-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND As global use of surgical robotic systems is steadily increasing, surgical simulation can be an excellent way for robotic surgeons to acquire and retain their skills in a safe environment. To address the need for training in less wealthy parts of the world, an affordable surgical robot simulator (PoLaRS) was designed. METHODS The aim of this pilot study is to compare learning curve data of the PoLaRS prototype with those of Intuitive Surgical's da Vinci Skills Simulator (dVSS) and to establish face- and construct validity. Medical students were divided into two groups; the test group (n = 18) performing tasks on PoLaRS and dVSS, and the control group (n = 20) only performing tasks on the dVSS. The performance parameters were Time, Path length, and the number of collisions. Afterwards, the test group participants filled in a questionnaire regarding both systems. RESULTS A total of 528 trials executed by 38 participants were measured and included for analyses. The test group significantly improved in Time, Path Length and Collisions during the PoLaRS test phase (P ≤ 0.028). No differences was found between the test group and the control group in the dVSS performances during the post-test phase. Learning curves showed similar shapes between both systems, and between both groups. Participants recognized the potential benefits of simulation training on the PoLaRS system. CONCLUSIONS Robotic surgical skills improved during training with PoLaRS. This shows the potential of PoLaRS to become an affordable alternative to current surgical robot simulators. Validation with similar tasks and different expert levels is needed before implementing the training system into robotic training curricula.
Collapse
Affiliation(s)
- Sem F Hardon
- Department of Surgery, Amsterdam UMC-VU University Medical Center, Amsterdam, The Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Anton Kooijmans
- Department of Surgery, Reinier de Graaf Gasthuis, Delft, The Netherlands
| | - Roel Horeman
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Maarten van der Elst
- Department of Surgery, Reinier de Graaf Gasthuis, Delft, The Netherlands.,Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands
| | | | - Tim Horeman
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands. .,Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
43
|
Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur J Med Chem 2021; 227:113964. [PMID: 34743062 DOI: 10.1016/j.ejmech.2021.113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
The tetralone and tetralone derivatives, as crucial structural scaffolds of potential novel drugs targeted at multiple biological end-points, are normally found in several natural compounds and also, it can be used as parental scaffold and/or intermediate for the synthesis of a series of pharmacologically active compounds with a broad-spectrum of bioactivities including antibacterial, antitumor, CNS effect and so on. Meanwhile, SAR information of its analogues has drawn attentions among medicinal chemists, which could contribute to the further research related to tetralone derivatives aimed at multiple targets. This review encompasses pharmacological activities, SAR analysis and docking study of tetralone and its derivatives, expecting to provide a general retrospect and prospect on tetralone derivatives.
Collapse
|
44
|
Honorio P, Sainimnuan S, Hannongbua S, Saparpakorn P. Binding interaction of protoberberine alkaloids against acetylcholinesterase (AChE) using molecular dynamics simulations and QM/MM calculations. Chem Biol Interact 2021; 344:109523. [PMID: 34033838 DOI: 10.1016/j.cbi.2021.109523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Acetylcholinesterase (AChE) plays a vital role in Alzheimer's disease (AD), which is one of the most common causes of dementia. Discovering new effective inhibitors against AChE activity is seen to be one of the effective approaches to reduce the suffering from AD. Protoberberine alkaloids isolated from natural resources have previously been reported as potent AChE inhibitors. In order to gain insights into how these alkaloids could inhibit AChE, berberine, palmatine, and cyclanoline were selected to investigate in terms of binding orientation and their key interactions with AChE using molecular docking and molecular dynamics simulations and quantum chemical calculations. The results revealed that the molecular dynamics structures of palmatine and berberine indicated that their equilibrated structures did not occupy the gorge but they slightly moved away from the catalytic site (CAS). For cyclanoline, the binding mode was quite different from those of donepezil and the other protoberberine alkaloids: it preferred to stay deeper in the CAS site. Interaction energies and residual interaction energies confirmed that the key interactions for palmatine and berberine were π-π interactions with Trp286 and Tyr341 and H-bond interactions with Tyr124. Cyclanoline formed π-π interactions with Trp86 and H-bonds to the amino acids in the CAS site. The results suggested the importance of aromaticity in the core structure and the flexibility of the core structure or the substituents in order to fit into the narrow gorge. The HOMO, LUMO, bioavailability, drug-likeness and pharmacokinetics were also predicted. The results obtained will be useful for further AD drug development.
Collapse
Affiliation(s)
- Phujinn Honorio
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Supawadee Sainimnuan
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Patchreenart Saparpakorn
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
45
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
46
|
Abiri A, Rezaei M, Zeighami MH, Vaezpour Y, Dehghan L, KhorramGhahfarokhi M. Discovery of new TLR7 agonists by a combination of statistical learning-based QSAR, virtual screening, and molecular dynamics. INFORMATICS IN MEDICINE UNLOCKED 2021; 27:100787. [PMID: 34805481 PMCID: PMC8591993 DOI: 10.1016/j.imu.2021.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 11/11/2021] [Indexed: 01/31/2023] Open
Abstract
Search for new antiviral medications has surged in the past two years due to the COVID-19 crisis. Toll-like receptor 7 (TLR7) is among one of the most important TLR proteins of innate immunity that is responsible for broad antiviral response and immune system control. TLR7 agonists, as both vaccine adjuvants and immune response modulators, are among the top drug candidates for not only our contemporary viral pandemic but also other diseases. The agonists of TLR7 have been utilized as vaccine adjuvants and antiviral agents. In this study, we hybridized a statistical learning-based QSAR model with molecular docking and molecular dynamics simulation to extract new antiviral drugs by drug repurposing of the DrugBank database. First, we manually curated a dataset consisting of TLR7 agonists. The molecular descriptors of these compounds were extracted, and feature engineering was done to restrict the number of features to 45. We applied a statistically inspired modification of the partial least squares (SIMPLS) method to build our QSAR model. In the next stage, the DrugBank database was virtually screened structurally using molecular docking, and the top compounds for the guanosine binding site of TLR were identified. The result of molecular docking was again screened by the ligand-based approach of QSAR to eliminate compounds that do not display strong EC50 values by the previously trained model. We then subjected the final results to molecular dynamics simulation and compared our compounds with imiquimod (an FDA-approved TLR7 agonist) and compound 1 (the most active compound against TLR7 in vitro, EC50 = 0.2 nM). Our results evidently demonstrate that cephalosporins and nucleotide analogues (especially acyclic nucleotide analogues such as adefovir and cidofovir) are computationally potent agonists of TLR7. We finally reviewed some publications about cephalosporins that, just like pieces of a puzzle, completed our conclusion.
Collapse
Affiliation(s)
- Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author
| | - Masoud Rezaei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author
| | - Mohammad Hossein Zeighami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Younes Vaezpour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Leili Dehghan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maedeh KhorramGhahfarokhi
- Faculty of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Sumesh RV, Kumar RR, Almansour AI, Kumar RS, Ashraf MKM. Pyrano[2,3-f]pyrazolo[3,4-b]quinoline-3-carbonitriles: A three-component synthesis and AChE inhibitory studies. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1866612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Remani Vasudev Sumesh
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Kassim Mohamed Ashraf
- AMIPRO SDN. BHD. (Co. No.1166264-V), Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
48
|
Li W, Rong Y, Wang J, Li T, Wang Z. MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 2020; 169:112605. [DOI: 10.1016/j.bios.2020.112605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
49
|
Silva DES, Becceneri AB, Santiago JVB, Gomes Neto JA, Ellena J, Cominetti MR, Pereira JCM, Hannon MJ, Netto AVG. Silver(I) complexes of 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazones and triphenylphosphine: structural, cytotoxicity, and apoptotic studies. Dalton Trans 2020; 49:16474-16487. [PMID: 32914824 DOI: 10.1039/d0dt01134g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Novel silver(i) complexes of the type [AgCl(PPh3)2(L)] {PPh3 = triphenylphosphine; L = VTSC = 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazone (1); VMTSC = 3-methoxy-4-[2-(morpholine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (2); VPTSC = 3-methoxy-4-[2-(piperidine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (3)} were synthesized and fully characterized by spectroscopic techniques. The molecular structures of complexes 2 and 3 were determined by single crystal X-ray diffraction. Compounds 1-3 exhibited appreciable cytotoxic activity against human tumor cells (lung A549, breast MDA-MB-231 and MCF-7) with IC50 values in 48 h of incubation ranging from 5.6 to 18 μM. Cellular uptake studies showed that complexes 1-3 were efficiently internalized after 3 hours of treatment in MDA-MB-231 cells. The effects of complex 1 on the cell morphology, cell cycle, induction of apoptosis, mitochondrial membrane potential (Δψm), and reactive oxygen species (ROS) production have been evaluated in triple negative breast cancer (TNBC) cells MDA-MB-231. Our results showed that complex 1 induced typical morphological alterations of cell death, an increase in cells at the sub-G1 phase, apoptosis, and mitochondrial membrane depolarization. Furthermore, DNA binding studies evidenced that 1 can bind to ct-DNA and does so without modifying the B-structure of the DNA, but that the binding is weak compared to that of Hoechst 33258.
Collapse
Affiliation(s)
- Débora E S Silva
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F. Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 2020; 38:7612-7628. [PMID: 33082015 PMCID: PMC7546226 DOI: 10.1016/j.vaccine.2020.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400-510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions' sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of β-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.
Collapse
Affiliation(s)
- Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|