1
|
Baćmaga M, Wyszkowska J, Kucharski J. Environmental Implication of Herbicide Use. Molecules 2024; 29:5965. [PMID: 39770054 PMCID: PMC11677524 DOI: 10.3390/molecules29245965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
One of the guiding principles of the sustainable use of herbicides is their targeted action exclusively against weeds, consisting of blocking photosynthesis and synthesis of amino acids and growth regulators. Herbicides are major elements of plant production, indispensable to the functioning of modern agriculture. Nevertheless, their influence on all elements of the natural environment needs to be continuously controlled. This review article summarizes research addressing the effects of herbicides on the natural environment and the changes they trigger therein. Herbicides, applied to protect crops against weed infestation, are usually mixtures of various active substances; hence, it is generally difficult to analyze their impact on the environment and organisms. Nonetheless, an attempt was made in this review to discuss the effects of selected herbicides on individual elements of the natural environment (water, soil, and air) and organisms (humans, animals, plants, and microorganisms). In addition, the article presents examples of the biodegradation of selected herbicides and mechanisms of their degradation by bacteria and fungi. Based on this information, it can be concluded that the uncontrolled use of herbicides has led to adverse effects on non-target organisms, as documented in the scientific literature. However, further research on the environmental effects of these chemicals is needed address the missing knowledge on this subject.
Collapse
Affiliation(s)
- Małgorzata Baćmaga
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10–719 Olsztyn, Poland;
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10–719 Olsztyn, Poland;
| | | |
Collapse
|
2
|
Bolwerk GA, Cooper GA, Leffler AJ, Perkins LB. Simulated Herbicide Drift Effects on Seed Germination, Seedling Emergence, and Seedling Growth of Native Plants of the Northern Great Plains. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2387-2397. [PMID: 39206951 DOI: 10.1002/etc.5982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Small concentrations of herbicide, such as those found in drift, can affect nontarget plants at different life-history stages including seed germination and seedling emergence as well as seedling growth. Fragmented landscapes, such as those in the northern Great Plains, lead to increased proximity of ecological restoration sites to agricultural lands using herbicides. Germination, emergence, and growth are crucial life-history stages leading to ecological restoration success, but these stages are sensitive to impacts from external factors such as herbicide exposure. A lab germination experiment and a greenhouse emergence experiment were performed to examine the effect of herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], atrazine, and trifluralin) on species used in ecological restorations in the northern Great Plains. Seed germination, seedling emergence, and seedling growth of many study species decreased with exposure to herbicides at different concentrations representative of herbicide drift. At concentrations as low as 0.1% recommended application rate 2,4-D elicited broad effects on final seed germination percentage and germination rate. Atrazine affected seedling emergence and growth for a number of study species at concentrations as low as 10% recommended application rate. Trifluralin affected germination, emergence, and growth of the fewest number of study species. The information gained from these experiments can be used to inform restoration practitioners of best practices and recommended species to use when implementing ecological restoration adjacent to agricultural lands. Environ Toxicol Chem 2024;43:2387-2397. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gabrielle A Bolwerk
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, USA
| | - Gregory A Cooper
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, USA
| | - A Joshua Leffler
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, USA
| | - Lora B Perkins
- Department of Natural Resource Management, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
3
|
Stankiewicz-Kosyl M, Wińska-Krysiak M, Wrochna M, Haliniarz M, Marcinkowska K. Regional diversity of the ALS gene and hormesis due to tribenuron-methyl in Centaurea cyanus L. Sci Rep 2024; 14:25197. [PMID: 39448670 PMCID: PMC11502813 DOI: 10.1038/s41598-024-76345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Centaurea cyanus L. is a common field weed in Eastern Europe but only in Poland biotypes of this species with resistance to acetolactate synthase (ALS) inhibitors have been confirmed. This phenomenon is constantly developing and spreading to consecutive regions of Poland. This study aimed to assess the response of selected Polish C. cyanus populations to tribenuron-methyl and to analyse the genetic variability of the ALS gene of C. cyanus populations resistant to ALS inhibitors. Between 2017 and 2021, 13 seed samples were collected from eastern Poland and a dose-response study with tribenuron-methyl was performed. Eleven populations resistant to tribenuron-methyl were identified. All populations from this study as well as 6 additional resistant populations characterised in the previous dose-response studies were subjected to molecular analysis of the ALS gene. Target-site resistance due to mutations P197S, P197Q, P197T and P197A were identified in 8 populations from Warmia-Masuria and Podlaskie provinces. This is the first case of target-site resistance (TSR) in C. cyanus confirmed by sequencing of the ALS gene. Moreover in some resistant plants, ten changes in the amino acid ALS sequence were identified in comparison to those in the susceptible ones. In none of the populations were all mutations detected in the same individual. The highest frequency of mutations was detected in Warmia-Masuria province. Some C. cyanus populations resistant to ALS inhibitors showed hormesis effect concerning shoot fresh weight after tribenuron-methyl treatment. Stimulation due to half the recommended dose of tribenuron-methyl was the highest and the difference between untreated and treated plants was statistically significant in two populations from Warmia-Masuria and in one from Podlaskie province.
Collapse
Affiliation(s)
- Marta Stankiewicz-Kosyl
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Marzena Wińska-Krysiak
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Mariola Wrochna
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Małgorzata Haliniarz
- Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Katarzyna Marcinkowska
- Department of Weed Science and Plant Protection Technique, Institute of Plant Protection-National Research Institute, Węgorka 20, Poznań, 60-318, Poland
| |
Collapse
|
4
|
Munhoz-Garcia GV, Takeshita V, Pinácio CDW, Cardoso BC, Vecchia BD, Nalin D, Oliveira ALCD, Felix LF, Tornisielo VL. Radiometric approaches with carbon-14-labeled molecules for determining herbicide fate in plant systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117003. [PMID: 39244878 DOI: 10.1016/j.ecoenv.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Weeds cause economic losses in cropping systems, leading to the use of 1.7 million tons of herbicides worldwide for weed control annually. Once in the environment, herbicides can reach non-target organisms, causing negative impacts on the ecosystem. Herbicide retention, transport, and degradation processes determine their environmental fate and are essential to assure the safety of these molecules. Radiometric strategies using carbon-14 herbicides (14C) are suitable approaches for determining herbicide absorption, translocation, degradation, retention, and transport in soil, plants, and water. In this work, we demonstrate how 14C-herbicides can be used from different perspectives. Our work focused on herbicide-plant-environment interactions when the herbicide is applied (a) through the leaf, (b) in the soil, and (c) in the water. We also quantified the mass balance in each experiment. 14C-mesotrione foliar absorption increased with oil and adjuvant addition (5-6 % to 25-46 %), and translocation increased only with adjuvant. More than 80 % of 14C-quinclorac and 14C-indaziflam remained in the soil and cover crops species absorbed less than 20 % of the total herbicides applied. In water systems, Salvinia spp. plants removed 10-18 % of atrazine from the water. Atrazine metabolism was not influenced by the presence of the plants. The radiometric strategies used were able to quantify the fate of the herbicide in different plant systems and the mass balance varied from 70 % to 130 %. Importantly, we highlight a critical and practical view of tracking herbicides in different matrices. This technique can aid scientists to explore other pesticides as environmental contaminants.
Collapse
Affiliation(s)
| | - Vanessa Takeshita
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil.
| | - Camila de Werk Pinácio
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Brian Cintra Cardoso
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Bruno Dalla Vecchia
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Daniel Nalin
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil
| | - Ana Laura Camachos de Oliveira
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Leandro Fernando Felix
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil
| |
Collapse
|
5
|
Sharma G, Haak D, Westwood JH, Askew S, Barney JN. Transgenerational phenotypic responses to herbicide stress are more rapid than to shade and simulated herbivory in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2375-2384. [PMID: 39024389 DOI: 10.1111/tpj.16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.
Collapse
Affiliation(s)
- Gourav Sharma
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - David Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Shawn Askew
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
6
|
Serim AT, Patterson EL. Response of conventional sunflower cultivars to drift rates of synthetic auxin herbicides. PeerJ 2024; 12:e16729. [PMID: 38223756 PMCID: PMC10787541 DOI: 10.7717/peerj.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
The agrochemical industry has launched several new synthetic auxin herbicides in rice to combat increasing numbers of herbicide resistant weeds to other modes of action. Excessive or inappropriate use of these herbicides has resulted in unintended consequences near the sites of application, such as herbicide drift. This study was conducted to determine the impact of drift of quinclorac and florpyrauxifen-benzyl+penoxsulam (FBP) on the yield and yield components of two sunflower cultivars. In a growth chamber experiment, quinclorac and FBP were applied to 2-4 true leaf stages at rates ranging from 2.93 to 93.75 and from 0.51 to 16.25 g ai ha-1, respectively. Nonlinear regression analyses indicated that the cultivar Bosfora was more sensitive to quinclorac and FBP than the cultivar Tunca. In field experiments, these sunflower cultivars were treated with drift rates of quinclorac (<375 g ai ha-1) and FBP (<65 g ai ha-1) when they were at the 8-10 true leaf stage. Quinclorac and FBP drift rates resulted in up to 52-61% and 85-100% injury and 82-88% and 100% yield loss, respectively. Crop injury and yield data clearly showed that cultivar Bosfora was more sensitive to FBP and quinclorac rates than cultivar Tunca, and both cultivars were more sensitive to FBP than quinclorac. In our work, we also found that plant height reduction caused by quinclorac at early growth stages may be a valuable indicator to evaluate crop injury and yield loss.
Collapse
Affiliation(s)
- Ahmet Tansel Serim
- Department of Plant Protection, Bilecik Seyh Edebali University, Bilecik, Türkiye
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Eric L. Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
7
|
Johnson N, Zhang G, Soble A, Johnson S, Baucom RS. The consequences of synthetic auxin herbicide on plant-herbivore interactions. TRENDS IN PLANT SCIENCE 2023; 28:765-775. [PMID: 36842859 DOI: 10.1016/j.tplants.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/17/2023]
Abstract
Although herbicide drift is a common side effect of herbicide application in agroecosystems, its effects on the ecology and evolution of natural communities are rarely studied. A recent shift to dicamba, a synthetic auxin herbicide known for 'drifting' to nontarget areas, necessitates the examination of drift effects on the plant-insect interactions that drive eco-evo dynamics in weed communities. We review current knowledge of direct effects of synthetic auxin herbicides on plant-insect interactions, focusing on plant herbivory, and discuss potential indirect effects, which are cascading effects on organisms that interact with herbicide-exposed plants. We end by developing a framework for the study of plant-insect interactions given drift, highlighting potential changes to plant developmental timing, resource quantity, quality, and cues.
Collapse
Affiliation(s)
- Nia Johnson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anah Soble
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen Johnson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Sapkota R, Stenger J, Ostlie M, Flores P. Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques. Sci Rep 2023; 13:6548. [PMID: 37085558 PMCID: PMC10121711 DOI: 10.1038/s41598-023-33042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Currently, applying uniform distribution of chemical herbicide through a sprayer without considering the spatial distribution information of crops and weeds is the most common method of controlling weeds in commercial agricultural production system. This kind of weed management practice lead to excessive amounts of chemical herbicides being applied in a given field. The objective of this study was to perform site-specific weed control (SSWC) in a corn field by: (1) using a unmanned aerial system (UAS) to map the spatial distribution information of weeds in the field; (2) creating a prescription map based on the weed distribution map, and (3) spraying the field using the prescription map and a commercial size sprayer. In this study, we assumed that plants growing outside the corn rows are weeds and they need to be controlled. The first step in implementing such an approach is identifying the corn rows. For that, we are proposing a Crop Row Identification algorithm, a computer vision algorithm that identifies corn rows on UAS imagery. After being identified, the corn rows were then removed from the imagery and remaining vegetation fraction was classified as weeds. Based on that information, a grid-based weed prescription map was created and the weed control application was implemented through a commercial-size sprayer. The decision of spraying herbicides on a particular grid was based on the presence of weeds in that grid cell. All the grids that contained at least one weed were sprayed, while the grids free of weeds were not. Using our SSWC approach, we were able to save 26.2% of the acreage from being sprayed with herbicide compared to the current method. This study presents a full workflow from UAS image collection to field weed control implementation using a commercial size sprayer, and it shows that some level of savings can potentially be obtained even in a situation with high weed infestation, which might provide an opportunity to reduce chemical usage in corn production systems.
Collapse
Affiliation(s)
- Ranjan Sapkota
- Center for Precision and Automated Agricultural Systems, Washington State University, 24106 N. Bunn Rd, Prosser, WA, 99350, USA
- Agricultural and Biosystems Engineering, North Dakota State University, 1221 Albrecht Blvd, Fargo, ND, 58102, USA
| | - John Stenger
- Agricultural and Biosystems Engineering, North Dakota State University, 1221 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Michael Ostlie
- NDSU Carrington Research Extension Center, Carrington, ND, 58421-0219, USA
| | - Paulo Flores
- Agricultural and Biosystems Engineering, North Dakota State University, 1221 Albrecht Blvd, Fargo, ND, 58102, USA.
| |
Collapse
|
9
|
Brankov M, Alves GS, Vieira BC, Zaric M, Vukoja B, Houston T, Kruger GR. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38226-38238. [PMID: 36580245 DOI: 10.1007/s11356-022-24938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Potential for off-target movements follows every herbicide application. Because the launch of acetolactate synthase (ALS)- and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide-tolerant crops will increase the treated area, there is a need to assess the possible negative consequences of any particle drift from those herbicides. Drift happens with every pesticide application, requiring mitigation. Various factors influence drift. Some, such as nozzle type, working pressure, and boom height, can be managed. Others, such as wind, are not easy to manage. In our study, an herbicide tank mixture of mesotrione with rimsulfuron plus thifensulfuron-methyl was sprayed in a low-speed wind tunnel to simulate drift. The airspeed was set at 4.4 m s-1, representing the labeled upper limit for applications. The herbicide solution was sprayed through XR110015 and TTI110015 nozzles. Eight crops were exposed to herbicide drift treatments and biomass data were collected. Droplet size spectra and tracer depositions were evaluated. Tracer deposition was on average threefold higher in all downwind distances (0.5, 1, 2, 3, 4, 6, 9, and 12 m) from the XR nozzle in comparison to the TTI nozzle. As a consequence, greater biomass reduction was recorded for applications with the XR compared to the TTI nozzle from 1 to 12 m downwind. At 12-m distance, biomass was decreased by 7-78% using XR nozzle while 1-27% using the TTI nozzle. Because drift can injure crops, it is very important to mitigate drift from application of formulations containing mesotrione and rimsulfuron plus thifensulfuron-methyl in combination. This can be done by selecting the appropriate nozzle and ensuring optimal distances between crops.
Collapse
Affiliation(s)
- Milan Brankov
- Maize Research Institute "Zemun Polje", Slobodana Bajića 1, 11185, Belgrade, Serbia.
| | - Guilherme Sousa Alves
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| | - Bruno Canella Vieira
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| | - Milos Zaric
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| | - Barbara Vukoja
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| | - Trenton Houston
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| | - Greg R Kruger
- West Central Research, Extension and Education Center, University of NE-Lincoln, 402 West State Farm Road, North Platte, Nebraska, 69101, USA
| |
Collapse
|
10
|
Iriart V, Baucom RS, Ashman TL. Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community co-flowering interactions and structure at the agro-eco interface. ANNALS OF BOTANY 2022; 130:1015-1028. [PMID: 36415945 PMCID: PMC9851304 DOI: 10.1093/aob/mcac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS When plant communities are exposed to herbicide 'drift', wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. METHODS We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing the species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. KEY RESULTS Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligible effects on community evenness based on vegetative biomass, it caused salient differences in the structure of co-flowering networks within communities. Drift reduced the degree and intensity of flowering overlap among species, altered the composition of groups of species that were more likely to co-flower with each other than with others and shifted species roles (e.g. from dominant to inferior floral producers, and vice versa). CONCLUSIONS These results demonstrate that even low levels of herbicide exposure can significantly alter plant growth and reproduction, particularly flowering phenology. If field-grown plants respond similarly, then these changes would probably impact plant-plant competitive dynamics and potentially plant-pollinator interactions occurring within plant communities at the agro-ecological interface.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Johnson NM, Baucom RS. Dicamba drift alters plant–herbivore interactions at the agro‐ecological interface. Ecosphere 2022. [DOI: 10.1002/ecs2.4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Nia M. Johnson
- Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA
| | - Regina S. Baucom
- Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
12
|
Sharkey AM, Hartig AM, Dang AJ, Chatterjee A, Williams BJ, Parker KM. Amine Volatilization from Herbicide Salts: Implications for Herbicide Formulations and Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13644-13653. [PMID: 36150089 DOI: 10.1021/acs.est.2c03740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amines are frequently included in formulations of the herbicides glyphosate, 2,4-D, and dicamba to increase herbicide solubility and reduce herbicide volatilization by producing herbicide-amine salts. Amines, which typically have higher vapor pressures than the corresponding herbicides, could potentially volatilize from these salts and enter the atmosphere, where they may impact atmospheric chemistry, human health, and climate. Amine volatilization from herbicide-amine salts may additionally contribute to volatilization of dicamba and 2,4-D. In this study, we established that amines applied in herbicide-amine salt formulations undergo extensive volatilization. Both dimethylamine and isopropylamine volatilized when aqueous salt solutions were dried to a residue at ∼20 °C, while lower-vapor pressure amines like diglycolamine and n,n-bis-(3-aminopropyl)methylamine did not. However, all four amines volatilized from salt residues at 40-80 °C. Because amine loss typically exceeded herbicide loss, we proposed that neutral amines dominated volatilization and that higher temperatures altered their protonation state and vapor pressure. Due to an estimated 4.0 Gg N/yr applied as amines to major U.S. crops, amine emissions from herbicide-amine salts may be important on regional scales. Further characterization of worldwide herbicide-amine use would enable this contribution to be compared to the 285 Gg N/yr of methylamines emitted globally.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anna M Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Audrey J Dang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anamika Chatterjee
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brent J Williams
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Farr R, Norsworthy JK, Barber LT, Butts TR, Roberts T. Utility of roller wiper applications of dicamba for Palmer amaranth control in soybean. PEST MANAGEMENT SCIENCE 2022; 78:2151-2160. [PMID: 35170207 PMCID: PMC9314051 DOI: 10.1002/ps.6838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The commercialization of dicamba-resistant soybean has resulted in increased concern for off-target movement of dicamba onto sensitive vegetation. To mitigate the off-target movement through physical drift, one might consider use of rope wicks and other wiper applicators. Although wiper-type application methods have been efficacious in pasture settings, the utility of dicamba using wiper applicators in agronomic crops is not available in scientific literature. To determine the utility of roller wipers for dicamba applications in dicamba-resistant soybean, two separate experiments were conducted in the summer of 2020 and replicated in both Keiser and Fayetteville, AR, USA. RESULTS Utilizing opposing application directions and a 2:1:1 ratio of water: formulated glyphosate: formulated dicamba were the most efficacious practices for controlling Palmer amaranth. The high herbicide concentrations and wiping in opposing directions increased dicamba-resistant soybean injury when the wiper contacted the crop, but no yield loss was observed because of this injury. Broadcast applications resulted in greater Palmer amaranth mortality than roller wiper applications, and the most effective roller wiper treatments were when two sequential applications were made inside the crop canopy. CONCLUSIONS Dicamba applications require adequate coverage for optimum weed control. While efforts can be made to increase roller wiper efficacy by optimizing coverage and timing of applications, broadcast applications are superior to roller wiper applicators for weed control. Roller wiper applications did not reduce soybean yield, thus wiper-type applications may be safely used in dicamba-resistant soybean, albeit the likelihood for off-target damage caused by volatilization of these treatments would need to be investigated. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rodger Farr
- Department of Crop, Soil, and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
| | - Jason K. Norsworthy
- Department of Crop, Soil, and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
| | - L. Tom Barber
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas Systems Division of AgricultureLonokeARUSA
| | - Thomas R. Butts
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas Systems Division of AgricultureLonokeARUSA
| | - Trent Roberts
- Department of Crop, Soil, and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
14
|
Effect of Glyphosate and Carbaryl Applications on Okra (Abelmoschus esculentus) Biomass and Arbuscular Mycorrhizal Fungi (AMF) Root Colonization in Organic Soil. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticide application in horticultural crops has recently multiplied to increase crop yields and boost economic return. Consequently, the effects of pesticides on soil organisms and plant symbionts is an evolving subject of research. In this short-term study, we evaluated the effects of glyphosate (herbicide) and carbaryl (insecticide) on okra biomass and AMF root colonization in both shade house and field settings. An additional treatment, the combination of glyphosate and carbaryl, was applied in the field trial. Soil and root samples were collected three times during the experiment: 30 days after planting (before first spray, or T0), 45 days after planting (before second spray, or T1), and at full maturity (at 66 days after planting, or T2). Our results indicate that glyphosate and combined treatments were most effective in controlling weeds and produced almost 40% higher okra biomass than the control. There was a ~40% increase in AMF root colonization in glyphosate-treated plots from T0 to T1. This result was likely due to high initial soil P content, high soil temperature, and low rainfall, which aided in the rapid degradation of glyphosate in the soil. However, at T2 (second spray), high rainfall and the presence of excess glyphosate resulted in a 15% reduction in AMF root colonization when compared to T1. We found carbaryl had little to negligible effect on AMF root colonization.
Collapse
|
15
|
Canella Vieira B, Coura Oliveira M, Sousa Alves G, Golus JA, Schroeder K, Smeda RJ, Rector RJ, Kruger GR, Werle R. Hooded broadcast sprayer for particle drift reduction. PEST MANAGEMENT SCIENCE 2022; 78:1519-1528. [PMID: 34964248 DOI: 10.1002/ps.6770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is renewed interest amongst crop protection professionals and regulators in the adoption of spray hoods to further reduce pesticide off-target movement during applications. Although the benefits of sprayer hoods have been reported since the early 1950s, adoption has been relatively low among farmers and applicators. The objective of this study was to evaluate the effectiveness of spray hoods in reducing pesticide drift of spray solutions from nozzles typically used for herbicide applications in row crops with tolerance to dicamba or 2,4-D. RESULTS Hooded applications substantially reduced spray drift potential across all treatment scenarios compared to conventional applications. Hooded applications using the AIXR nozzle without drift-reducing adjuvant (DRA) had a similar area under the drift curve (31.5) compared to conventional applications (open sprayer) using the TTI nozzle with DRA (27.7), despite the major droplet size differences between these treatments (DV50 = 447.5 and 985 μm, respectively). CONCLUSION These results indicate that the adoption of spray hoods combined with proper nozzle selection, and the use of DRAs can substantially reduce spray drift potential during pesticide applications. The use of this technology can be complementary to other drift-reducing technologies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Guilherme Sousa Alves
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Jeffrey A Golus
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Kasey Schroeder
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Reid J Smeda
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, USA
| | | | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Perine J, Anderson JC, Kruger GR, Abi-Akar F, Overmyer J. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144808. [PMID: 33770886 DOI: 10.1016/j.scitotenv.2020.144808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Off-target drift during pesticide spray applications represents a potential pathway for the introduction of active ingredient into field-adjacent water, soils, and/or vegetation. This study investigated the extent of downwind spray drift deposition of thiamethoxam (as a model insecticide) from an application of Actara® 25WG using standard nozzles (TeeJet XR11003, DG11004, and AIXR11002) onto a fallow field test site in the Midwestern USA. Single broadcast applications at a target rate of 96 g a.i./ha were made uniformly via tractor boom to a mowed stubble plot at a spray volume of 93.5 L/ha. Sampling devices (stainless steel disks, filter paper, and stainless steel rods) were located upwind of the spray swath (as negative control samples), within the spray swath (filter paper only), and downwind (all samplers), perpendicular to the spray swath from 12.5 to 400 ft. (3.8 to 122 m) from the edge of the treated field. Comparison of measured residues from the three types of samplers indicated that filter paper generally had greater variability in results than metal disks. When nozzles were compared, the AIXR11002 air induction nozzle produced less off-field deposition than other nozzles tested. Measured downwind concentrations of thiamethoxam from disk samplers were used to predict distances for mitigating potential effects to honey bees. Based on field-derived models, downwind distances from the spray swath required to reduce exposure levels below levels of concern for honey bees varied from <1 ft. to 148 ft. (0.3 to 45 m) depending on the hazard endpoint and nozzle used. These distances were considerably lower than those predicted using the AgDRIFT model, particularly for distances further downwind. At 400 ft. (122 m), AgDRIFT over-predicted the calculated concentrations by up to a factor of 4.8, 7.2, and 10 for DG11004, XR11003, and AIXR11002, respectively. These data suggest that the AgDRIFT model is less reliable for predicting spray deposition at further downwind distances, with implications for risk assessment.
Collapse
Affiliation(s)
- J Perine
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States of America.
| | - J C Anderson
- Environmental Consultant, Winnipeg, MB R3N0T8, Canada
| | - G R Kruger
- University of Nebraska-Lincoln, North Platte, NE 69101, United States of America
| | - F Abi-Akar
- Waterborne Environmental, Inc., Leesburg, VA 20175, United States of America
| | - J Overmyer
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States of America
| |
Collapse
|
17
|
Li H, Ma Y, Hu H, Song X, Ma Y, Yan H. Novel ammonium dichloroacetates with enhanced herbicidal activity for weed control. RSC Adv 2020; 10:44512-44521. [PMID: 35517127 PMCID: PMC9058436 DOI: 10.1039/d0ra08707f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022] Open
Abstract
Dichloroacetic acid (DCA) exhibits great potential as an herbicide (nontoxic, easily biodegradable), but its application in agriculture has scarcely been investigated. Since DCA readily undergoes photolysis when exposed to natural light or UV irradiation, there is a large activity loss in controlling weeds. To improve the activity of DCA, we proposed the transformation of DCA into an ionic salt form by using an herbicidal ionic liquids (HILs) strategy. Herein, fifteen novel ammonium dichloroacetates were designed and achieved for the first time. When compared to the anionic precursor DCA, three salts with longer alkyl chains ranging from dodecyl to hexadecyl chains were found to enhance not only the post emergence herbicidal activity but also the rates of activity against some broadleaf weeds under greenhouse conditions. The enhancement was due to the synergistic effect of structural factors, such as the surface activity, solubility and stability arising from their ionic nature. In addition, IL 13 possesses a low phytotoxicity to cotton plants with a favorable selectivity index above 2. This study will be useful for the design of new, high-performance herbicidal formulations.
Collapse
Affiliation(s)
- Huanhuan Li
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Yajie Ma
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Hongyan Hu
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Xianpeng Song
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Yan Ma
- Plant Protection Department, State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences Henan Anyang 455000 China +86-372-2562294 +86-372-2562294
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
18
|
Gaines TA, Duke SO, Morran S, Rigon CAG, Tranel PJ, Küpper A, Dayan FE. Mechanisms of evolved herbicide resistance. J Biol Chem 2020; 295:10307-10330. [PMID: 32430396 PMCID: PMC7383398 DOI: 10.1074/jbc.rev120.013572] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.
Collapse
Affiliation(s)
- Todd A Gaines
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Sarah Morran
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Carlos A G Rigon
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Anita Küpper
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Franck E Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|