1
|
Wang J, Qu M, Qiu A, Yang L, Xu H, Yu S, Pan Z. Quantitative Proteomic Analysis Identifying and Evaluating TRAF6 and IL-8 as Potential Diagnostic Biomarkers in Neonatal Patients with Necrotizing Enterocolitis. Mol Biotechnol 2025; 67:1109-1121. [PMID: 38512428 DOI: 10.1007/s12033-024-01111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024]
Abstract
Necrotizing enterocolitis (NEC) is a common gastrointestinal complication in premature infants, resulting in high morbidity and mortality, and its early detection is crucial for accurate treatment and outcome prediction. Extensive research has demonstrated a clear correlation between NEC and extremely low birth weight, degree of preterm, formula feeding, infection, hypoxic/ischemic damage, and intestinal dysbiosis. The development of noninvasive biomarkers of NEC from stool, urine, and serum has attracted a great deal of interest because to these clinical connections and the quest for a deeper knowledge of disease pathophysiology. Therefore, this study aims to identify protein expression patterns in NEC and discover innovative diagnostic biomarkers. In this study, we recruited five patients diagnosed with NEC and paired necrotic segments of intestinal tissue with adjacent normal segments of intestine to form experimental and control groups. Quantitative proteomics tandem mass tagging (TMT) labeling technique was used to detect and quantify the proteins, and the expression levels of the candidate biomarkers in the intestinal tissues were further determined by quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Immunofluorescence methods and enzyme-linked immunosorbent assay (ELISA). A total of 6880 proteins were identified and quantified in patients with NEC. A significant disparity in protein expression was observed between necrotic and normal segments of intestinal tissue in NEC patients. A total of 55 proteins were found to be upregulated, and 40 proteins were found to be downregulated in NEC patients when using a p-value of < 0.05, and an absolute fold change of > 1.2 for analysis. GO function enrichment analysis showed the positive regulation of significant biological processes such as mitochondrial organization, vasoconstriction, rRNA catabolism, fluid shear stress response, and glycerol ether biosynthesis processes. Enrichment analysis also revealed essential functions such as ligand-gated ion channel activity, potassium channel activity, ligand-gated cation channel activity, ligand-gated ion channel activity, and ligand-gated channel activity, including molecular functions such as ligand-gated ion channel activity and mitotic events in this comparative group. Significant changes were found in endomembrane protein complex, membrane fraction, mitochondrial membrane fraction, membrane components, membrane intrinsic components, and other localized proteins. Additional validation of intestinal tissue and serum revealed a substantial increase in TRAF6 (tumor necrosis factor receptor-associated factor 6) and IL-8(Interleukin-8, CXCL8). The quantitative proteomic TMT method can effectively detect proteins with differential expression in the intestinal tissues of NEC patients. Proteins TRAF6 and CXCL8/IL-8 are significantly upregulated in the intestinal tissues and serum samples of patients and may serve as valuable predictor factors for NEC's early diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215127, China
- Neonatal Medical Center, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, 223022, China
| | - Minhan Qu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215127, China
| | - Aijuan Qiu
- Neonatal Medical Center, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, 223022, China
| | - Lili Yang
- Neonatal Medical Center, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, 223022, China
| | - Hui Xu
- Neonatal Medical Center, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, 223022, China
| | - Shenglin Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215127, China.
| | - Zhaojun Pan
- Neonatal Medical Center, The Huai'an Maternity and Child Clinical College of Xuzhou Medical University, Huai'an, 223022, China.
| |
Collapse
|
2
|
Li D, Liu Y, Xu L, Yu H, Xie L, Kan Y, Liu R, Li G. Seed pretreatment with cloquintocet-mexyl protects wheat seedlings from fomesafen injury by promoting photosynthesis and decreasing oxidative stress. PEST MANAGEMENT SCIENCE 2025. [PMID: 39806833 DOI: 10.1002/ps.8646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue. RESULTS Bioassay results showed slight variations in tolerance to fomesafen among 31 wheat cultivars. Soil-applied biochar (200 g m-2) could alleviate fomesafen injury at 2 mg L-1, and partially alleviate fomesafen injury at 4 mg L-1. Seed soaking in safeners cloquintocet-mexyl and mefenpyr-diethyl was more effective in protecting seedlings from fomesafen injury at 4 mg L-1 compared with 1,8-naphthalic anhydride, fenclorim or dichlormid. Indoor tests suggested that the combined application of biochar and cloquintocet-mexyl or mefenpyr-diethyl had a synergistic alleviating effect on wheat injury caused by fomesafen, which was further confirmed in a field trial. Wheat seeds treated with cloquintocet-mexyl increased expression of the fomesafen target protoporphyrinogen IX oxidase and light-harvesting chlorophyll a/b binding protein, leading to an increase in chlorophyll content and a decrease in oxidative stress of wheat exposed to fomesafen. Cloquintocet-mexyl treatment had no influence on the expression of P450 genes, toxic transport genes, most glutathione S-transferase (GST) genes, the enzyme activity of P450 or GSTs, and the metabolism rate of fomesafen. CONCLUSION These results suggested that cloquintocet-mexyl acted by increasing photosynthesis and decreasing oxidative stress to alleviate injury to wheat exposed to fomesafen stress, showing no influence on fomesafen metabolism in wheat. This study provided valuable information for fomesafen injury management in wheat. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, China
| | - Yilin Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, China
| | - Hao Yu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, China
| | - Lanfen Xie
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Yunchao Kan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangling Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
3
|
Li D, Liu Y, Xu L, Yu H, Kan Y, Liu R, Li G. Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117701. [PMID: 39793282 DOI: 10.1016/j.ecoenv.2025.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress. To explore its molecular mechanism, RNA-Seq was conducted to analysis transcript profiles between fomesafen and fomesafen+dichlormid treated wheat seedlings. The gene expression level was determined by qRT-PCR. Results showed that the up-regulated genes by dichlormid treatment were significantly enriched in pathways related to photosynthesis. The expression level of glutamyl-tRNA reductase (GTR), protoporphyrinogen IX oxidase (PPO, target of fomesafen), and magnesium chelatase (MAG) involved in chlorophyll biosynthesis was significantly up-regulated by dichlormid. And the expression level of genes in chlorophyll binding, energy biosynthesis, gibberellin biosynthesis and salicylic acid signal pathway was also validated to be significantly up-regulated by dichlormid. The detoxification enzyme activity of cytochrome P450 or glutathione S-transferase (GSTs), and their gene expression level was found to show no significant difference between fomesafen and fomesafen+dichlormid treatment. The antioxidant enzyme activity of peroxidase, superoxide, and the content malondialdehyde content was decreased by dichlormid, while the reduced glutathione content was increased by dichlormid significantly. The metabolism of fomesafen was further validated to be not influenced by dichlormid. These results suggested that dichlormid acted by increasing the expression of fomesafen target and photosynthesis related genes to alleviate fomesafen injury to wheat, but not accelerating fomesafen metabolism.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yilin Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hao Yu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yunchao Kan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China.
| | - Guangling Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Panthi U, McCallum B, Kovalchuk I, Rampitsch C, Badea A, Yao Z, Bilichak A. Foliar application of plant-derived peptides decreases the severity of leaf rust (Puccinia triticina) infection in bread wheat (Triticum aestivum L.). J Genet Eng Biotechnol 2024; 22:100357. [PMID: 38494271 PMCID: PMC10903759 DOI: 10.1016/j.jgeb.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Screening and developing novel antifungal agents with minimal environmental impact are needed to maintain and increase crop production, which is constantly threatened by various pathogens. Small peptides with antimicrobial and antifungal activities have been known to play an important role in plant defense both at the pathogen level by suppressing its growth and proliferation as well as at the host level through activation or priming of the plant's immune system for a faster, more robust response against fungi. Rust fungi (Pucciniales) are plant pathogens that can infect key crops and overcome resistance genes introduced in elite wheat cultivars. RESULTS We performed an in vitro screening of 18 peptides predominantly of plant origin with antifungal or antimicrobial activity for their ability to inhibit leaf rust (Puccinia triticina, CCDS-96-14-1 isolate) urediniospore germination. Nine peptides demonstrated significant fungicidal properties compared to the control. Foliar application of the top three candidates, β-purothionin, Purothionin-α2 and Defensin-2, decreased the severity of leaf rust infection in wheat (Triticum aestivum L.) seedlings. Additionally, increased pathogen resistance was paralleled by elevated expression of defense-related genes. CONCLUSIONS Identified antifungal peptides could potentially be engineered in the wheat genome to provide an alternative source of genetic resistance to leaf rust.
Collapse
Affiliation(s)
- Urbashi Panthi
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Brent McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, Brandon, MB R7A 5Y3, Canada
| | - Zhen Yao
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
5
|
Lopos LC, Bykova NV, Robinson J, Brown S, Ward K, Bilichak A. Diversity of transgene integration and gene-editing events in wheat ( Triticum aestivum L.) transgenic plants generated using Agrobacterium-mediated transformation. Front Genome Ed 2023; 5:1265103. [PMID: 38192430 PMCID: PMC10773716 DOI: 10.3389/fgeed.2023.1265103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Improvement in agronomic traits in crops through gene editing (GE) relies on efficient transformation protocols for delivering the CRISPR/Cas9-coded transgenes. Recently, a few embryogenesis-related genes have been described, the co-delivery of which significantly increases the transformation efficiency with reduced genotype-dependency. Here, we characterized the transgenic and GE events in wheat (cv. Fielder) when transformed with GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) chimeric gene. Transformation efficiency in our experiments ranged from 22% to 68%, and the editing events were faithfully propagated into the following generation. Both low- and high-copy-number integration events were recovered in the T0 population with various levels of integrity of the left and right T-DNA borders. We also generated a population of wheat plants with 10 different gRNAs targeting 30 loci in the genome. A comparison of the epigenetic profiles at the target sites and editing efficiency revealed a significant positive correlation between chromatin accessibility and mutagenesis rate. Overall, the preliminary screening of transgene quality and GE events in the T0 population of plants regenerated through the co-delivery of GRF-GIF can allow for the propagation of the best candidates for further phenotypic analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB, Canada
| |
Collapse
|
6
|
Zeng Z, Jia Y, Huang X, Chen Z, Xiang T, Han N, Bian H, Li C. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat. BMC PLANT BIOLOGY 2023; 23:528. [PMID: 37904113 PMCID: PMC10617047 DOI: 10.1186/s12870-023-04535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Homogentisate phytyltransferase (HPT) is the critical enzyme for the biosynthesis of tocopherols (vitamin E), which are the major lipid-soluble antioxidants and help plants adapt to various stress conditions. HPT is generally strictly conserved in various plant genomes; however, a divergent lineage HPT2 was identified recently in some Triticeae species. The molecular function and transcriptional profiles of HPT2 remain to be characterized. RESULTS In this study, we performed comprehensive transcriptome data mining of HPT1 and HPT2 in different tissues and stages of barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa), followed by qRT-PCR experiments on HPT1 and HPT2 in different tissues of barley and wheat. We found that the common HPT1 genes (HvHPT1, TaHPT1s, and AsHPT1s) displayed a conserved transcriptional pattern in the three target species and were universally transcribed in various tissues, with a notable preference in leaf. In contrast, HPT2 genes (HvHPT2, TaHPT2, and AsHPT2) were specifically transcribed in spike (developmentally up-regulated) and shoot apex tissues, displaying a divergent tissue-specific pattern. Cis-regulatory elements prediction in the promoter region identified common factors related to light-, plant hormone-, low temperature-, drought- and defense- responses in both HPT1s and HPT2s. We observed the transcriptional up-regulation of HvHPT1 and HvHPT2 under various stress conditions, supporting their conserved function in environmental adaption. We detected a clear, relaxed selection pressure in the HPT2 lineage, consistent with the predicted evolution pattern following gene duplication. Protein structural modelling and substrate docking analyses identified putative catalytic amino acid residues for HvHPT1 and HvHPT2, which are strictly conserved and consistent with their function in vitamin E biosynthesis. CONCLUSIONS We confirmed the presence of two lineages of HPT in Triticeae and Aveninae, including hexaploid oat, and characterized their transcriptional profiles based on transcriptome and qRT-PCR data. HPT1s were ubiquitously transcribed in various tissues, whilst HPT2s were highly expressed in specific stages and tissue. The active transcription of HPT2s, together with its conserved cis-elements and protein structural features, support HPT2s' role in tocopherol production in Triticeae. This study is the first protein structural analysis on the membrane-bound plant HPTs and provides valuable insights into its catalytic mechanism.
Collapse
Affiliation(s)
- Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China
| | - Yong Jia
- Western Crops Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengdao Li
- Western Crops Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia.
- State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia.
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia.
| |
Collapse
|
7
|
Cook TM, Isenegger D, Dutta S, Sahab S, Kay P, Aboobucker SI, Biswas E, Heerschap S, Nikolau BJ, Dong L, Lübberstedt T. Overcoming roadblocks for in vitro nurseries in plants: induction of meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1204813. [PMID: 37332695 PMCID: PMC10272530 DOI: 10.3389/fpls.2023.1204813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Efforts to increase genetic gains in breeding programs of flowering plants depend on making genetic crosses. Time to flowering, which can take months to decades depending on the species, can be a limiting factor in such breeding programs. It has been proposed that the rate of genetic gain can be increased by reducing the time between generations by circumventing flowering through the in vitro induction of meiosis. In this review, we assess technologies and approaches that may offer a path towards meiosis induction, the largest current bottleneck for in vitro plant breeding. Studies in non-plant, eukaryotic organisms indicate that the in vitro switch from mitotic cell division to meiosis is inefficient and occurs at very low rates. Yet, this has been achieved with mammalian cells by the manipulation of a limited number of genes. Therefore, to experimentally identify factors that switch mitosis to meiosis in plants, it is necessary to develop a high-throughput system to evaluate a large number of candidate genes and treatments, each using large numbers of cells, few of which may gain the ability to induce meiosis.
Collapse
Affiliation(s)
- Tanner M. Cook
- Iowa State University, Department of Agronomy, Ames, IA, United States
| | - Daniel Isenegger
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Somak Dutta
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Sareena Sahab
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | - Pippa Kay
- Agriculture Victoria, Agribio, La Trobe University, Melbourne, VIC, Australia
| | | | - Eva Biswas
- Iowa State University, Department of Statistics, Ames, IA, United States
| | - Seth Heerschap
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | - Basil J. Nikolau
- Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Ames, IA, United States
| | - Liang Dong
- Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, United States
| | | |
Collapse
|
8
|
Chauhan AS, Tiwari M, Indoliya Y, Mishra SK, Lavania UC, Chauhan PS, Chakrabarty D, Tripathi RD. Identification and validation of reference genes in vetiver ( Chrysopogon zizanioides) root transcriptome. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:613-627. [PMID: 37363421 PMCID: PMC10284770 DOI: 10.1007/s12298-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/27/2023]
Abstract
UNLABELLED Vetiver [Vetiveria zizanioides (L.) Roberty] is a perennial C-4 grass traditionally valued for its aromatic roots/root essential oil. Owing to its deep penetrating web-forming roots, the grass is now widely used across the globe for phytoremediation and the conservation of soil and water. This study has used the transcriptome data of vetiver roots in its two distinct geographic morphotypes (North Indian type A and South Indian type B) for reference gene(s) identification. Further, validation of reference genes using various abiotic stresses such as heat, cold, salt, and drought was carried out. The de novo assembly based on differential genes analysis gave 1,36,824 genes (PRJNA292937). Statistical tests like RefFinder, NormFinder, BestKeeper, geNorm, and Delta-Ct software were applied on 346 selected contigs. Eleven selected genes viz., GAPs, UBE2W, RP, OSCam2, MUB, RPS, Core histone 1, Core histone 2, SAMS, GRCWSP, PLDCP along with Actin were used for qRT-PCR analysis. Finally, the study identified the five best reference genes GAPs, OsCam2, MUB, Core histone 1, and SAMS along with Actin. The two optimal reference genes SAMS and Core histone 1 were identified with the help of qbase + software. The findings of the present analyses have value in the identification of suitable reference gene(s) in transcriptomic and molecular data analysis concerning various phenotypes related to abiotic stress and developmental aspects, as well as a quality control measure in gene expression experiments. Identifying reference genes in vetiver appears important as it allows for accurate normalization of gene expression data in qRT-PCR experiments. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-023-01315-7.
Collapse
Affiliation(s)
- Abhishek Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Madhu Tiwari
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Umesh Chandra Lavania
- CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Puneet Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Microbial Technologies Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Debasis Chakrabarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Molecular Biology and Biotechnology Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| | - Rudra Deo Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
- Plant Ecology and Environmental Science Division, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
| |
Collapse
|
9
|
Medina-Lozano I, Arnedo MS, Grimplet J, Díaz A. Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. Int J Mol Sci 2023; 24:3052. [PMID: 36769376 PMCID: PMC9917471 DOI: 10.3390/ijms24033052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Lettuce is a popular vegetable source of bioactive compounds, like anthocyanins, powerful antioxidants present in red and semi-red varieties. Selection of reliable reference genes (RGs) for the normalization of real-time quantitative PCR (qPCR) data is crucial to obtain accurate gene expression results. Among the genes with totally unrelated biological functions, six candidate RGs (ADF2, CYB5, iPGAM, SCL13, TRXL3-3, and VHA-H) with low variation in expression according to RNA-seq analyses, were selected for future expression studies of anthocyanin-related genes in three different experiments: leaf colour comparison (green vs. red) in commercial varieties; tissue comparison (leaf vs. stem) in a wild relative; and drought stress experiment in commercial and traditional varieties, and a wild relative. Expression profiles of the candidate RGs were obtained by qPCR and their stability was assessed by four different analytical tools, geNorm, NormFinder, BestKeeper, and Delta Ct method, all integrated in RefFinder. All results considered, we recommend CYB5 to be used as RG for the leaf colour experiment and TRXL3-3 for the tissue and drought stress ones, as they were the most stable genes in each case. RNA-seq is useful to preselect novel RGs although validation by qPCR is still advisable. These results provide helpful information for gene expression studies in Lactuca spp. under the described conditions.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| | - María Soledad Arnedo
- Ramiro Arnedo S.A. Paraje La Molina 54, Las Norias de Daza, 04716 Almería, Spain
| | - Jérôme Grimplet
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
10
|
Álvarez-Urdiola R, Bustamante M, Ribes J, Riechmann JL. Gene Expression Analysis by Quantitative Real-Time PCR for Floral Tissues. Methods Mol Biol 2023; 2686:403-428. [PMID: 37540371 DOI: 10.1007/978-1-0716-3299-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Real-time, or quantitative, reverse transcription polymerase chain reaction (qRT-PCR) is a powerful method for rapid and reliable quantification of mRNA abundance. Although it has not featured prominently in flower development research in the past, the availability of novel techniques for the synchronized induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR will become more widely used. In this chapter, we discuss specific considerations for studying gene expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental set-up used. In addition, we provide protocols for performing qRT-PCR experiments in a multiwell plate format (with the LightCycler® 480 system, Roche) and with nanofluidic arrays (BioMark™ system, Fluidigm), which allow the automatic combination of sets of samples with sets of assays, and significantly reduce reaction volume and the number of liquid-handling steps performed during the experiment.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Mariana Bustamante
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joana Ribes
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Neums L, Koestler DC, Xia Q, Hu J, Patel S, Bell-Glenn S, Pei D, Zhang B, Boyd S, Chalise P, Thompson JA. Assessing equivalent and inverse change in genes between diverse experiments. FRONTIERS IN BIOINFORMATICS 2022; 2:893032. [PMID: 36304274 PMCID: PMC9580844 DOI: 10.3389/fbinf.2022.893032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2024] Open
Abstract
Background: It is important to identify when two exposures impact a molecular marker (e.g., a gene's expression) in similar ways, for example, to learn that a new drug has a similar effect to an existing drug. Currently, statistically robust approaches for making comparisons of equivalence of effect sizes obtained from two independently run treatment vs. control comparisons have not been developed. Results: Here, we propose two approaches for evaluating the question of equivalence between effect sizes of two independent studies: a bootstrap test of the Equivalent Change Index (ECI), which we previously developed, and performing Two One-Sided t-Tests (TOST) on the difference in log-fold changes directly. The ECI of a gene is computed by taking the ratio of the effect size estimates obtained from the two different studies, weighted by the maximum of the two p-values and giving it a sign indicating if the effects are in the same or opposite directions, whereas TOST is a test of whether the difference in log-fold changes lies outside a region of equivalence. We used a series of simulation studies to compare the two tests on the basis of sensitivity, specificity, balanced accuracy, and F1-score. We found that TOST is not efficient for identifying equivalently changed gene expression values (F1-score = 0) because it is too conservative, while the ECI bootstrap test shows good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap test and TOST to publicly available microarray expression data from pancreatic cancer showed that, while TOST was not able to identify any equivalently or inversely changed genes, the ECI bootstrap test identified genes associated with pancreatic cancer. Additionally, when investigating publicly available RNAseq data of smoking vs. vaping, no equivalently changed genes were identified by TOST, but ECI bootstrap test identified genes associated with smoking. Conclusion: A bootstrap test of the ECI is a promising new statistical approach for determining if two diverse studies show similarity in the differential expression of genes and can help to identify genes which are similarly influenced by a specific treatment or exposure. The R package for the ECI bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.
Collapse
Affiliation(s)
- Lisa Neums
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Qing Xia
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shachi Patel
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Bo Zhang
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Boyd
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jeffrey A. Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
The Landscape of Autophagy-Related (ATG) Genes and Functional Characterization of TaVAMP727 to Autophagy in Wheat. Int J Mol Sci 2022; 23:ijms23020891. [PMID: 35055085 PMCID: PMC8776105 DOI: 10.3390/ijms23020891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is an indispensable biological process and plays crucial roles in plant growth and plant responses to both biotic and abiotic stresses. This study systematically identified autophagy-related proteins (ATGs) in wheat and its diploid and tetraploid progenitors and investigated their genomic organization, structure characteristics, expression patterns, genetic variation, and regulation network. We identified a total of 77, 51, 29, and 30 ATGs in wheat, wild emmer, T. urartu and A. tauschii, respectively, and grouped them into 19 subfamilies. We found that these autophagy-related genes (ATGs) suffered various degrees of selection during the wheat’s domestication and breeding processes. The genetic variations in the promoter region of Ta2A_ATG8a were associated with differences in seed size, which might be artificially selected for during the domestication process of tetraploid wheat. Overexpression of TaVAMP727 improved the cold, drought, and salt stresses resistance of the transgenic Arabidopsis and wheat. It also promoted wheat heading by regulating the expression of most ATGs. Our findings demonstrate how ATGs regulate wheat plant development and improve abiotic stress resistance. The results presented here provide the basis for wheat breeding programs for selecting varieties of higher yield which are capable of growing in colder, drier, and saltier areas.
Collapse
|
14
|
da Conceição Braga L, Gonçalves BÔP, Coelho PL, da Silva Filho AL, Silva LM. Identification of best housekeeping genes for the normalization of RT-qPCR in human cell lines. Acta Histochem 2022; 124:151821. [PMID: 34861601 DOI: 10.1016/j.acthis.2021.151821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/01/2022]
Abstract
The identification of the best reference gene is a critical step to evaluate the relative change in mRNA expression of a target gene by RT-qPCR. In this work, we evaluated nineteen genes of different functional classes using Real Time Human Reference Gene Panel (Roche Applied Sciences), to identify the internal housekeeping genes (HKGs) most suitable for gene expression normalization data in human cell lines. Normal cell lines CCD-19LU (lung fibroblast), HEK-293 (epithelial cell of embryonic kidney), WI-26 VA4 (lung fibroblast), and human cancer cells, BT-549 (breast cancer), Hs 578T (breast cancer), MACL-1 (breast cancer), HeLa (cervical carcinoma), U-87 MG (glioblastoma/astrocytoma), RKO-AS45-1 (colorectal carcinoma), and TOV-21G (ovarian adenocarcinoma) were cultivated according to manufacturer's protocol. Twelve candidate reference genes were commonly expressed in five cell lines (CCD-19Lu, HEK-293, RKO-AS45-1, TOV-21G, and U-87 MG). To verify the expression stability, we used the RefFinder web tool, which integrates data from the computational programs Normfinder, BestKeeper, geNorm, and the comparative Delta-Ct method. The ACTB was the most stable reference gene to the CCD-19Lu and HEK-293 cells. The best combination of HKGs for the RKO-AS45-1 and TOV-21G cell lines were B2M/GAPDH and PBGD/B2M, respectively. For the U-87 MG cells, GAPDH and IPO8 were the most suitable HKGs. Thus, our findings showed that it is crucial to use the right HKGs to precise normalize gene expression levels in cancer studies, once a suitable HKG for one cell type cannot be to the other.
Collapse
|
15
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Aegilops tauschii (Coss.) under Different Abiotic Stresses. Int J Mol Sci 2021; 22:ijms222011017. [PMID: 34681677 PMCID: PMC8541341 DOI: 10.3390/ijms222011017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/02/2023] Open
Abstract
Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.
Collapse
|
16
|
Tyrka M, Bakera B, Szeliga M, Święcicka M, Krajewski P, Mokrzycka M, Rakoczy-Trojanowska M. Identification of Rf Genes in Hexaploid Wheat ( Triticumaestivum L.) by RNA-Seq and Paralog Analyses. Int J Mol Sci 2021; 22:ijms22179146. [PMID: 34502055 PMCID: PMC8431562 DOI: 10.3390/ijms22179146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Beata Bakera
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Mokrzycka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
- Correspondence: ; Tel./Fax: +48-22-59-32152
| |
Collapse
|
17
|
Wang Y, Zhang Y, Liu Q, Tong H, Zhang T, Gu C, Liu L, Huang S, Yuan H. Selection and validation of appropriate reference genes for RT-qPCR analysis of flowering stages and different genotypes of Iris germanica L. Sci Rep 2021; 11:9901. [PMID: 33972586 PMCID: PMC8110784 DOI: 10.1038/s41598-021-89100-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Iris germanica L. is a perennial herbaceous plant that has been widely cultivated worldwide and is popular for its elegant and vibrantly colorful flowers. Selection of appropriate reference genes is the prerequisite for accurate normalization of target gene expression by quantitative real-time PCR. However, to date, the most suitable reference genes for flowering stages have not been elucidated in I. germanica. In this study, eight candidate reference genes were examined for the normalization of RT-qPCR in three I. germanica cultivars, and their stability were evaluated by four different algorithms (GeNorm, NormFinder, BestKeeper, and Ref-finder). The results revealed that IgUBC and IgGAPDH were the most stable reference genes in '00246' and 'Elizabeth', and IgTUB and IgUBC showed stable expression in '2010200'. IgUBC and IgGAPDH were the most stable in all samples, while IgUBQ showed the least stability. Finally, to validate the reliability of the selected reference genes, the expression patterns of IgFT (Flowering Locus T gene) was analyzed and emphasized the importance of appropriate reference gene selection. This work presented the first systematic study of reference genes selection during flower bud development and provided guidance to research of the molecular mechanisms of flowering stages in I. germanica.
Collapse
Affiliation(s)
- Yinjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Haiying Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ting Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
18
|
Fulvio F, Martinelli T, Paris R. Selection and validation of reference genes for RT-qPCR normalization in different tissues of milk thistle (Silybum marianum, Gaert.). Gene 2021; 768:145272. [PMID: 33122080 DOI: 10.1016/j.gene.2020.145272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Quantitative reverse transcription PCR is a sensitive technique for evaluating transcriptional profiles in different experimental datasets. To obtain a reliable quantification of the transcripts level, data normalization with stable reference genes is required. Stable reference genes are identified after analysis of their transcripts profile in every new experiment and species of interest. In Silybum marianum, a widely cultivated officinal plant, only few gene expression studies exist, and reference genes for RT-qPCR studies in the diverse plant tissues have never been investigated before. In this work, the expression stability of 10 candidate reference genes was evaluated in leaves, roots, stems and fruits of S. marianum grown under physiological environmental condition. The stability values for each candidate reference gene were calculated by four canonical statistical algorithms GeNorm, NormFinder, Bestkeeper and ΔCt method in different subsets of samples, then they were ranked with RefFinder from the most to the least suitable for normalization. Best combinations of reference genes are finally proposed for different experimental data sets, including all tissues, vegetative, and reproductive tissues separately. Three target genes putatively involved in important biosynthetic pathway leading to key metabolites in the fruits of milk thistle, such as silymarin and fatty acids, were analyzed with the chosen panels of reference genes, in comparison to the ones used in previous papers. To the best of our knowledge, this is the first report on a reliable and systematic identification and validation of the reference genes for RT-qPCR normalization to study gene expression in S. marianum.
Collapse
Affiliation(s)
- Flavia Fulvio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy
| | - Tommaso Martinelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy; Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Difesa e Certificazione, Via di Lanciola 12/A, Loc. Cascine del Riccio, 50125 Firenze, Italy
| | - Roberta Paris
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy.
| |
Collapse
|
19
|
Chaudhary C, Sharma N, Khurana P. Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance. PLANT MOLECULAR BIOLOGY 2021; 105:133-146. [PMID: 33034884 DOI: 10.1007/s11103-020-01073-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Role of Rubisco Activase in imparting thermotolerance to the photosynthetic apparatus under high temperature. Thus, to improve the grain filling, we need to fine tune these crucial enzymes and their regulation, which directly or indirectly affect spike photosynthesis. CO2 fixation in cereals crops like bread wheat (Triticum aestivum L.) is also contributed by ear photosynthesis beside the other organs like leaves or the flag leaf. 1000-grain weight of three Indian wheat cultivars (cvs.) PBW343, K7903, and HD2329 were calculated under three treatments until maturity stage (i.e. removal of flag leaf, removal of awns and shaded spikes). We observed that awn removal showed a significant decrease in 1000-grain weight in all cultivars. To delve deeper into the biological and molecular pathways taking place underlying the awn physiology, we conducted the awn transcriptome analysis of thermosusceptible Indian wheat cv. PBW343 under heat stress (HS) at 42 °C for 2 h using RNA-sequencing (RNA-seq). Differential expression analysis revealed, 160 transcripts, out of these, 143 transcripts were significantly upregulated and 17 transcripts were repressed under HS conditions. Of these Rca1β was selected for characterization and overexpression studies. Ectopic expression of TaRca1β in rice transgenics indicate a direct correlation with tolerance under HS conditions. TaRca1β provides a better photosynthate energy partitioning under HS with a significant reduction in the non-photochemical fluorescence quenching of the photosynthetic machinery.
Collapse
Affiliation(s)
- Chanderkant Chaudhary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Naveen Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
20
|
Raz A, Dahan-Meir T, Melamed-Bessudo C, Leshkowitz D, Levy AA. Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-Induced Gene Silencing. FRONTIERS IN PLANT SCIENCE 2020; 11:635139. [PMID: 33613593 PMCID: PMC7890124 DOI: 10.3389/fpls.2020.635139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Collapse
Affiliation(s)
- Amir Raz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Science, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
- Amir Raz,
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Avraham A. Levy,
| |
Collapse
|