1
|
Piškor M, Ćorić I, Perić B, Špoljarić KM, Kirin SI, Glavaš-Obrovac L, Raić-Malić S. Quinoline- and coumarin-based ligands and their rhenium(I) tricarbonyl complexes: synthesis, spectral characterization and antiproliferative activity on T-cell lymphoma. J Inorg Biochem 2025; 262:112770. [PMID: 39541780 DOI: 10.1016/j.jinorgbio.2024.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Novel 6-substituted 2-(trifluoromethyl)quinoline 5a-5e and coumarin 6a-6d ligands with aldoxime ether linked pyridine moiety were synthesized by O-alkylation of quinoline and coumarin with (E)-picolinaldehyde oxime and subsequently with [Re(CO)5Cl] gave rhenium(I) tricarbonyl complexes 5aRe-5eRe and 6aRe-6dRe that were fully characterized by NMR, single-crystal X-ray diffraction, IR and UV-Vis spectroscopy. The results of antiproliferative evaluation of quinoline and coumarin ligands and their rhenium(I) tricarbonyl complexes on various human tumor cell lines, including acute lymphoblastic leukemia (CCRF-CEM), acute monocytic leukemia (THP1), cervical adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), T-cell lymphoma (HuT78), and non-tumor human fibroblasts (BJ) showed that the quinoline complexes 5aRe-5eRe had higher inhibitory activity than coumarin complexes 6aRe-6dRe, particularly against T-cell lymphoma (HuT78) cells. 6-Methoxy-2-(trifluoromethyl)quinoline 5e and 6-methylcoumarin 6d, and their rhenium(I) tricarbonyl complexes 5eRe and 6dRe were found to arrest the cell cycle of HuT78 cells by causing a significant accumulation of cells in the G0/G1 phase and a marked decrease in the number of cells in the G2/M phase. These rhenium(I) tricarbonyl complexes also slightly increased ROS production and significantly decreased the mitochondrial membrane potential by 50 % (5eRe) and 45 % (6dRe) compared to untreated cells and cells treated with 5e and 6d. These results suggest that the cytotoxic effects of these compounds are mediated by their effects on mitochondrial membrane potential and the subsequent increase in ROS production.
Collapse
Affiliation(s)
- Martina Piškor
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Ivan Ćorić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Berislav Perić
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Srećko I Kirin
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia.
| | - Silvana Raić-Malić
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Altaher D, Zalloum H, Sweidan K, Sabbah DA, AlSalamat H, Sunjuk M, Isleem R. Synthesis, Characterization and Preliminary Screening of New N-Substituted -8-Methyl-4-Hydroxy-2-Quinolone -3-Carboxamides as Potential Anticancer Agents. Curr Org Synth 2025; 22:270-279. [PMID: 39962962 DOI: 10.2174/0115701794291133240327044308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 05/10/2025]
Abstract
INTRODUCTION A new series of 4-hydroxy-8-methyl-2-oxo-1,2-dihydroquinoline-3- carboxamide derivatives has been synthesized in good yields, followed by complete characterization using 1D-NMR, 2D-NMR, and IR techniques. METHODS The final products contain amide, hydroxyl, and aromatic functional groups that usually show significant bioactivity. The target products have been examined towards three cancer cell lines, namely colorectal cancer cell line (HCT116), breast cancer cell line (MCF-7), and leukemia cell line (K562) in addition to the fibroblast cells, that were used as a model for normal human tissue. RESULTS The anticancer results signified that compound 6 showed the most activity in the series accomplished with IC50 values of 14.6, 5.3 and 12.8 µM, Conclusion: Other compounds exhibited considerable activity, such as compounds 9 (IC50 3.5 and 19.0 µM), 10 (IC50 12.6 µM), and 11 (IC50 10.3 µM) against the three cancer cell lines HCT116, MCF-7 and K562, respectively.
Collapse
Affiliation(s)
- Dania Altaher
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Hiba Zalloum
- Hamdi Mango Research Centre for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al- Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Husam AlSalamat
- Hamdi Mango Research Centre for Scientific Research, The University of Jordan, Amman, 11942, Jordan
- School of Medicine, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Mahmoud Sunjuk
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, 13133, Jordan
| | - Reem Isleem
- Department of Pharmacy, Faculty of Pharmacy, Al- Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
3
|
El-Naggar M, Hasan K, Khanfar MA, Delmani FA, Shehadi IA, Al-Qawasmeh R, Elmehdi HM. Synthesis, crystal structure, Hirshfeld surface analysis, and DFT calculation of 4-(5-(((1-(3,4,5-trimethoxyphenyl)-1 H-1,2,3-triazol-4-yl)methyl)thio)-4-phenyl-4 H-1,2,4-triazol-3-yl)pyridine. Heliyon 2024; 10:e40318. [PMID: 39605836 PMCID: PMC11600039 DOI: 10.1016/j.heliyon.2024.e40318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Triazole is considered as a privileged scaffold in medicinal chemistry by virtue of it is diverse biological activity. several drugs currently in the market possess triazole moiety. In this study click chemistry was performed on the pyridine based 1,2,4-triazole-tethered propargyl moiety to afford 4-(5-(((1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)pyridine. The new compound was fully characterized by 1H NMR, 13C NMR, HRMS and X-ray diffraction (XRD). XRD data indicated that, the structure shows: triclinic, space group P -1, a = 6.4427(3) A, ° b = 11.4352(4) A, ° c = 15.4510(5) A, ° α = 97.980(2)°, β = 96.043(2)°, γ = 92.772(2)°, V = 1118.75(7) Å 3, Z = 2, T = 152(2) K, μ(MoKα) = 0.094 mm-1, Dcalc = 1.364 g/cm3. Density functional theory (DFT) method along with Hirshfeld analysis of the optimized X-ray structure of the final product were used to confirm the molecular and the electronic structure of the reported compound.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Kamrul Hasan
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Monther A. Khanfar
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | | | - Ihsan A. Shehadi
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Raed Al-Qawasmeh
- Chemistry Department, Faculty of Sciences, Pure and Applied Chemistry Group, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Hussein M. Elmehdi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Li J, Lu Z, Wang L, Shi H, Chu B, Qu Y, Ye Z, Qu D. Novel Coumarins Derivatives for A. baumannii Lung Infection Developed by High-Throughput Screening and Reinforcement Learning. J Neuroimmune Pharmacol 2024; 19:32. [PMID: 38886254 PMCID: PMC11182843 DOI: 10.1007/s11481-024-10134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.
Collapse
Affiliation(s)
- Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Zhou Lu
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Liuchang Wang
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shanxi, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Bixin Chu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yingwei Qu
- Department of Burn and Plastic Surgery, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, Shandong, China
| | - Zichen Ye
- Department of Health Service, Medical Service Training Base, The Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Di Qu
- Department of Clinical Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China.
| |
Collapse
|
5
|
Elgendy SM, Zaher DM, Sarg NH, Abu Jayab NN, Alhamad DW, Al-Tel TH, Omar HA. Autophagy inhibition potentiates energy restriction-induced cell death in hepatocellular carcinoma cells. IUBMB Life 2024. [PMID: 38497226 DOI: 10.1002/iub.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
Hepatocellular carcinoma (HCC) significantly contributes to cancer-related mortality due to the limited response of HCC to current anticancer therapies, thereby necessitating more effective treatment approaches. Energy restriction mimetic agents (ERMAs) have emerged as potential therapies in targeting the Warburg effect, a unique metabolic process in cancer cells. However, ERMAs exhibit limited efficacy when used as monotherapy. Additionally, ERMAs have been found to induce autophagy in cancer cells. The role of autophagy in cancer survival remains a subject of debate. Thus, it is crucial to ascertain whether ERMA-induced autophagy is a mechanism for cell survival or cell death in HCC. Our study aims to investigate the effect of autophagy inhibition on the survival of HCC cells treated with ERMAs while also examining the potential of combining an autophagy inhibitor such as spautin-1 with ERMAs to enhance HCC cell death. Our results suggest a cytoprotective role for ERMA-induced autophagy in HCC cells, as combining the autophagy inhibitor spautin-1 with ERMAs effectively suppressed ERMA-induced autophagy and synergistically enhanced their antitumor activity. The treatment combination promoted HCC death through apoptosis, cell cycle arrest, and inhibition of AKT and ERK activation, which are known to play a key role in cellular proliferation. Collectively, our findings highlight a potential strategy to combat HCC by combining energy restriction with autophagy inhibition.
Collapse
Affiliation(s)
- Sara M Elgendy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Dima W Alhamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
7
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Nellutla MK, Kamarajugadda P, Soma L, Haridasyam RB, Narsimha S. Synthesis and Biological Evaluation of Novel N-[3-fluoro-4-(morpholin-4-yl)phenyl]thiazol-2-amine Derivatives as Potent Antibacterial and Anticancer Agents and ADMET. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2169473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manoj Kumar Nellutla
- Department of Chemistry, Chaitanya (Deemed to be University), Hanamkonda, India
- Aragen Life Sciences, Hyderabad, India
| | | | | | - Ramesh Babu Haridasyam
- Department of Physical Sciences/Chemistry, Kakatiya Institute of Technology and Science, Hanumakonda, India
| | - Sirassu Narsimha
- Department of Chemistry, Chaitanya (Deemed to be University), Hanamkonda, India
| |
Collapse
|
9
|
Multi-Omics Analysis Revealed a Significant Alteration of Critical Metabolic Pathways Due to Sorafenib-Resistance in Hep3B Cell Lines. Int J Mol Sci 2022; 23:ijms231911975. [PMID: 36233276 PMCID: PMC9569810 DOI: 10.3390/ijms231911975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is usually encountered within six months of treatment. Therefore, there is a critical need to identify the underlying reasons for drug resistance. In the present study, we investigated the proteomic and metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker). For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were significantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype. D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochondrial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain small subunit 1 were among the significantly altered proteins. The findings revealed that resistant Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways, energy production pathways and other pathways related to cancer aggressiveness, such as migration, proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways, including the antifolate resistance pathway and other important pathways that maintain cancer cells' survival, growth, and proliferation. Collectively, the results identified potential biomarkers for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance, cancer initiation, progression and aggressiveness, which may contribute to better prognosis and chemotherapeutic outcomes.
Collapse
|
10
|
SPIONs as a nanomagnetic catalyst for the synthesis and anti-microbial activity of 2-aminothiazoles derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Alhamad DW, Elgendy SM, Hersi F, El-Seedi HR, Omar HA. The inhibition of autophagy by spautin boosts the anticancer activity of fingolimod in multidrug-resistant hepatocellular carcinoma. Life Sci 2022; 304:120699. [PMID: 35690108 DOI: 10.1016/j.lfs.2022.120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 01/18/2023]
Abstract
The contribution of autophagy to drug resistance has been studied in several cancers. However, there is no clear evidence about the role of autophagy in the resistance to chemotherapy in cancers, such as hepatocellular carcinoma (HCC). HCC is characterized by a poor prognosis and limited therapeutic options. Moreover, the emergence of multidrug-resistance (MDR) hinders successful treatment. Therefore, understanding how autophagy is regulated in resistant HCC is essential for sensitizing this malignancy to chemotherapy. This work demonstrated that basal and induced autophagy differ between parental and resistant Hep3B cells. In optimum growth conditions, the basal level of autophagy was low in resistant Hep3B (Hep3B-R) cells compared to the wild-type Hep3B (Hep3B-P) cells. However, in metabolic or therapeutic stress conditions, the rate of autophagy flux was much faster in the resistant cells. The work also confirmed the pro-survival function of autophagy in HCC. Besides, it demonstrated that the autophagy inhibitor, spautin, acted synergistically with fingolimod (FTY720) to promote cell death. The combination treatment resulted in superior reactive oxygen species (ROS) production and significant induction of apoptosis. In addition, spautin potentiated the effect of FTY720 against cell survival pathways like the Akt and ERK. Interestingly, the results indicated that Hep3B-R cells were more sensitive to autophagy inhibition than their parental counterparts. Collectively, this work revealed that combining spautin with chemotherapeutic agents that induce cytoprotective autophagy such as FTY720 is a promising approach to overcome MDR in HCC.
Collapse
Affiliation(s)
- Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
12
|
Anbar HS, Shehab NG, El-Rouby NM, Ansari MA, Chenoth H, Majeed M, Naeem K, Hersi F, Omar HA. Upadacitinib protects against cisplatin-induced renal and hepatic dysfunction without impairing its anticancer activity. Eur J Pharm Sci 2022; 172:106149. [PMID: 35189270 DOI: 10.1016/j.ejps.2022.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
|
13
|
Zaher DM, Ramadan WS, El-Awady R, Omar HA, Hersi F, Srinivasulu V, Hachim IY, Al-Marzooq FI, Vazhappilly CG, Merali S, Merali C, Soares NC, Schilf P, Ibrahim SM, Al-Tel TH. A Novel Benzopyrane Derivative Targeting Cancer Cell Metabolic and Survival Pathways. Cancers (Basel) 2021; 13:cancers13112840. [PMID: 34200264 PMCID: PMC8201054 DOI: 10.3390/cancers13112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.
Collapse
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A. Omar
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah I. Al-Marzooq
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Cijo G. Vazhappilly
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- School of Arts and Sciences, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah 10021, United Arab Emirates
| | - Salim Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Carmen Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Nelson C. Soares
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7417
| |
Collapse
|
14
|
Naz S, Shah FA, Nadeem H, Sarwar S, Tan Z, Imran M, Ali T, Li JB, Li S. Amino Acid Conjugates of Aminothiazole and Aminopyridine as Potential Anticancer Agents: Synthesis, Molecular Docking and in vitro Evaluation. Drug Des Devel Ther 2021; 15:1459-1476. [PMID: 33833504 PMCID: PMC8021256 DOI: 10.2147/dddt.s297013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate this therapeutic failure. The current study demonstrated the synthesis of 2-aminothiazole [S3(a-d) and S5(a-d)] and 2-aminopyridine [S4(a-d) and S6(a-d)] derivatives that can target multiple cellular networks implicated in cancer development. METHODS Biological assays were performed to investigate the antioxidant and anticancer potential of synthesized compounds. Redox imbalance and oxidative stress are hallmarks of cancer, therefore, synthesized compounds were preliminarily screened for their antioxidant activity using DPPH assay, and further five derivatives S3b, S3c, S4c, S5b, and S6c, with significant antioxidant potential, were selected for investigation of in vitro anticancer potential. The cytotoxic activities were evaluated against the parent (A2780) and cisplatin-resistant (A2780CISR) ovarian cancer cell lines. Further, Molecular docking studies of active compounds were performed to determine binding affinities. RESULTS Results revealed that S3c, S5b, and S6c displayed promising inhibition in cisplatin-resistant cell lines in comparison to parent cells in terms of both resistance factor (RF) and IC50 values. Moreover, S3c proved to be most active compound in both parent and resistant cell lines with IC50 values 15.57 µM and 11.52 µM respectively. Our docking studies demonstrated that compounds S3c, S5b, and S6c exhibited significant binding affinity with multiple protein targets of the signaling cascade. CONCLUSION Anticancer activities of compounds S3c, S5b, and S6c in cisplatin-resistant cell lines suggested that these ligands may contribute as lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Zhen Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Tahir Ali
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Jing Bo Li
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People’s Republic of China
| |
Collapse
|
15
|
Mdkhana B, Zaher DM, Abdin SM, Omar HA. Tangeretin boosts the anticancer activity of metformin in breast cancer cells via curbing the energy production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153470. [PMID: 33524703 DOI: 10.1016/j.phymed.2021.153470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Breast cancer is the first leading cause of women cancer-related deaths worldwide. While there are many proposed treatments for breast cancer, low efficacy, toxicity, and resistance are still major therapeutic obstacles. Thus, there is a need for safer and more effective therapeutic approaches. Because of the direct link between obesity and carcinogenesis, energy restriction mimetic agents (ERMAs) such as the antidiabetic agent, metformin was proposed as a novel antiproliferative agent. However, the anticancer dose of metformin alone is relatively high and impractical to be implemented safely in patients. The current work aimed to sensitize resistant breast cancer cells to metformin's antiproliferative effect using the natural potential anticancer agent, tangeretin. METHODS The possible synergistic combination between metformin and tangeretin was initially evaluated using MTT cell viability assay in different breast cancer cell lines (MCF-7, MDA-MB-231, and their resistant phenotype). The possible mechanisms of synergy were investigated via Western blotting analysis, reactive oxygen species (ROS) measurement, annexin/PI assay, cell cycle analysis, and wound healing assay. RESULTS The results indicated the ability of tangeretin to improve the anticancer activity of metformin. Interestingly, the improved activity was almost equally observed in both parental and resistant cancer cells, which underlines the importance of this combination in cases of the emergence of resistance. The synergy was mediated through the enhanced activation of AMPK and ROS generation in addition to the improved inhibition of cell migration, induction of cell cycle arrest, and apoptosis in cancer cells. CONCLUSION The current work underscores the importance of metformin as an ERMA in tackling breast cancer and as a novel approach to boost its anticancer activity via a synergistic combination with tangeretin.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511 Egypt.
| |
Collapse
|
16
|
Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Med Chem Res 2021; 30:771-806. [PMID: 33469255 PMCID: PMC7809097 DOI: 10.1007/s00044-020-02686-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/06/2020] [Indexed: 11/01/2022]
Abstract
Currently, the development of anticancer drug resistance is significantly restricted the clinical efficacy of the most commonly prescribed anticancer drug. Malignant disease is widely prevalent and considered to be the major challenges of this century, which concerns the medical community all over the world. Consequently, investigating small molecule antitumor agents, which could decrease drug resistance and reduce unpleasant side effect is more desirable. 2-aminothiazole scaffold has emerged as a promising scaffold in medicinal chemistry and drug discovery research. This nucleus is a fundamental part of some clinically applied anticancer drugs such as dasatinib and alpelisib. Literature survey documented that different 2-aminothiazole analogs exhibited their potent and selective nanomolar inhibitory activity against a wide range of human cancerous cell lines such as breast, leukemia, lung, colon, CNS, melanoma, ovarian, renal, and prostate. In this paper, we have reviewed the progresses and structural modification of 2-aminothiazole to pursuit potent anticancers and also highlighted in vitro activities and in silico studies. The information will useful for future innovation. Representatives of 2-aminothiazole-containing compounds classification.
Collapse
|