1
|
Root-Gutteridge H, Korzeniowska A, Ratcliffe V, Reby D. Domestic dogs (Canis familiaris) recognise meaningful content in monotonous streams of read speech. Anim Cogn 2025; 28:29. [PMID: 40220068 PMCID: PMC11993455 DOI: 10.1007/s10071-025-01948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 01/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Domestic dogs (Canis familiaris) can recognize basic phonemic information from human speech and respond to commands. Commands are typically presented in isolation with exaggerated prosody known as dog-directed speech (DDS) register. Here, we investigate whether dogs can spontaneously identify meaningful phonemic content in a stream of putatively irrelevant speech spoken in monotonous prosody, without congruent prosodic cues. To test this ability, dogs were played recordings of their owners reading a meaningless text which included a short meaningful or meaningless phrase, either read with unchanged reading prosody or with an exaggerated DDS prosody. We measured the occurrence and duration of dogs' gaze at their owners. We found that, while dogs were more likely to detect and respond to inclusions that contained meaningful phrases spoken with DDS prosody, they were still able to detect these meaningful inclusions spoken in a neutral reading prosody. Dogs detected and responded to meaningless control phrases in DDS as frequently as to meaningful content in neutral reading prosody, but less often than to meaningful content in DDS. This suggests that, while DDS prosody facilitates the detection of meaningful content in human speech by capturing dogs' attention, dogs are nevertheless capable of spontaneously recognizing meaningful phonemic content within an unexaggerated stream of speech.
Collapse
Affiliation(s)
- Holly Root-Gutteridge
- School of Psychology, University of Sussex, Falmer, East Sussex, UK.
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, Lincolnshire, UK.
| | | | | | - David Reby
- School of Psychology, University of Sussex, Falmer, East Sussex, UK
- ENES Bioacoustics Research Lab / Lyon Neuroscience Research Centre (CRNL), University of Saint-Etienne, CNRS UMR5292, INSERM UMR_S 1028, Saint-Etienne, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Boch M, Huber L, Lamm C. Domestic dogs as a comparative model for social neuroscience: Advances and challenges. Neurosci Biobehav Rev 2024; 162:105700. [PMID: 38710423 PMCID: PMC7616343 DOI: 10.1016/j.neubiorev.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Dogs and humans have lived together for thousands of years and share many analogous socio-cognitive skills. Dog neuroimaging now provides insight into the neural bases of these shared social abilities. Here, we summarize key findings from dog fMRI identifying neocortical brain areas implicated in visual social cognition, such as face, body, and emotion perception, as well as action observation in dogs. These findings provide converging evidence that the temporal cortex plays a significant role in visual social cognition in dogs. We further briefly review investigations into the neural base of the dog-human relationship, mainly involving limbic brain regions. We then discuss current challenges in the field, such as statistical power and lack of common template spaces, and how to overcome them. Finally, we argue that the foundation has now been built to investigate and compare the neural bases of more complex socio-cognitive phenomena shared by dogs and humans. This will strengthen and expand the role of the domestic dog as a powerful comparative model species and provide novel insights into the evolutionary roots of social cognition.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria.
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna 1210, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria
| |
Collapse
|
3
|
Har-Shai Yahav P, Sharaabi A, Zion Golumbic E. The effect of voice familiarity on attention to speech in a cocktail party scenario. Cereb Cortex 2024; 34:bhad475. [PMID: 38142293 DOI: 10.1093/cercor/bhad475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Selective attention to one speaker in multi-talker environments can be affected by the acoustic and semantic properties of speech. One highly ecological feature of speech that has the potential to assist in selective attention is voice familiarity. Here, we tested how voice familiarity interacts with selective attention by measuring the neural speech-tracking response to both target and non-target speech in a dichotic listening "Cocktail Party" paradigm. We measured Magnetoencephalography from n = 33 participants, presented with concurrent narratives in two different voices, and instructed to pay attention to one ear ("target") and ignore the other ("non-target"). Participants were familiarized with one of the voices during the week prior to the experiment, rendering this voice familiar to them. Using multivariate speech-tracking analysis we estimated the neural responses to both stimuli and replicate their well-established modulation by selective attention. Importantly, speech-tracking was also affected by voice familiarity, showing enhanced response for target speech and reduced response for non-target speech in the contra-lateral hemisphere, when these were in a familiar vs. an unfamiliar voice. These findings offer valuable insight into how voice familiarity, and by extension, auditory-semantics, interact with goal-driven attention, and facilitate perceptual organization and speech processing in noisy environments.
Collapse
Affiliation(s)
- Paz Har-Shai Yahav
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Aviya Sharaabi
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Elana Zion Golumbic
- The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Barton SA, Kent M, Hecht EE. Neuroanatomical asymmetry in the canine brain. Brain Struct Funct 2023; 228:1657-1669. [PMID: 37436502 DOI: 10.1007/s00429-023-02677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
The brains of humans and non-human primates exhibit left/right asymmetries in grey matter morphology, white matter connections, and functional responses. These asymmetries have been implicated in specialized behavioral adaptations such as language, tool use, and handedness. Left/right asymmetries are also observed in behavioral tendencies across the animal kingdom, suggesting a deep evolutionary origin for the neural mechanisms underlying lateralized behavior. However, it is still unclear to what extent brain asymmetries supporting lateralized behaviors are present in other large-brained animals outside the primate order. Canids and other carnivorans evolved large, complex brains independently and convergently with primates, and exhibit lateralized behaviors. Therefore, domestic dogs offer an opportunity to address this question. We examined T2-weighted MRI images of 62 dogs from 33 breeds, opportunistically collected from a veterinary MRI scanner from dogs who were referred for neurological examination but were not found to show any neuropathology. Volumetrically asymmetric regions of gray matter included portions of the temporal and frontal cortex, in addition to portions of the cerebellum, brainstem, and other subcortical regions. These results are consistent with the perspective that asymmetry may be a common feature underlying the evolution of complex brains and behavior across clades, and provide neuro-organizational information that is likely relevant to the growing field of canine behavioral neuroscience.
Collapse
Affiliation(s)
- Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| | - Marc Kent
- College of Veterinary Medicine, University of Georgia, Athens, 30602, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
5
|
Gergely A, Gábor A, Gácsi M, Kis A, Czeibert K, Topál J, Andics A. Dog brains are sensitive to infant- and dog-directed prosody. Commun Biol 2023; 6:859. [PMID: 37596318 PMCID: PMC10439206 DOI: 10.1038/s42003-023-05217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
When addressing preverbal infants and family dogs, people tend to use specific speech styles. While recent studies suggest acoustic parallels between infant- and dog-directed speech, it is unclear whether dogs, like infants, show enhanced neural sensitivity to prosodic aspects of speech directed to them. Using functional magnetic resonance imaging on awake unrestrained dogs we identify two non-primary auditory regions, one that involve the ventralmost part of the left caudal Sylvian gyrus and the temporal pole and the other at the transition of the left caudal and rostral Sylvian gyrus, which respond more to naturalistic dog- and/or infant-directed speech than to adult-directed speech, especially when speak by female speakers. This activity increase is driven by sensitivity to fundamental frequency mean and variance resulting in positive modulatory effects of these acoustic parameters in both aforementioned non-primary auditory regions. These findings show that the dog auditory cortex, similarly to that of human infants, is sensitive to the acoustic properties of speech directed to non-speaking partners. This increased neuronal responsiveness to exaggerated prosody may be one reason why dogs outperform other animals when processing speech.
Collapse
Affiliation(s)
- Anna Gergely
- Institute of Cognitive Neuroscience and Psychology, ELTE-ELKH NAP Comparative Ethology research group, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Anna Gábor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Neuroethology of Communication Lab, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELKH-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, ELTE-ELKH NAP Comparative Ethology research group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kálmán Czeibert
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - József Topál
- Institute of Cognitive Neuroscience and Psychology, ELTE-ELKH NAP Comparative Ethology research group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Attila Andics
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Neuroethology of Communication Lab, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
6
|
Bálint A, Szabó Á, Andics A, Gácsi M. Dog and human neural sensitivity to voicelikeness: A comparative fMRI study. Neuroimage 2023; 265:119791. [PMID: 36476565 DOI: 10.1016/j.neuroimage.2022.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Voice-sensitivity in the auditory cortex of a range of mammals has been proposed to be determined primarily by tuning to conspecific auditory stimuli, but recent human findings indicate a role for a more general tuning to voicelikeness. Vocal emotional valence, a central characteristic of vocalisations, has been linked to the same basic acoustic parameters across species. Comparative neuroimaging revealed that during voice perception, such acoustic parameters modulate emotional valence-sensitivity in auditory cortical regions in both family dogs and humans. To explore the role of voicelikeness in auditory emotional valence-sensitivity across species, here we constructed artificial emotional sounds in two sound categories: voice-like vs. sine-wave sounds, parametrically modulating two main acoustic parameters, f0 and call length. We hypothesised that if mammalian auditory systems are characterised by a general tuning to voicelikeness, voice-like sounds will be processed preferentially, and acoustic parameters for voice-like sounds will be processed differently than for sine-wave sounds - both in dogs and humans. We found cortical areas in both species that responded stronger to voice-like than to sine-wave stimuli, while there were no regions responding stronger to sine-wave sounds in either species. Additionally, we found that in bilateral primary and emotional valence-sensitive auditory regions of both species, the processing of voice-like and sine-wave sounds are modulated by f0 in opposite ways. These results reveal functional similarities between evolutionarily distant mammals for processing voicelikeness and its effect on processing basic acoustic cues of vocal emotions.
Collapse
Affiliation(s)
- Anna Bálint
- ELKH-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Ádám Szabó
- Department of Neuroradiology at the Medical Imaging Centre of the Semmelweis University, H-1082 Budapest, Üllői út 78a, Hungary
| | - Attila Andics
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; ELTE NAP Canine Brain Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Márta Gácsi
- ELKH-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| |
Collapse
|
7
|
Selection levels on vocal individuality: strategic use or byproduct. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
The acoustic bases of human voice identity processing in dogs. Anim Cogn 2022; 25:905-916. [PMID: 35142977 PMCID: PMC9334438 DOI: 10.1007/s10071-022-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/03/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Speech carries identity-diagnostic acoustic cues that help individuals recognize each other during vocal–social interactions. In humans, fundamental frequency, formant dispersion and harmonics-to-noise ratio serve as characteristics along which speakers can be reliably separated. The ability to infer a speaker’s identity is also adaptive for members of other species (like companion animals) for whom humans (as owners) are relevant. The acoustic bases of speaker recognition in non-humans are unknown. Here, we tested whether dogs can recognize their owner’s voice and whether they rely on the same acoustic parameters for such recognition as humans use to discriminate speakers. Stimuli were pre-recorded sentences spoken by the owner and control persons, played through loudspeakers placed behind two non-transparent screens (with each screen hiding a person). We investigated the association between acoustic distance of speakers (examined along several dimensions relevant in intraspecific voice identification) and dogs’ behavior. Dogs chose their owner’s voice more often than that of control persons’, suggesting that they can identify it. Choosing success and time spent looking in the direction of the owner’s voice were positively associated, showing that looking time is an index of the ease of choice. Acoustic distance of speakers in mean fundamental frequency and jitter were positively associated with looking time, indicating that the shorter the acoustic distance between speakers with regard to these parameters, the harder the decision. So, dogs use these cues to discriminate their owner’s voice from unfamiliar voices. These findings reveal that dogs use some but probably not all acoustic parameters that humans use to identify speakers. Although dogs can detect fine changes in speech, their perceptual system may not be fully attuned to identity-diagnostic cues in the human voice.
Collapse
|
9
|
Cuaya LV, Hernández-Pérez R, Boros M, Deme A, Andics A. Speech naturalness detection and language representation in the dog brain. Neuroimage 2021; 248:118811. [PMID: 34906714 DOI: 10.1016/j.neuroimage.2021.118811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Family dogs are exposed to a continuous flow of human speech throughout their lives. However, the extent of their abilities in speech perception is unknown. Here, we used functional magnetic resonance imaging (fMRI) to test speech detection and language representation in the dog brain. Dogs (n = 18) listened to natural speech and scrambled speech in a familiar and an unfamiliar language. Speech scrambling distorts auditory regularities specific to speech and to a given language, but keeps spectral voice cues intact. We hypothesized that if dogs can extract auditory regularities of speech, and of a familiar language, then there will be distinct patterns of brain activity for natural speech vs. scrambled speech, and also for familiar vs. unfamiliar language. Using multivoxel pattern analysis (MVPA) we found that bilateral auditory cortical regions represented natural speech and scrambled speech differently; with a better classifier performance in longer-headed dogs in a right auditory region. This neural capacity for speech detection was not based on preferential processing for speech but rather on sensitivity to sound naturalness. Furthermore, in case of natural speech, distinct activity patterns were found for the two languages in the secondary auditory cortex and in the precruciate gyrus; with a greater difference in responses to the familiar and unfamiliar languages in older dogs, indicating a role for the amount of language exposure. No regions represented differently the scrambled versions of the two languages, suggesting that the activity difference between languages in natural speech reflected sensitivity to language-specific regularities rather than to spectral voice cues. These findings suggest that separate cortical regions support speech naturalness detection and language representation in the dog brain.
Collapse
Affiliation(s)
- Laura V Cuaya
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Budapest, Hungary.
| | - Raúl Hernández-Pérez
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Budapest, Hungary
| | - Marianna Boros
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Budapest, Hungary
| | - Andrea Deme
- Department of Applied Linguistics and Phonetics, Faculty of Humanities, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE 'Lendület' Lingual Articulation Research Group, Budapest, Hungary
| | - Attila Andics
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Boros M, Magyari L, Török D, Bozsik A, Deme A, Andics A. Neural processes underlying statistical learning for speech segmentation in dogs. Curr Biol 2021; 31:5512-5521.e5. [PMID: 34717832 DOI: 10.1016/j.cub.2021.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
To learn words, humans extract statistical regularities from speech. Multiple species use statistical learning also to process speech, but the neural underpinnings of speech segmentation in non-humans remain largely unknown. Here, we investigated computational and neural markers of speech segmentation in dogs, a phylogenetically distant mammal that efficiently navigates humans' social and linguistic environment. Using electroencephalography (EEG), we compared event-related responses (ERPs) for artificial words previously presented in a continuous speech stream with different distributional statistics. Results revealed an early effect (220-470 ms) of transitional probability and a late component (590-790 ms) modulated by both word frequency and transitional probability. Using fMRI, we searched for brain regions sensitive to statistical regularities in speech. Structured speech elicited lower activity in the basal ganglia, a region involved in sequence learning, and repetition enhancement in the auditory cortex. Speech segmentation in dogs, similar to that of humans, involves complex computations, engaging both domain-general and modality-specific brain areas. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marianna Boros
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Lilla Magyari
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Norwegian Reading Centre for Reading Education and Research, Faculty of Arts and Education, University of Stavanger, Professor Olav Hanssens vei 10, 4036 Stavanger, Norway
| | - Dávid Török
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Anett Bozsik
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, István utca 2, Hungary
| | - Andrea Deme
- Department of Applied Linguistics and Phonetics, Eötvös Loránd University, 1088 Budapest, Múzeum krt. 4/A, Hungary; MTA-ELTE "Lendület" Lingual Articulation Research Group, 1088 Budapest, Múzeum krt. 4/A, Hungary
| | - Attila Andics
- MTA-ELTE "Lendület" Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| |
Collapse
|
11
|
Reicher V, Kis A, Simor P, Bódizs R, Gácsi M. Interhemispheric asymmetry during NREM sleep in the dog. Sci Rep 2021; 11:18817. [PMID: 34552141 PMCID: PMC8458274 DOI: 10.1038/s41598-021-98178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Functional hemispheric asymmetry was evidenced in many species during sleep. Dogs seem to show hemispheric asymmetry during wakefulness; however, their asymmetric neural activity during sleep was not yet explored. The present study investigated interhemispheric asymmetry in family dogs using non-invasive polysomnography. EEG recordings during 3-h-long afternoon naps were carried out (N = 19) on two occasions at the same location. Hemispheric asymmetry was assessed during NREM sleep, using bilateral EEG channels. To include periods with high homeostatic sleep pressure and to reduce the variance of the time spent in NREM sleep between dogs, the first two sleep cycles were analysed. Left hemispheric predominance of slow frequency range was detected in the first sleep cycle of sleep recording 1, compared to the baseline level of zero asymmetry as well as to the first sleep cycle of sleep recording 2. Regarding the strength of hemispheric asymmetry, we found greater absolute hemispheric asymmetry in the second sleep cycle of sleep recording 1 and 2 in the frequency ranges of alpha, sigma and beta, compared to the first sleep cycle. Differences between sleep recordings and consecutive sleep cycles might be indicative of adaptation-like processes, but do not closely resemble the results described in humans.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| |
Collapse
|
12
|
Gábor A, Andics A, Miklósi Á, Czeibert K, Carreiro C, Gácsi M. Social relationship-dependent neural response to speech in dogs. Neuroimage 2021; 243:118480. [PMID: 34411741 DOI: 10.1016/j.neuroimage.2021.118480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
In humans, social relationship with the speaker affects neural processing of speech, as exemplified by children's auditory and reward responses to their mother's utterances. Family dogs show human analogue attachment behavior towards the owner, and neuroimaging revealed auditory cortex and reward center sensitivity to verbal praises in dog brains. Combining behavioral and non-invasive fMRI data, we investigated the effect of dogs' social relationship with the speaker on speech processing. Dogs listened to praising and neutral speech from their owners and a control person. We found positive correlation between dogs' behaviorally measured attachment scores towards their owners and neural activity increase for the owner's voice in the caudate nucleus; and activity increase in the secondary auditory caudal ectosylvian gyrus and the caudate nucleus for the owner's praise. Through identifying social relationship-dependent neural reward responses, our study reveals similarities in neural mechanisms modulated by infant-mother and dog-owner attachment.
Collapse
Affiliation(s)
- Anna Gábor
- MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Attila Andics
- MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; MTA-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Kálmán Czeibert
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Cecília Carreiro
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Márta Gácsi
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; MTA-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| |
Collapse
|
13
|
Multilevel fMRI adaptation for spoken word processing in the awake dog brain. Sci Rep 2020; 10:11968. [PMID: 32747731 PMCID: PMC7398925 DOI: 10.1038/s41598-020-68821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Human brains process lexical meaning separately from emotional prosody of speech at higher levels of the processing hierarchy. Recently we demonstrated that dog brains can also dissociate lexical and emotional prosodic information in human spoken words. To better understand the neural dynamics of lexical processing in the dog brain, here we used an event-related design, optimized for fMRI adaptation analyses on multiple time scales. We investigated repetition effects in dogs’ neural (BOLD) responses to lexically marked (praise) words and to lexically unmarked (neutral) words, in praising and neutral prosody. We identified temporally and anatomically distinct adaptation patterns. In a subcortical auditory region, we found both short- and long-term fMRI adaptation for emotional prosody, but not for lexical markedness. In multiple cortical auditory regions, we found long-term fMRI adaptation for lexically marked compared to unmarked words. This lexical adaptation showed right-hemisphere bias and was age-modulated in a near-primary auditory region and was independent of prosody in a secondary auditory region. Word representations in dogs’ auditory cortex thus contain more than just the emotional prosody they are typically associated with. These findings demonstrate multilevel fMRI adaptation effects in the dog brain and are consistent with a hierarchical account of spoken word processing.
Collapse
|