1
|
Kitagawa M, Notake R, Nakahara R, Hatanaka S, Saho T, Matsuda K. A multi-institutional survey on technical variations in total body irradiation in Japan. Radiol Phys Technol 2025; 18:347-357. [PMID: 40085418 DOI: 10.1007/s12194-025-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
This study aimed to survey technical variations in total body irradiation (TBI) across Japan. A web-based questionnaire investigating technical aspects (irradiation method, in vivo dosimetry, organ shielding, and boluses) of TBI was distributed via the authors' acquaintances in each region of Japan using snowball sampling, and 73 institutions responded. The data were collected from January to April 2024. Three institutions used two distinct irradiation methods, yielding 76 reported techniques. The reported irradiation techniques included long source-to-surface distance (SSD) techniques, which involve using a large field and extended distance; helical intensity-modulated radiation therapy (IMRT) using specialized equipment (e.g., TomoTherapy), moving couch techniques, and volumetric modulated arc therapy (VMAT) using a standard C-arm linac, with responses totaling 60 (79%), 10 (13%), 4 (5%), and 2 (3%), respectively. All institutions performing IMRT-based (helical IMRT and VMAT) TBI used computed tomography simulation with the patient in the supine position and utilized a 6 MV photon beam. Conversely, the long SSD technique exhibited significant variation; while 47 institutions treated patients exclusively in the supine position, others reported using the prone and lateral positions. Furthermore, the photon beam energies varied, with 10 MV (41 responses), 6 MV (20 responses), and 4 MV (1 response) reported. Notably, 17 institutions using long SSD techniques did not perform in vivo dosimetry and 32 did not use boluses. The differences in the methods used to shield the organs were also reported. These variations highlight the need for standardization of in vivo dosimetry, dose homogeneity strategies, and organ-shielding in TBI.
Collapse
Affiliation(s)
- Masayasu Kitagawa
- Department of Medical Technology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama, Toyama, 930-8550, Japan.
| | - Ryoichi Notake
- Department of Radiology, Institute of Science Tokyo Hospital, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryuta Nakahara
- Department of Radiation Oncology, Tane General Hospital, 1-12-21 Kujo-Minami, Nishi-Ku, Osaka, 550-0025, Japan
| | - Shogo Hatanaka
- Department of Radiation Oncology, Ageo Central General Hospital, 1-10-10 Kashiwaza, Ageo, Saitama, 362-8588, Japan
| | - Tatsunori Saho
- Department of Radiological Technology, Kokura Memorial Hospital, 3-2-1, Asano, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Kengo Matsuda
- Department of Radiological Technology, Asahikawa Medical University Hospital, 2-1-1-1, Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
2
|
Retif P, Djibo Sidikou A, Gribelbauer J, Al Salah A, Pfletschinger E, Michel X. Automated Deep Inspiration Breath-Hold (DIBH) in breast radiotherapy: A comprehensive assessment of the VitalHold system on the Radixact platform. Phys Med 2025; 133:104977. [PMID: 40209547 DOI: 10.1016/j.ejmp.2025.104977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/01/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025] Open
Abstract
PURPOSE To evaluate the performance of the VitalHold module for automated Deep Inspiration Breath-Hold (DIBH) treatment on the Radixact platform, focusing on its dosimetric accuracy, responsiveness to respiratory motion and system latency. MATERIALS AND METHODS A Delta4 Phantom+ system with customized 3D-printed breast add-ons was used to simulate a clinically relevant setup for DIBH. A treatment plan was created with 40 Gy in 15 fractions using TomoDirect. The Phantom was coupled with the HexaMotion motion platform to to simulate simple (tested with various amplitude, periods and gating thresholds) and complex respiratory patterns, including irregular breathing, patient-specific motion, and baseline shifts. Respiratory motion was analyzed, and dose distributions were measured using gamma analysis with varying criteria. System latency was evaluated following TG-147 guidelines. RESULTS The measured simple respiratory curve closely matched the simulated motion, with amplitude differences under 0.1 mm and cycle variations of 0.1 s. Gamma pass rates for 2-5 mm gating tolerances were ≥95 %, indicating high system accuracy. Complex motion scenarios showed average measured amplitude deviations below 0.1 mm. The system exhibited a mean latency of 4.3 ms. CONCLUSIONS The VitalHold module on the Radixact platform demonstrates strong potential for automated DIBH treatment, providing precise and reliable beam control across both simple and complex respiratory patterns and exhibiting minimal latency. This study supports the integration of automated breath-hold techniques in clinical practice.
Collapse
Affiliation(s)
- Paul Retif
- Medical Physics Unit, CHR Metz-Thionville, Metz, France; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | | | | | | | | | - Xavier Michel
- Radiation Therapy Department, CHR Metz-Thionville, Metz, France
| |
Collapse
|
3
|
Singh PK, Verma R, Tripathi D, Singh S, Bhushan M, Kumar L, Barik S, Gairola M. Evaluation of the Treatment Planning and Delivery for Hip Implant Cases on Tomotherapy. J Med Phys 2024; 49:270-278. [PMID: 39131420 PMCID: PMC11309148 DOI: 10.4103/jmp.jmp_182_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose The metal present in the implant creates artifacts during the treatment simulation, which impacts the treatment planning and delivery of the prescribed dose to the target and sparing normal tissues. This retrospective study evaluated the uncertainties in the planning and delivery of doses for prosthesis cases with dedicated phantom. Materials and Methods In this retrospective study, 11 patients with a hip prosthesis having cervix carcinoma were selected. Two treatment plans were generated on treatment planning system (TPS) for each case. Plan_No_Res was without any beam restriction, and Plan_exit_only was the plan with restricted beam entry through the metallic implant. An indigenous phantom was utilized to verify the accuracy of the treatment. In the phantom, some groves were present, which could be filled by implants that mimic the patient's geometries, like left, right and bilateral femur implants. The delivered doses were recorded using optically stimulated luminescence dosimeters (OSLDs), which were placed at different positions in the phantom. The plans were further calculated using megavoltage computed tomography (MVCT) scans acquired during treatment. Results The patient data showed no significant dose changes between the two planning methods. The treatment time increases from 412.18 ± 86.65 to 427.36 ± 104.80 with P = 0.03 for Plan_No_Res and Plan_exit_only, respectively. The difference between planned and delivered doses of various points across phantom geometries was within ± 9.5% in each case as left, right, and bilateral implant. The variations between OSLDs and MVCT calculated doses were also within ± 10.8%. Conclusion The study showed the competency of tomotherapy planning for hip prosthesis cases. The phantom measurements demonstrate the errors in dosimetry near the implant material, suggesting the need for precise methods to deal with artifact-related issues.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Department of Physics, Amity Institute of Applied Sciences, Amity University (AUUP), Noida, India
- Department of Radiation Oncology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi, India
| | - Rohit Verma
- Department of Physics, Amity Institute of Applied Sciences, Amity University (AUUP), Noida, India
| | - Deepak Tripathi
- Department of Physics, USAR, Guru Gobind Singh Indraprastha University, East Campus, Delhi, India
| | - Sukhvir Singh
- Radiation Safety Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi, India
| | - Manindra Bhushan
- Department of Radiation Oncology and Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Lalit Kumar
- Department of Radiation Oncology, Max Super Speciality Hospital, New Delhi, India
| | - Soumitra Barik
- Department of Radiation Oncology and Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Munish Gairola
- Department of Radiation Oncology and Division of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
4
|
Cepolina F, Razzoli R. Review of robotic surgery platforms and end effectors. J Robot Surg 2024; 18:74. [PMID: 38349595 PMCID: PMC10864559 DOI: 10.1007/s11701-023-01781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 02/15/2024]
Abstract
In the last 50 years, the number of companies producing automated devices for surgical operations has grown extensively. The population started to be more confident about the technology capabilities. The first patents related to surgical robotics are expiring and this knowledge is becoming a common base for the development of future surgical robotics. The review describes some of the most popular companies manufacturing surgical robots. The list of the company does not pretend to be exhaustive but wishes to give an overview of the sector. Due to space constraints, only a limited selction of companies is reported. Most of the companies described are born in America or Europe. Advantages and limitations of each product firm are described. A special focus is given to the end effectors; their shape and dexterity are crucial for the positive outcome of the surgical operations. New robots are developed every year, and existing robots are allowed to perform a wider range of procedures. Robotic technologies improve the abilities of surgeons in the domains of urology, gynecology, neurology, spine surgery, orthopedic reconstruction (knee, shoulder), hair restoration, oral surgery, thoracic surgery, laparoscopic surgery, and endoscopy.
Collapse
Affiliation(s)
- Francesco Cepolina
- DIMEC-PMAR Lab, Instrumental Robot Design Research Group, Department of Machines Mechanics and Design, University of Genova, Via All'Opera Pia 15A, 16145, Genoa, Italy.
| | - Roberto Razzoli
- DIMEC-PMAR Lab, Instrumental Robot Design Research Group, Department of Machines Mechanics and Design, University of Genova, Via All'Opera Pia 15A, 16145, Genoa, Italy
| |
Collapse
|
5
|
Lau BKF, Dillon O, Vinod SK, O’Brien RT, Reynolds T. Faster and lower dose imaging: evaluating adaptive, constant gantry velocity and angular separation in fast low-dose 4D cone beam CT imaging. Med Phys 2024; 51:1364-1382. [PMID: 37427751 PMCID: PMC11528889 DOI: 10.1002/mp.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND The adoption of four-dimensional cone beam computed tomography (4DCBCT) for image-guided lung cancer radiotherapy is increasing, especially for hypofractionated treatments. However, the drawbacks of 4DCBCT include long scan times (∼240 s), inconsistent image quality, higher imaging dose than necessary, and streaking artifacts. With the emergence of linear accelerators that can acquire 4DCBCT scans in a short period of time (9.2 s) there is a need to examine the impact that these very fast gantry rotations have on 4DCBCT image quality. PURPOSE This study investigates the impact of gantry velocity and angular separation between x-ray projections on image quality and its implication for fast low-dose 4DCBCT with emerging systems, such as the Varian Halcyon that provide fast gantry rotation and imaging. Large and uneven angular separation between x-ray projections is known to reduce 4DCBCT image quality through increased streaking artifacts. However, it is not known when angular separation starts degrading image quality. The study assesses the impact of constant and adaptive gantry velocity and determines the level when angular gaps impair image quality using state-of-the-art reconstruction methods. METHODS This study considers fast low-dose 4DCBCT acquisitions (60-80 s, 200-projection scans). To assess the impact of adaptive gantry rotations, the angular position of x-ray projections from adaptive 4DCBCT acquisitions from a 30-patient clinical trial were analyzed (referred to as patient angular gaps). To assess the impact of angular gaps, variable and static angular gaps (20°, 30°, 40°) were introduced into evenly separated 200 projections (ideal angular separation). To simulate fast gantry rotations, which are on emerging linacs, constant gantry velocity acquisitions (9.2 s, 60 s, 120 s, 240 s) were simulated by sampling x-ray projections at constant intervals using the patient breathing traces from the ADAPT clinical trial (ACTRN12618001440213). The 4D Extended Cardiac-Torso (XCAT) digital phantom was used to simulate projections to remove patient-specific image quality variables. Image reconstruction was performed using Feldkamp-Davis-Kress (FDK), McKinnon-Bates (MKB), and Motion-Compensated-MKB (MCMKB) algorithms. Image quality was assessed using Structural Similarity-Index-Measure (SSIM), Contrast-to-Noise-Ratio (CNR), Signal-to-Noise-Ratio (SNR), Tissue-Interface-Width-Diaphragm (TIW-D), and Tissue-Interface-Width-Tumor (TIW-T). RESULTS Patient angular gaps and variable angular gap reconstructions produced similar results to ideal angular separation reconstructions, while static angular gap reconstructions produced lower image quality metrics. For MCMKB-reconstructions, average patient angular gaps produced SSIM-0.98, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm, static angular gap 40° produced SSIM-0.92, CNR-6.8, SNR-6.7, TIW-D-5.7 mm, and TIW-T-5.9 mm and ideal produced SSIM-1.00, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm. All constant gantry velocity reconstructions produced lower image quality metrics than ideal angular separation reconstructions regardless of the acquisition time. Motion compensated reconstruction (MCMKB) produced the highest contrast images with low streaking artifacts. CONCLUSION Very fast 4DCBCT scans can be acquired provided that the entire scan range is adaptively sampled, and motion-compensated reconstruction is performed. Importantly, the angular separation between x-ray projections within each individual respiratory bin had minimal effect on the image quality of fast low-dose 4DCBCT imaging. The results will assist the development of future 4DCBCT acquisition protocols that can now be achieved in very short time frames with emerging linear accelerators.
Collapse
Affiliation(s)
- Benjamin K. F. Lau
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Owen Dillon
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Shalini K. Vinod
- Liverpool & Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, The University of New South Wales & Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Ricky T. O’Brien
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Sydney, NSW, Australia
- Medical Radiations, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Tess Reynolds
- Faculty of Medicine and Health, Image X Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Wang Y, Shen J, Gu P, Wang Z. Recent advances progress in radiotherapy for breast cancer after breast-conserving surgery: a review. Front Oncol 2023; 13:1195266. [PMID: 37671064 PMCID: PMC10475720 DOI: 10.3389/fonc.2023.1195266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Adjuvant radiotherapy after breast-conserving surgery has become an integral part of the treatment of breast cancer. In recent years, the development of radiotherapy technology has made great progress in this field, including the comparison of the curative effects of various radiotherapy techniques and the performance of the segmentation times. The choice of radiotherapy technology needs to be co-determined by clinical evidence practice and evaluated for each individual patient to achieve precision radiotherapy. This article discusses the treatment effects of different radiotherapy, techniques, the risk of second cancers and short-range radiation therapy techniques after breast-conserving surgery such as hypo fractionated whole breast irradiation and accelerated partial breast irradiation. The choice of radiotherapy regimen needs to be based on the individual condition of the patient, and the general principle is to focus on the target area and reduce the irradiation of the normal tissues and organs. Short-range radiotherapy and hypofractionated are superior to conventional radiotherapy and are expected to become the mainstream treatment after breast-conserving surgery.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Shen
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Peihua Gu
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Yagihashi T, Inoue T, Shiba S, Yamano A, Minagawa Y, Omura M, Inoue K, Nagata H. Impact of delivery time factor on treatment time and plan quality in tomotherapy. Sci Rep 2023; 13:12207. [PMID: 37500671 PMCID: PMC10374581 DOI: 10.1038/s41598-023-39047-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Delivery time factor (DTF) is a new parameter introduced by the RayStation treatment planning system for tomotherapy treatment planning. This study investigated the effects of this factor on various tomotherapy plans. Twenty-five patients with cancer (head and neck, 6; lung, 9; prostate, 10) were enrolled in this study. Helical tomotherapy plans with a field width of 2.5 cm, pitch of 0.287, and DTF of 2.0 were created. All the initial plans were recalculated by changing the DTF parameter from 1.0 to 3.0 in increments of 0.1. Then, DTF's impact on delivery efficiency and plan quality was evaluated. Treatment time and modulation factor increased monotonically with increasing DTF. Increasing the DTF by 0.1 increased the treatment time and modulation factor by almost 10%. This relationship was similar for all treatment sites. Conformity index (CI), homogeneity index, and organ at risk doses were improved compared to plans with a DTF of 1.0, except for the CI in the lung cancer case. However, the improvement in most indices ceased at a certain DTF; nevertheless, treatment time continued to increase following an increase in DTF. DTF is a critical parameter for improving the quality of tomotherapy plans.
Collapse
Affiliation(s)
- Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Yumiko Minagawa
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Kazumasa Inoue
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| |
Collapse
|
8
|
Huang Y, Gong C, Luo M, Yuan X, Ding S, Wang X, Zhang Y. Comparative dosimetric and radiobiological assessment of left-sided whole breast and regional nodes with advanced radiotherapy techniques. JOURNAL OF RADIATION RESEARCH 2023:rrad045. [PMID: 37315943 DOI: 10.1093/jrr/rrad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Indexed: 06/16/2023]
Abstract
The aim of this study was to analyze the dosimetric and radiobiologic differences of the left-sided whole breast and regional nodes in intensity-modulated radiotherapy (IMRT), volume-modulated arc therapy (VMAT), and helical tomotherapy (HT). The IMRT, VMAT, and HT plans in this study were generated for thirty-five left-sided breast cancer patients after breast-conserving surgery (BCS). The planning target volume (PTV) included the whole breast and supraclavicular nodes. PTV coverage, homogeneity index (HI), conformity index (CI), dose to organs at risk (OARs), secondary cancer complication probability (SCCP), and excess absolute risk (EAR) were used to evaluate the plans. Compared to IMRT, the VMAT and HT plans resulted in higher PTV coverage and homogeneity. The VMAT and HT plans also delivered a lower mean dose to the ipsilateral lung (9.19 ± 1.36 Gy, 9.48 ± 1.17 Gy vs. 11.31 ± 1.42 Gy) and heart (3.99 ± 0.86 Gy, 4.48 ± 0.62 Gy vs. 5.53 ± 1.02 Gy) and reduced the V5Gy, V10Gy, V20Gy, V30Gy, and V40Gy of the ipsilateral lung and heart. The SCCP and EAR for the ipsilateral lung were reduced by 3.67%, 3.09% in VMAT, and 22.18%, 19.21% in HT, respectively. While were increased for the contralateral lung and breast. This study showed that VMAT plans provide a more homogeneous dose distribution to the PTV, minimizing exposure to ipsilateral structures and significantly reducing SCCP and EAR, and slightly increasing dose to contralateral structures. Overall, the VMAT plan can be considered a beneficial technique for BCS patients whose PTV includes the whole breast and regional nodes.
Collapse
Affiliation(s)
- Yuling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Changfei Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Mingming Luo
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Xingxing Yuan
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Shenggou Ding
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Xiaoping Wang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| | - Yun Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang, Jiangxi 330029, PR China
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang, Nanchang, Jiangxi 330029, PR China
| |
Collapse
|
9
|
Gallio E, Sardo A, Badellino S, Mantovani C, Levis M, Fiandra C, Guarneri A, Arcadipane F, Richetto V, Ricardi U, Giglioli FR. Helical tomotherapy and two types of volumetric modulated arc therapy: dosimetric and clinical comparison for several cancer sites. Radiol Phys Technol 2023; 16:272-283. [PMID: 37084071 DOI: 10.1007/s12194-023-00716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Radiotherapy accelerators have undergone continuous technological developments. We investigated the differences between Radixact™ and VMAT treatment plans. Sixty patients were included in this study. Dosimetric comparison between the Radixact™ and VMAT plans was performed for six cancer sites: whole-brain, head and neck, lymphoma, lung, prostate, and rectum. The VMAT plans were generated with two Elekta linear accelerators (Synergy® and Versa HD™). The planning target volume (PTV) coverage, organs-at-risk dose constraints, and four dosimetric indexes were considered. The deliverability of the plans was assessed using quality assurance (gamma index evaluation) measurements; clinical judgment was included in the assessment. The mean AAPM TG218 (3%-2 mm, global normalization) gamma index values were 99.4%, 97.8%, and 96.6% for Radixact™, Versa HD™, and Synergy®, respectively. Radixact™ performed better than Versa HD™ in terms of dosimetric indexes, hippocampi D100%, spinal cord Dmax, rectum V38.4 Gy, bladder V30 Gy, and V40 Gy. Versa HD™ saved more of the (lungs-PTV) V5 Gy and (lungs-PTV) Dmean, heart Dmean, breasts V4 Gy, and bowel V45 Gy. Regarding Synergy®, the head and neck Radixact™ plan saved more of the parotid gland, oral cavity, and supraglottic larynx. From a clinical point of view, for the head and neck, prostate, and rectal sites, the Radixact™ and Versa HD™ plans were similar; Radixact™ plans were preferable for the head and neck and rectum to Synergy® plans. The quality of linac plans has improved, and differences with tomotherapy have decreased. However, tomotherapy continues to be an essential add-on in multi-machine departments.
Collapse
Affiliation(s)
- Elena Gallio
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza, Corso Bramante 88/90, 10126, Turin, TO, Italy.
| | - Anna Sardo
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza, Corso Bramante 88/90, 10126, Turin, TO, Italy
| | - Serena Badellino
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Cristina Mantovani
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Mario Levis
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Christian Fiandra
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Alessia Guarneri
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Francesca Arcadipane
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza, Corso Bramante 88/90, 10126, Turin, TO, Italy
| | - Umberto Ricardi
- Department of Oncology, University of Turin, Via Santena 5 Bis, 10126, Turin, TO, Italy
| | - Francesca Romana Giglioli
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza, Corso Bramante 88/90, 10126, Turin, TO, Italy
| |
Collapse
|
10
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Cavinato S, Bettinelli A, Dusi F, Fusella M, Germani A, Marturano F, Paiusco M, Pivato N, Rossato MA, Scaggion A. Prediction models as decision-support tools for virtual patient-specific quality assurance of helical tomotherapy plans. Phys Imaging Radiat Oncol 2023; 26:100435. [PMID: 37089905 PMCID: PMC10113896 DOI: 10.1016/j.phro.2023.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Background and purpose Prediction models may be reliable decision-support tools to reduce the workload associated with the measurement-based patient-specific quality assurance (PSQA) of radiotherapy plans. This study compared the effectiveness of three different models based on delivery parameters, complexity metrics and sinogram radiomics features as tools for virtual-PSQA (vPSQA) of helical tomotherapy (HT) plans. Materials and methods A dataset including 881 RT plans created with two different treatment planning systems (TPSs) was collected. Sixty-five indicators including 12 delivery parameters (DP) and 53 complexity metrics (CM) were extracted using a dedicated software library. Additionally, 174 radiomics features (RF) were extracted from the plans' sinograms. Three groups of variables were formed: A (DP), B (DP + CM) and C (DP + CM + RF). Regression models were trained to predict the gamma index passing rate P R γ (3%G, 2mm) and the impact of each group of variables was investigated. ROC-AUC analysis measured the ability of the models to accurately discriminate between 'deliverable' and 'non-deliverable' plans. Results The best performance was achieved by model C which allowed detecting around 16% and 63% of the 'deliverable' plans with 100% sensitivity for the two TPSs, respectively. In a real clinical scenario, this would have decreased the whole PSQA workload by approximately 35%. Conclusions The combination of delivery parameters, complexity metrics and sinogram radiomics features allows for robust and reliable PSQA gamma passing rate predictions and high-sensitivity detection of a fraction of deliverable plans for one of the two TPSs. Promising yet improvable results were obtained for the other one. The results foster a future adoption of vPSQA programs for HT.
Collapse
|
12
|
Total Skin Treatment with Helical Arc Radiotherapy. Int J Mol Sci 2023; 24:ijms24054492. [PMID: 36901922 PMCID: PMC10002962 DOI: 10.3390/ijms24054492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
For widespread cutaneous lymphoma, such as mycosis fungoides or leukemia cutis, in patients with acute myeloid leukemia (AML) and for chronic myeloproliferative diseases, total skin irradiation is an efficient treatment modality for disease control. Total skin irradiation aims to homogeneously irradiate the skin of the entire body. However, the natural geometric shape and skin folding of the human body pose challenges to treatment. This article introduces treatment techniques and the evolution of total skin irradiation. Articles on total skin irradiation by helical tomotherapy and the advantages of total skin irradiation by helical tomotherapy are reviewed. Differences among each treatment technique and treatment advantages are compared. Adverse treatment effects and clinical care during irradiation and possible dose regimens are mentioned for future prospects of total skin irradiation.
Collapse
|
13
|
Tegtmeier RC, Ferris WS, Chen R, Miller JR, Bayouth JE, Culberson WS. Evaluating on-board kVCT- and MVCT-based dose calculation accuracy using a thorax phantom for helical tomotherapy treatments. Biomed Phys Eng Express 2023; 9. [PMID: 36745904 DOI: 10.1088/2057-1976/acb93f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Purpose.To evaluate the impact of CT number calibration and imaging parameter selection on dose calculation accuracy relative to the CT planning process in thoracic treatments for on-board helical CT imaging systems used in helical tomotherapy.Methods and Materials.Direct CT number calibrations were performed with appropriate protocols for each imaging system using an electron density phantom. Large volume and SBRT treatment plans were simulated and optimized for planning CT scans of an anthropomorphic thorax phantom and transferred to registered kVCT and MVCT scans of the phantom as appropriate. Relevant DVH metrics and dose-difference maps were used to evaluate and compare dose calculation accuracy relative to the planning CT based on a variation in imaging parameters applied for the on-board systems.Results.For helical kVCT scans of the thorax phantom, median differences in DVH parameters for the large volume treatment plan were less than ±1% with dose to the target volume either over- or underestimated depending on the imaging parameters utilized for CT number calibration and thorax phantom acquisition. For the lung SBRT plan calculated on helical kVCT scans, median dose differences were up to -2.7% with a more noticeable dependence on parameter selection. For MVCT scans, median dose differences for the large volume plan were within +2% with dose to the target overestimated regardless of the imaging protocol.Conclusion.Accurate dose calculations (median errors of <±1%) using a thorax phantom simulating realistic patient geometry and scatter conditions can be achieved with images acquired with a helical kVCT system on a helical tomotherapy unit. This accuracy is considerably improved relative to that achieved with the MV-based approach. In a clinical setting, careful consideration should be made when selecting appropriate kVCT imaging parameters for this process as dose calculation accuracy was observed to vary with both parameter selection and treatment type.
Collapse
Affiliation(s)
- Riley C Tegtmeier
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53705, United States of America
| | - William S Ferris
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53705, United States of America
| | - Ruiming Chen
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53705, United States of America
| | - Jessica R Miller
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53792, United States of America
| | - John E Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53792, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53705, United States of America
| |
Collapse
|
14
|
Improvement of helical tomotherapy treatment plan efficiency with block techniques for left-sided post-mastectomy radiation therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396922000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Purpose:
To limit the entrance dose to normal tissue and achieve the appropriate treatment time (TT) by using three different virtual structures with directional blocks for left-sided post-mastectomy radiation therapy (PMRT) with regional nodal irradiation (RNI).
Methods and materials:
Ten breast cancer patients who received PMRT by helical tomotherapy were enrolled. Three virtual structures were created for each patient: Organ-based, L-shaped (LB) and C-shaped (CB). The dose to the target and organ at risk (OARs), TT, the volume which received dose 5 Gy (V5Gy), integral dose (ID) and block structure contouring workload (BSCW) of the three virtual block techniques were evaluated. The performance scores were used to explore the suitable technique.
Results:
The CB plans showed a significantly better V5Gy, ID and contralateral breast-sparing. However, the CB plans revealed the longest TT and BSCW (p < 0·001). Contrary to the LB, the LB plans showed a significantly reduced TT and BSCW and provided the balance of plan efficiency with the highest score.
Conclusion:
The LB technique is considered to be the suitable technique for left-sided PMRT with RNI and provided the advantage of TT, V5Gy, ID and BSCW while maintaining acceptable criteria for the target and OARs.
Collapse
|
15
|
Kong CW, Chiu TL, Cheung CW, Lee TY, Yeung FK, Yu SK. The impact of the ClearRT ™ upgrade on target motion tracking accuracy in Radixact ® Synchrony ® lung treatments. Rep Pract Oncol Radiother 2022; 27:1106-1113. [PMID: 36632302 PMCID: PMC9826654 DOI: 10.5603/rpor.a2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The objective was to investigate the change in segmentation error of Radixact® Synchrony® lung treatment after its kV imaging system was upgraded from Generation 1 to Generation 2 in the ClearRT™ installation. Materials and methods Radixact® Lung Synchrony® plans were created for the Model 18023 Xsight® Lung Tracking "XLT" Phantom combined with different lung target inserts with densities of 0.280, 0.500, 0.943 and 1.093 g/cc. After Radixact® Synchrony® treatment delivery using the Generation 1 and Generation 2 kV systems according to each plan, the tracking performance of the two kV systems on each density insert was compared by calculating the root mean square (RMS) error (δRMS) between the Synchrony-predicted motion in the log file and the known phantom motion and by calculating δ95%, the maximum error within a 95% probability threshold. Results The δRMS and δ95% of Radixact® Synchrony® treatment for Gen1 kV systems deteriorated as the density of the target insert decreased, from 1.673 ± 0.064 mm and 3.049 ± 0.089 mm, respectively, for the 1.093 g/cc insert to 8.355 ± 5.873 mm and 15.297 ± 10.470 mm, respectively, for the 0.280 g/cc insert. In contrast, no such trend was observed in the δRMS or δ95% of Synchrony® treatment using the Gen2 kV system. The δRMS and δ95%, respectively, fluctuated slightly from 1.586 to 1.687 mm and from 2.874 to 2.971 mm when different target inserts were tracked by the Gen2 kV system. Conclusion With improved image contrast in kV radiographs, the Gen2 kV imaging system can enhance the ability to track targets accurately in Radixact® Lung Synchrony® treatment and reduce the segmentation error. Our study showed that lung targets with density values as low as 0.280 cc/g could be tracked correctly in Synchrony treatment with the Gen2 kV imaging system.
Collapse
|
16
|
Turcas A, Kelly SM, Clementel E, Cernea D. Tomotherapy for Cranio-Spinal Irradiation. Clin Transl Radiat Oncol 2022; 38:96-103. [PMID: 36407491 PMCID: PMC9672131 DOI: 10.1016/j.ctro.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tomotherapy is safe and effective for cranio-spinal irradiation, both in paediatric patients and in adults, with similar disease-specific outcomes and toxicities as other techniques such as 3DCRT or IMRT/VMAT. Tomotherapy offers several technical advantages when compared to other radiotherapy techniques such as higher target conformity and better dose homogeneity. Helical Tomotherapy provides good organ-at-risk sparing for several structures, especially the vertebrae, parotids, and optic system. Reported treatment time/ beam-on-time is longer with helical Tomotherapy compared to other techniques.
Tomotherapy is a method of delivering rotational IMRT offering various advantages, notably for complex and large targets such as the cranio-spinal axis. This systematic literature review reports on main clinical outcomes and toxicities in patients with various cancer types that received whole craniospinal axis irradiation (CSI) using Tomotherapy and offers a comprehensive comparison between Tomotherapy and other radiotherapy delivery techniques. Databases including PubMed, PubMed Central, Embase, and Cochrane were searched using the keywords “tomotherapy” AND “craniospinal”. Fifty-six papers were included in the review. Patient population was adult in 9 papers, paediatric in 26 papers and mixed in 14 papers. Patients treated with helical Tomotherapy had similar disease-specific clinical outcomes and toxicities as patients treated using other techniques. Compared to any other technique, Tomotherapy provides better target coverage, homogeneity, and conformity in 23, 34 and 22 reports. Tomotherapy showed better organ-at-risk sparing for the thyroid, parotids, cochlea, eyes, heart and esophagus. Beam-On-Time (BOT) was reported to be longer for Tomotherapy in most studies (Median BOT: HT = 11 min, VMAT = 5.49 min, 3DCRT = 1.46 min). In conclusion, Tomotherapy offers good cranio-spinal axis coverage with improved homogeneity and conformity compared to other techniques, but with a considerably longer treatment time. Clinical outcome and toxicities suggest using Tomotherapy for CSI is efficient and safe.
Collapse
|
17
|
Kurosaki H, Hirayama K, Takahashi M, Uematsu M, Tate E. Tomotherapy: Comparison of Hi-ART, Tomo-HD, and Radixact. Cureus 2022; 14:e30949. [PMID: 36465793 PMCID: PMC9712831 DOI: 10.7759/cureus.30949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 06/17/2023] Open
Abstract
Aim In this study, we compared three generations of tomotherapy (Hi-ART, Tomo-HD, and Radixact). This is to study the difference among tomotherapy systems in terms of dose distribution to planning target volume and organs at risk, and irradiation time. Materials and methods The treatment planning CT and contour information used were seven cases of rectum cancer pre-operative irradiation. The contour information used was the planning target volume, and the organs at risk were set as the bladder and body. Optimization was conducted at each planning station using the parameters that were actually used in a clinical setting. The prescribed radiation dose was 25 Gy in five fractions and normalized at the isodose line, covering 95% of the planning target volume. Results There were no significant differences in planning target volume among the three models. Meanwhile, Hi-ART had a significantly higher dose than Tomo-HD and Radixact at body D50%. Radixact shortened the irradiation time by approximately 15% compared to Hi-ART/Tomo-HD. Conclusion Planning target volume dose distribution of tomotherapy devices was not different. Radixact required a significantly shorter time than Hi-ART and Tomo-HD.
Collapse
Affiliation(s)
- Hiromasa Kurosaki
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Kenta Hirayama
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Masaki Takahashi
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Masahiro Uematsu
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| | - Etsuko Tate
- Department of Radiology and Radiation Oncology, Edogawa Hospital, Tokyo, JPN
| |
Collapse
|
18
|
Malicki J, Piotrowski T, Guedea F, Krengli M. Treatment-integrated imaging, radiomics, and personalised radiotherapy: the future is at hand. Rep Pract Oncol Radiother 2022; 27:734-743. [PMID: 36196410 PMCID: PMC9521689 DOI: 10.5603/rpor.a2022.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Since the introduction of computed tomography for planning purposes in the 1970s, we have been observing a continuous development of different imaging methods in radiotherapy. The current achievements of imaging technologies in radiotherapy enable more than just improvement of accuracy on the planning stage. Through integrating imaging with treatment machines, they allow advanced control methods of dose delivery during the treatment. This article reviews how the integration of existing and novel forms of imaging changes radiotherapy and how these advances can allow a more individualised approach to cancer therapy. We believe that the significant challenge for the next decade is the continued integration of a range of different imaging devices into linear accelerators. These imaging modalities should show intra-fraction changes in body morphology and inter-fraction metabolic changes. As the use of these more advanced, integrated machines grows, radiotherapy delivery will become more accurate, thus resulting in better clinical outcomes: higher cure rates with fewer side effects.
Collapse
Affiliation(s)
- Julian Malicki
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Ferran Guedea
- Department of Radiation Oncology, Catalan Institute of Oncology, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Marco Krengli
- Radiation Oncology Unit, University Hospital “Maggiore della Carità”, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
19
|
Tegtmeier RC, Ferris WS, Bayouth JE, Culberson WS. Performance evaluation of image reconstruction algorithms for a megavoltage computed tomography system on a helical tomotherapy unit. Biomed Phys Eng Express 2022; 8. [PMID: 35654009 DOI: 10.1088/2057-1976/ac7584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Objective. To evaluate the impact of image reconstruction algorithm selection, as well as imaging mode and the reconstruction interval, on image quality metrics for megavoltage computed tomography (MVCT) image acquisition for use in image-guided (IGRT) and adaptive radiotherapy (ART) on a next-generation helical tomotherapy system.Approach. A CT image quality phantom was scanned across all available acquisition modes for filtered back projection (FBP) and both iterative reconstruction (IR) algorithms available on the system. Image quality metrics including noise, uniformity, contrast, spatial resolution, and mean CT number were compared. Analysis of DICOM data was performed using ImageJ software and Python code. ANOVA single factor and Tukey's honestly significant difference post-hoc tests were utilized for statistical analysis.Main Results. Application of both IR algorithms noticeably improved noise and image contrast when compared to the FBP algorithm available on all previous-generation helical tomotherapy systems. Use of the FBP algorithm improved image uniformity and spatial resolution in the axial plane, though values for the IR algorithms were well within tolerances recommended for IGRT and/or MVCT-based ART implementation by the American Association of Physicists in Medicine (AAPM). Additionally, longitudinal resolution showed little dependence on the reconstruction algorithm, while a negligible variation in mean CT number was observed regardless of the reconstruction algorithm or acquisition parameters. Statistical analysis confirmed the significance of these results.Significance. An overall improvement in image quality for metrics most important to IGRT and ART-mainly image noise and contrast-was evident in the application of IR when compared to FBP. Furthermore, since other imaging parameters remain identical regardless of the reconstruction algorithm, this improved image quality does not come at the expense of additional patient dose or an increased scan acquisition time for otherwise identical parameters. These improvements are expected to enhance fidelity in IGRT and ART implementation.
Collapse
Affiliation(s)
- Riley C Tegtmeier
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - William S Ferris
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - John E Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| |
Collapse
|
20
|
Tegtmeier RC, Ferris WS, Bayouth JE, Miller JR, Culberson WS. Characterization of imaging performance of a novel helical kVCT for use in image‐guided and adaptive radiotherapy. J Appl Clin Med Phys 2022; 23:e13648. [PMID: 35570390 PMCID: PMC9194993 DOI: 10.1002/acm2.13648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
ClearRT helical kVCT imaging for the Radixact helical tomotherapy system recently received FDA approval and is available for clinical use. The system is intended to enhance image fidelity in radiation therapy treatment planning and delivery compared to the prior MV‐based onboard imaging approach. The purpose of this work was to characterize the imaging performance of this system and compare this performance with that of clinical systems used in image‐guided and/or adaptive radiotherapy (ART) or computed tomography (CT) simulation, including Radixact MVCT, TomoTherapy MVCT, Varian TrueBeam kV OBI CBCT, and the Siemens SOMATOM Definition Edge kVCT. A CT image quality phantom was scanned across clinically relevant acquisition modes for each system to evaluate image quality metrics, including noise, uniformity, contrast, spatial resolution, and CT number linearity. Similar noise levels were observed for ClearRT and Siemens Edge, whereas noise for the other systems was ∼1.5–5 times higher. Uniformity was best for Siemens Edge, whereas most scans for ClearRT exhibited a slight “cupping” or “capping” artifact. The ClearRT and Siemens Edge performed best for contrast metrics, which included low‐contrast visibility and contrast‐to‐noise ratio evaluations. Spatial resolution was best for TrueBeam and Siemens Edge, whereas the three kVCT systems exhibited similar CT number linearity. Overall, these results provide an initial indication that ClearRT image quality is adequate for image guidance in radiotherapy and sufficient for delineating anatomic structures, thus enabling its use for ART. ClearRT also showed significant improvement over MVCT, which was previously the only onboard imaging modality available on Radixact. Although the acquisition of these scans does come at the cost of additional patient dose, reported CTDI values indicate a similar or generally reduced machine output for ClearRT compared to the other systems while maintaining comparable or improved image quality overall.
Collapse
Affiliation(s)
- Riley C. Tegtmeier
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - William S. Ferris
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - John E. Bayouth
- Department of Human Oncology School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jessica R. Miller
- Department of Human Oncology School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
21
|
Lau BKF, Reynolds T, Keall PJ, Sonke JJ, Vinod SK, Dillon O, O’Brien RT. Reducing 4DCBCT imaging dose and time: exploring the limits of adaptive acquisition and motion compensated reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac55a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
This study investigates the dose and time limits of adaptive 4DCBCT acquisitions (adaptive-acquisition) compared with current conventional 4DCBCT acquisition (conventional-acquisition). We investigate adaptive-acquisitions as low as 60 projections (∼25 s scan, 6 projections per respiratory phase) in conjunction with emerging image reconstruction methods. 4DCBCT images from 20 patients recruited into the adaptive CT acquisition for personalized thoracic imaging clinical study (NCT04070586) were resampled to simulate faster and lower imaging dose acquisitions. All acquisitions were reconstructed using Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), motion compensated FDK (MCFDK), motion compensated MKB (MCMKB) and simultaneous motion estimation and image reconstruction (SMEIR) algorithms. All reconstructions were compared against conventional-acquisition 4DFDK-reconstruction using Structural SIMilarity Index (SSIM), signal-to-noise ratio (SNR), contrast-to-noise-ratio (CNR), tissue interface sharpness diaphragm (TIS-D), tissue interface sharpness tumor (TIS-T) and center of mass trajectory (COMT) for difference in diaphragm and tumor motion. All reconstruction methods using 110-projection adaptive-acquisition (11 projections per respiratory phase) had a SSIM of greater than 0.92 relative to conventional-acquisition 4DFDK-reconstruction. Relative to conventional-acquisition 4DFDK-reconstruction, 110-projection adaptive-acquisition MCFDK-reconstructions images had 60% higher SNR, 10% higher CNR, 30% higher TIS-T and 45% higher TIS-D on average. The 110-projection adaptive-acquisition SMEIR-reconstruction images had 123% higher SNR, 90% higher CNR, 96% higher TIS-T and 60% higher TIS-D on average. The difference in diaphragm and tumor motion compared to conventional-acquisition 4DFDK-reconstruction was within submillimeter accuracy for all acquisition reconstruction methods. Adaptive-acquisitions resulted in faster scans with lower imaging dose and equivalent or improved image quality compared to conventional-acquisition. Adaptive-acquisition with motion compensated-reconstruction enabled scans with as low as 110 projections to deliver acceptable image quality. This translates into 92% lower imaging dose and 80% less scan time than conventional-acquisition.
Collapse
|
22
|
Karaca S, Koca T, Sarpün İH, Tunçel N, Korcum Şahin AF. Hybrid Tomo-Helical and Tomo-Direct radiotherapy for localized prostate cancer. J Appl Clin Med Phys 2021; 22:136-143. [PMID: 34498363 PMCID: PMC8504587 DOI: 10.1002/acm2.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The aim of the study is to present a new planning approach to provide better planning target volume (PTV) coverage and reduce bladder and rectum dose with hybrid Tomo-Helical (TH)/Tomo-Direct (TD) radiotherapy (RT) for localized prostate cancer (LPC). METHODS Twenty-five LPC patients were included in this retrospective study. TH plans, TD plans, and hybrid TH/TD plans were created. Lateral beams were used for the hybrid TD plan and the prescribed dose was 70 Gy in 28 fractions (hybrid plans were combined 45 Gy/ 18 fxs for TH and 25 Gy/10 fxs for TD). Doses of PTV (D2%, D98%, D50%, homogeneity index (HI), conformity index (CI), coverage) and organs at risk (OARs) (V50%, V35%, V25%, V5%, and V95%) were analyzed. The Wilcoxon signed-rank test was used to analyze the difference in dosimetric parameters. p-Value < 0.05 was considered statistically significant. RESULTS TH plans showed better CI, and target coverage (p < 0.01) than TD and hybrid plans in all patient plan evaluations. However, TD plans D2%, D98%, and D50% doses were better than TH and hybrid plans. The HI values were similar between the three plans. Significant reductions in bladder and rectum V50%, V35%, and V25% doses (p < 0.001) were observed with hybrid plans compared to TH and TD. Penile bulb V95% and bowel V5% doses were better in the hybrid plans. Left and right femoral head V5% doses were higher in the hybrid plan compared to others (p < 0.001). CONCLUSION Concurrently hybrid TH/TD RT plan can be a good option to reduce the doses of the rectum and bladder in the RT of LPC.
Collapse
Affiliation(s)
- Sibel Karaca
- Department of Radiation OncologyFaculty of MedicineAkdeniz UniversityAntalyaTurkey
| | - Timur Koca
- Department of Radiation OncologyFaculty of MedicineAkdeniz UniversityAntalyaTurkey
| | - İsmail Hakkı Sarpün
- Department of Radiation OncologyFaculty of MedicineAkdeniz UniversityAntalyaTurkey
| | - Nina Tunçel
- Department of Radiation OncologyFaculty of MedicineAkdeniz UniversityAntalyaTurkey
| | | |
Collapse
|
23
|
Isobe A, Usui K, Hara N, Sasai K. The effects of rotational setup errors in total body irradiation using helical tomotherapy. J Appl Clin Med Phys 2021; 22:93-102. [PMID: 34028944 PMCID: PMC8292714 DOI: 10.1002/acm2.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose Helical tomotherapy (HT) is a form of intensity‐modulated radiation therapy that is employed in total body irradiation (TBI). Because TBI targets the whole body, accurate setup positioning at the edge of the treatment volume is made difficult by the whole‐body rotational posture. The purpose of this study is to clarify the tolerance for rotational setup error (SE) in the vertical direction. In addition, we perform a retrospective analysis of actually irradiated dose distributions using previous patients’ irradiation data. Methods To clarify the effects of rotational SE on the dose distribution, the planned CT images of 10 patients were rotated by 1–5° in the vertical (pitch) direction to create a pseudo‐rotational SE image. Then, the effect of the magnitude of the rotational SE on the dose distribution was simulated. In addition, the irradiated dose to the patients was analyzed by obtaining recalculated dose distributions using megavoltage CT images acquired before treatment. Results The simulation results showed that the average value of the lung volume receiving at least 10 Gy did not exceed the allowable value when the SE value was ≤2°. When the rotational SE was ≤3°, it was possible to maintain the clinical target volume dose heterogeneity within ±10% of the prescribed dose, which is acceptable according to the guidelines. A retrospective analysis of previous patients’ irradiation data showed their daily irradiation dose distribution. The dose to the clinical target volume was reduced by up to 3.4% as a result of the residual rotational SE. Although whole‐course retrospective analyses showed a statistically significant increase in high‐dose areas, the increase was only approximately 1.0%. Conclusions Dose errors induced by rotational SEs of ≤2° were acceptable in this study.
Collapse
Affiliation(s)
- Akira Isobe
- Department of Radiation Oncology Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keisuke Usui
- Department of Radiation Oncology Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiological Technology Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Naoya Hara
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
24
|
Mizuno T, Tomita N, Takaoka T, Tomida M, Fukuma H, Tsuchiya T, Shibamoto Y. Dosimetric Comparison of Helical Tomotherapy, Volumetric-Modulated Arc Therapy, and Intensity-Modulated Proton Therapy for Angiosarcoma of the Scalp. Technol Cancer Res Treat 2021; 20:1533033820985866. [PMID: 33517860 PMCID: PMC7871283 DOI: 10.1177/1533033820985866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: We compared radiotherapy plans among helical tomotherapy (HT),
volumetric-modulated arc therapy (VMAT), and intensity-modulated proton
therapy (IMPT) for angiosarcoma of the scalp (AS). Methods: We conducted a planning study for 19 patients with AS. The clinical target
volume (CTV) 1 and CTV2 were defined as the gross tumor volume with a
specific margin and total scalp, respectively. For HT and VMAT, the planning
target volume (PTV) 1 and PTV2 were defined as CTV1 and CTV2 with 0.5-cm
margins, respectively. For IMPT, robust optimization was used instead of a
CTV-PTV margin (i.e. CTV robust). The targets of the HT and VMAT plans were
the PTV, whereas the IMPT plans targeted the CTV robust. In total, 70 Gy and
56 Gy were prescribed as the D95% (i.e. dose to 95% volume) of PTV1 (or CTV1
robust) and PTV2 (or CTV2 robust), respectively, using the simultaneous
integrated boost (SIB) technique. Other constraint goals were also defined
for the target and organs at risk (OAR). Results: All dose constraint parameters for the target and OAR met the goals within
the acceptable ranges for the 3 techniques. The coverage of the targets
replaced by D95% and D98% were almost equivalent among the 3 techniques. The
homogeneity index of PTV1 or CTV1 robust was equivalent among the 3
techniques, whereas that of PTV2 or CTV2 robust was significantly higher in
the IMPT plans than in the other plans. IMPT reduced the Dmean of the brain
and hippocampus by 49% to 95%, and the Dmax of the spinal cord, brainstem,
and optic pathway by 70% to 92% compared with the other techniques. Conclusion: The 3 techniques with SIB methods provided sufficient coverage and
satisfactory homogeneity for the targets, but IMPT achieved the best OAR
sparing.
Collapse
Affiliation(s)
- Tomoki Mizuno
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Taiki Takaoka
- Narita Memorial Proton Center, Toyohashi, Aichi, Japan
| | | | - Hiroshi Fukuma
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takahiro Tsuchiya
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
25
|
Tomita N, Ogawa S, Aikawa G. Abscopal Effect of Pelvic Intensity Modulated Radiation Therapy on Lung Metastases in a Patient With Recurrent Endometrial Cancer. Adv Radiat Oncol 2021; 6:100563. [PMID: 33490726 PMCID: PMC7811115 DOI: 10.1016/j.adro.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shino Ogawa
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Gosuke Aikawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
26
|
Salfelder MEA, Kessel KA, Thiel U, Burdach S, Kampfer S, Combs SE. Prospective evaluation of multitarget treatment of pediatric patients with helical intensity-modulated radiotherapy. Strahlenther Onkol 2020; 196:1103-1115. [PMID: 32748147 PMCID: PMC7686189 DOI: 10.1007/s00066-020-01670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Background and purpose Radiotherapy (RT) is persistently gaining significance in the treatment of pediatric tumors. However, individual features of a growing body and multifocal stages complicate this approach. Tomotherapy offers advantages in the treatment of anatomically complex tumors with low risks of side effects. Here we report on toxicity incidence and outcome of tomotherapy with a focus on multitarget RT (mtRT). Materials and methods From 2008 to 2017, 38 children diagnosed with sarcoma were treated with tomotherapy. The median age was 15 years (6–19 years). Toxicity was graded according to the Common Terminology Criteria for Adverse Events v.4.03 and classified into symptoms during RT, acutely (0–6 months) and late (>6 months) after RT, and long-term sideeffects (>24 months). Results The main histologies were Ewing sarcoma (n = 23 [61%]) and alveolar rhabdomyosarcoma (n = 5 [13%]). RT was performed with a median total dose of 54 Gy (40.5–66.0 Gy) and a single dose of 2 Gy (1.80–2.27 Gy). Twenty patients (53%) received mtRT. Median follow-up was 29.7 months (95% confidence interval 15.3–48.2 months) with a 5-year survival of 55.2% (±9.5%). The 5‑year survival rate of patients with mtRT (n = 20) was 37.1 ± 13.2%, while patients who received single-target RT (n = 18) had a 5-year survival rate of 75 ± 10.8%. Severe toxicities (grade 3 and 4) emerged in 14 patients (70%) with mtRT and 7 patients (39%) with single-target RT. Two non-hematological grade 4 toxicities occurred during RT: one mucositis and one radiodermatitis. After mtRT 5 patients had grade 3 toxicities acute and after single-target RT 4 patients. One patient had acute non-hematological grade 4 toxicities (gastritis, pericarditis, and pericardial effusion) after mtRT. Severe late effects of RT occurred in 2 patients after mtRT and in none of the single-target RT patients. No severe long-term side effects appeared. Conclusion Our results showed acceptable levels of acute and late toxicities, considering the highly advanced diseases and multimodal treatment. Hence, tomotherapy is a feasible treatment method for young patients with anatomically complex tumors or multiple targets. Especially mtRT is a promising and innovative treatment approach for pediatric sarcomas, delivering unexpectedly high survival rates for patients with multifocal Ewing sarcomas in this study, whereby the limited number of patients should invariably be considered in the interpretation. Electronic supplementary material The online version of this article (10.1007/s00066-020-01670-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria-Elena A. Salfelder
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Kerstin A. Kessel
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- DKTK Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Uwe Thiel
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School for Medicine, Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics and Children’s Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich School for Medicine, Munich, Germany
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- DKTK Partner Site Munich, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany
| |
Collapse
|
27
|
Giacometti V, Hounsell AR, McGarry CK. A review of dose calculation approaches with cone beam CT in photon and proton therapy. Phys Med 2020; 76:243-276. [DOI: 10.1016/j.ejmp.2020.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023] Open
|