1
|
Ghosh A, Coffin M, Diaz DM, Barndt S, Schulz V, Gallagher P, Lo SH, Fowler VM. A novel isoform of Tensin1 promotes actin filament assembly for efficient erythroblast enucleation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628322. [PMID: 39763869 PMCID: PMC11702514 DOI: 10.1101/2024.12.13.628322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin-nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation. Remarkably, we found that differentiating human CD34+ cells express a novel truncated form of Tensin-1 (eTNS1; Mr ~125 kDa) missing the N-terminal half of the protein, due to an internal mRNA translation start site resulting in a unique exon 1. eTNS1 localized to the cytoplasm during terminal erythroid differentiation, with no apparent membrane association or focal adhesion formation. Knocking out eTNS1 had no effect on assembly of the spectrin membrane skeleton but led to impaired enucleation and absent or mis-localized actin filament foci in enucleating erythroblasts. We conclude that eTNS1 is a novel regulator of actin filament assembly during human erythroid terminal differentiation required for efficient enucleation.
Collapse
Affiliation(s)
- Arit Ghosh
- Department of Biological Sciences, University of Delaware, Newark, DE
- Delaware Biotechnology Institute, UD Flow Cytometry Core, Newark, DE
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE
| | - Megan Coffin
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Dimitri M. Diaz
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Sarah Barndt
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE
| | - Vincent Schulz
- Department of Pediatrics, Yale University, New Haven, CT
| | | | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Molecular and Genomic Medicine, National Health of Research Institutes, Miaoli 35053, Taiwan
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE
| |
Collapse
|
2
|
Zhang Y, Wang X, Huang J, Zhang X, Bu L, Zhang Y, Liang F, Wu S, Zhang M, Zhang L, Zhang L. CASIN exerts anti-aging effects through RPL4 on the skin of naturally aging mice. Aging Cell 2024; 23:e14333. [PMID: 39289787 PMCID: PMC11634736 DOI: 10.1111/acel.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging has been associated with the onset of various skin issues, and recent studies have identified an increase in Cdc42 activity in naturally aging mice. While previous literature has suggested that CASIN, a specific inhibitor of Cdc42 activity, may possess anti-aging properties, its specific effects on the epidermis and dermis, as well as the underlying mechanisms in naturally aging mice, remain unclear. Our study revealed that CASIN demonstrated the ability to increase epidermal and dermal thickness, enhance dermal-epidermal junction, and stimulate collagen and elastic fiber synthesis in 9-, 15-, and 24-month-old C57BL/6 mice in vivo. Moreover, CASIN was found to enhance the proliferation, differentiation, and colony formation and restore the cytoskeletal morphology of primary keratinocytes in naturally aging skin in vitro. Furthermore, the anti-aging properties of CASIN on primary fibroblasts in aging mice were mediated by the ribosomal protein RPL4 using proteomic sequencing, influencing collagen synthesis and cytoskeletal morphology both in vitro and in vivo. Meanwhile, both subcutaneous injection and topical application exhibited anti-aging effects for a duration of 21 days. Additionally, CASIN exhibited anti-inflammatory properties, while reduced expression of RPL4 was associated with increased inflammation in the skin of naturally aging mice. Taken together, our results unveil a novel function of RPL4 in skin aging, providing a foundational basis for future investigations into ribosomal proteins. And CASIN shows promise as a potential anti-aging agent for naturally aging mouse skin, suggesting potential applications in the field.
Collapse
Affiliation(s)
- Yijia Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xueer Wang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jianyuan Huang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xinyue Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lingwei Bu
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yarui Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Fengting Liang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shenhua Wu
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceSouthern Medical UniversityGuangzhouChina
| | - Lin Zhang
- GDMPA Key Laboratory of key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Histology and Embryology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Schuster T, Amoah A, Vollmer A, Marka G, Niemann J, Saçma M, Sakk V, Soller K, Vogel M, Grigoryan A, Wlaschek M, Scharffetter-Kochanek K, Mulaw M, Geiger H. Quantitative determination of the spatial distribution of components in single cells with CellDetail. Nat Commun 2024; 15:10250. [PMID: 39592623 PMCID: PMC11599593 DOI: 10.1038/s41467-024-54638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The distribution of biomolecules within cells changes upon aging and diseases. To quantitatively determine the spatial distribution of components inside cells, we built the user-friendly open-source 3D-cell-image analysis platform Cell Detection and Analysis of Intensity Lounge (CellDetail). The algorithm within CellDetail is based on the concept of the dipole moment. CellDetail provides quantitative values for the distribution of the polarity proteins Cdc42 and Tubulin in young and aged hematopoietic stem cells (HSCs). Septin proteins form networks within cells that are critical for cell compartmentalization. We uncover a reduced level of organization of the Septin network within aged HSCs and within senescent human fibroblasts. Changes in the Septin network structure might therefore be a common feature of aging. The level of organization of the network of Septin proteins in aged HSCs can be restored to a youthful level by pharmacological attenuation of the activity of the small RhoGTPase Cdc42.
Collapse
Affiliation(s)
- Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
- Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mona Vogel
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Xu Y, Jia P, Li Y, Zhang H, Zhang J, Li W, Zhen Y, Li Y, Cao J, Zheng T, Wang Y, Liu Y, An X, Zhang S. A novel role of AURKA kinase in erythroblast enucleation. Haematologica 2024; 109:3721-3734. [PMID: 38961734 PMCID: PMC11532702 DOI: 10.3324/haematol.2023.284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Generation of mammalian red blood cells requires the expulsion of polarized nuclei late in terminal erythroid differentiation. However, the mechanisms by which spherical erythroblasts determine the direction of nuclear polarization and maintain asymmetry during nuclear expulsion are poorly understood. Given the analogy of erythroblast enucleation to asymmetric cell division and the key role of Aurora kinases in mitosis, we sought to investigate the function of Aurora kinases in erythroblast enucleation. We found that AURKA (Aurora kinase A) is abundantly expressed in orthochromatic erythroblasts. Intriguingly, high-resolution confocal microscopy analyses revealed that AURKA co-localized with the centrosome on the side of the nucleus opposite its membrane contact point during polarization and subsequently translocated to the anterior end of the protrusive nucleus upon nuclear exit. Mechanistically, AURKA regulated centrosome maturation and localization via interaction with γ-tubulin to provide polarization orientation for the nucleus. Furthermore, we identified ECT2 (epithelial cell transforming 2), a guanine nucleotide exchange factor, as a new interacting protein and ubiquitination substrate of AURKA. After forming the nuclear protrusion, AURKA translocated to the anterior end of the protrusive nucleus to directly degrade ECT2, which is partly dependent on kinase activity of AURKA. Moreover, knockdown of ECT2 rescued impaired enucleation caused by AURKA inhibition. Our findings have uncovered a previously unrecognized role of Aurora kinases in the establishment of nuclear polarization and eventual nuclear extrusion and provide new mechanistic insights into erythroblast enucleation.
Collapse
Affiliation(s)
- Yuanlin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yating Li
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Wanxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yazhe Zhen
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Jiaming Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Tingting Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou
| | - Yihan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou
| | - Yanyan Liu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA.
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou.
| |
Collapse
|
5
|
Newton LM, Fowler VM, Humbert PO. Erythroblast enucleation at a glance. J Cell Sci 2024; 137:jcs261673. [PMID: 39397781 PMCID: PMC11529606 DOI: 10.1242/jcs.261673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Erythroid enucleation, the penultimate step in mammalian erythroid terminal differentiation, is a unique cellular process by which red blood cells (erythrocytes) remove their nucleus and accompanying nuclear material. This complex, multi-stage event begins with chromatin compaction and cell cycle arrest and ends with generation of two daughter cells: a pyrenocyte, which contains the expelled nucleus, and an anucleate reticulocyte, which matures into an erythrocyte. Although enucleation has been compared to asymmetric cell division (ACD), many mechanistic hallmarks of ACD appear to be absent. Instead, enucleation appears to rely on mechanisms borrowed from cell migration, endosomal trafficking and apoptosis, as well as unique cellular interactions within the microenvironment. In this Cell Science at a Glance article and the accompanying poster, we summarise current insights into the morphological features and genetic drivers regulating the key intracellular events that culminate in erythroid enucleation and engulfment of pyrenocytes by macrophages within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3073, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3073, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
7
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
8
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
9
|
Wu J, Moriwaki K, Asuka T, Nakai R, Kanda S, Taniguchi M, Sugiyama T, Yoshimura SI, Kunii M, Nagasawa T, Hosen N, Miyoshi E, Harada A. EHBP1L1, an apicobasal polarity regulator, is critical for nuclear polarization during enucleation of erythroblasts. Blood Adv 2023; 7:3382-3394. [PMID: 37042948 PMCID: PMC10345855 DOI: 10.1182/bloodadvances.2022008930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Cell polarity, the asymmetric distribution of proteins and organelles, is permanently or transiently established in various cell types and plays an important role in many physiological events. epidermal growth factor receptor substrate 15 homology domain-binding protein 1-like 1 (EHBP1L1) is an adapter protein that is localized on recycling endosomes and regulates apical-directed transport in polarized epithelial cells. However, the role of EHBP1L1 in nonepithelial cells, remains unknown. Here, Ehbp1l1-/- mice showed impaired erythroblast enucleation. Further analyses showed that nuclear polarization before enucleation was impaired in Ehbp1l1-/- erythroblasts. It was also revealed that EHBP1L1 interactors Rab10, Bin1, and dynamin were involved in erythroblast enucleation. In addition, Ehbp1l1-/- erythrocytes exhibited stomatocytic morphology and dehydration. These defects in erythroid cells culminated in early postnatal anemic lethality in Ehbp1l1-/- mice. Moreover, we found the mislocalization of nuclei and mitochondria in the skeletal muscle cells of Ehbp1l1-/- mice, as observed in patients with centronuclear myopathy with genetic mutations in Bin1 or dynamin 2. Taken together, our findings indicate that the Rab8/10-EHBP1L1-Bin1-dynamin axis plays an important role in multiple cell polarity systems in epithelial and nonepithelial cells.
Collapse
Affiliation(s)
- Ji Wu
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenta Moriwaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Tatsuya Asuka
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Kanda
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Manabu Taniguchi
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuki Sugiyama
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Cervellera CF, Mazziotta C, Di Mauro G, Iaquinta MR, Mazzoni E, Torreggiani E, Tognon M, Martini F, Rotondo JC. Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application. Stem Cell Res Ther 2023; 14:139. [PMID: 37226267 PMCID: PMC10210309 DOI: 10.1186/s13287-023-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.
Collapse
Affiliation(s)
- Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
11
|
The accumulation of miR-125b-5p is indispensable for efficient erythroblast enucleation. Cell Death Dis 2022; 13:886. [PMID: 36270980 PMCID: PMC9586935 DOI: 10.1038/s41419-022-05331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Erythroblast enucleation is a precisely regulated but not clearly understood process. Polycythemia shows pathological erythroblast enucleation, and we discovered a low miR-125b-5p level in terminal erythroblasts of patients with polycythemia vera (PV) compared to those of healthy controls. Exogenous upregulation of miR-125b-5p levels restored the enucleation rate to normal levels. Direct downregulation of miR-125b-5p in mouse erythroblasts simulated the enucleation issue found in patients with PV, and miR-125b-5p accumulation was found in enucleating erythroblasts, collectively suggesting the importance of miR-125b-5p accumulation for erythroblast enucleation. To elucidate the role of miR-125b-5p in enucleation, gain- and loss-of-function studies were performed. Overexpression of miR-125b-5p improved the enucleation of erythroleukemia cells and primary erythroblasts. Infused erythroblasts with higher levels of miR-125b-5p also exhibited accelerated enucleation. In contrast, miR-125b-5p inhibitors significantly suppressed erythrocyte enucleation. Intracellular imaging revealed that in addition to cytoskeletal assembly and nuclear condensation, miR-125b-5p overexpression resulted in mitochondrial reduction and depolarization. Real-time PCR, western blot analysis, luciferase reporter assays, small molecule inhibitor supplementation and gene rescue assays revealed that Bcl-2, as a direct target of miR-125b-5p, was one of the key mediators of miR-125b-5p during enucleation. Following suppression of Bcl-2, the activation of caspase-3 and subsequent activation of ROCK-1 resulted in cytoskeletal rearrangement and enucleation. In conclusion, this study is the first to reveal the pivotal role of miR-125b-5p in erythroblast enucleation.
Collapse
|
12
|
The path from stem cells to red blood cells. Int J Hematol 2022; 116:160-162. [PMID: 35841459 DOI: 10.1007/s12185-022-03413-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
As oxygen is essential for energy production in mitochondria, a sufficient amount of oxygen should be continuously delivered to the tissues to maintain life. Therefore, the number of red blood cells which carry the oxygen is considerable, at up to 25 trillion in the body, and 2 million new red blood cells are generated per second.
Collapse
|
13
|
Tu Z, Fan C, Davis AK, Hu M, Wang C, Dandamudi A, Seu KG, Kalfa TA, Lu QR, Zheng Y. Autism-associated chromatin remodeler CHD8 regulates erythroblast cytokinesis and fine-tunes the balance of Rho GTPase signaling. Cell Rep 2022; 40:111072. [PMID: 35830790 PMCID: PMC9302451 DOI: 10.1016/j.celrep.2022.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor whose monoallelic mutation defines a subtype of autism spectrum disorders (ASDs). Previous work found that CHD8 is required for the maintenance of hematopoiesis by integrating ATM-P53-mediated survival of hematopoietic stem/progenitor cells (HSPCs). Here, by using Chd8F/FMx1-Cre combined with a Trp53F/F mouse model that suppresses apoptosis of Chd8−/− HSPCs, we identify CHD8 as an essential regulator of erythroid differentiation. Chd8−/−P53−/− mice exhibited severe anemia conforming to congenital dyserythropoietic anemia (CDA) phenotypes. Loss of CHD8 leads to drastically decreased numbers of orthochromatic erythroblasts and increased binucleated and multinucleated basophilic erythroblasts with a cytokinesis failure in erythroblasts. CHD8 binds directly to the gene bodies of multiple Rho GTPase signaling genes in erythroblasts, and loss of CHD8 results in their dysregulated expression, leading to decreased RhoA and increased Rac1 and Cdc42 activities. Our study shows that autism-associated CHD8 is essential for erythroblast cytokinesis. Tu et al. report that CHD8, an autism-related chromatin remodeler, is essential for erythroid differentiation. Loss of CHD8 leads to unbalanced Rho GTPase signaling and defective erythroblast cytokinesis, mimicking that of congenital dyserythropoietic anemia.
Collapse
Affiliation(s)
- Zhaowei Tu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Cuiqing Fan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ashely K Davis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Chen Wang
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Akhila Dandamudi
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Katie G Seu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 2022; 116:192-198. [PMID: 35610497 DOI: 10.1007/s12185-022-03386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Chen Y, Dong Y, Lu X, Li W, Zhang Y, Mao B, Pan X, Li X, Zhou Y, An Q, Xie F, Wang S, Xue Y, Cai X, Lai M, Zhou Q, Yan Y, Fu R, Wang H, Nakahata T, An X, Shi L, Zhang Y, Ma F. Inhibition of aryl hydrocarbon receptor signaling promotes the terminal differentiation of human erythroblasts. J Mol Cell Biol 2022; 14:6504013. [PMID: 35022784 PMCID: PMC9122643 DOI: 10.1093/jmcb/mjac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays an important role during mammalian embryo development. Inhibition of AHR signaling promotes the development of hematopoietic stem/progenitor cells. AHR also regulates the functional maturation of blood cells, such as T cells and megakaryocytes. However, little is known about the role of AHR modulation during the development of erythroid cells. In this study, we used the AHR antagonist StemRegenin 1 (SR1) and the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during different stages of human erythropoiesis to elucidate the function of AHR. We found that antagonizing AHR signaling improved the production of human embryonic stem cell (hESC)-derived erythrocytes and enhanced erythroid terminal differentiation. RNA-sequencing showed that SR1 treatment of proerythroblasts upregulated the expression of erythrocyte differentiation-related genes and downregulated actin organization-associated genes. We found that SR1 accelerated F-actin remodeling in terminally differentiated erythrocytes, favoring their maturation of the cytoskeleton and enucleation. We demonstrated that the effects of AHR inhibition on erythroid maturation were associated with F-actin remodeling. Our findings help uncover the mechanism for AHR-mediated human erythroid cell differentiation. We also provide a new approach toward the large-scale production of functionally mature human pluripotent stem cell-derived erythrocytes for use in translational applications.
Collapse
Affiliation(s)
- Yijin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yong Dong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xulin Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Wanjing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yimeng Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Quanming An
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Fangxin Xie
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | | | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xinping Cai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yan Yan
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Ruohan Fu
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| |
Collapse
|