1
|
Dabhade AH, Paramasivan B, Kumawat AS, Saha B. Miniature lab-made electrochemical biosensor: A promising sensing kit for rapid detection of E. coli in water, urine and milk. Talanta 2025; 285:127306. [PMID: 39622135 DOI: 10.1016/j.talanta.2024.127306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
A novel, rapid production methodology for laboratory-made carbon electrodes (LCE) employing cost-effective and readily available materials has developed in the present work. The LCE presents superior electrochemical characteristics compared to commercially available screen-printed carbon electrodes (SPCE). Furthermore, this research has demonstrated the performance of readily accessible, highly sensitive, and portable biosensors for on-site detection of E. coli in aqueous samples. Silver nanoparticles (AgNPs) were successfully electrodeposited onto the LCE (Ag-LCE) using the electrochemical method at optimised parameters. The E. coli-specific aptamer was conjugated with AgNPs, and uncoated Ag-LCE surfaces were blocked with a BSA (BSA-Apt-Ag-LCE). The developed BSA-Apt-Ag-LCE biosensor was characterised and validated for the successful detection of E. coli in aqueous samples using cyclic voltammetry (CV). A linear correlation was obtained for sensor response in the 3.4 × 101 to 3.4 × 106 CFU/ml bacterial concentration as ΔIpa = 5.71 log C + 2.91 with R2 = 0.987. BSA-Apt-Ag-LCE biosensors have a limit of detection of 34 CFU/ml and a response time of 15 min, indicating their prompt and practical on-site identification capabilities. The proficient detection of E. coli in diverse aqueous samples, substantiated by its consistent reproducibility as indicated by the relative standard deviation (RSD) value of a maximum of 1.71 %, is a compelling validation of the biosensor's efficacy and reliability. The proposed biosensor exhibited selectivity towards E. coli and was found stable even after being stored at 4 °C for four weeks.
Collapse
Affiliation(s)
- Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Balasubramanian Paramasivan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Adhidesh S Kumawat
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Biswajit Saha
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
2
|
Liu C, Zhang H, Chen P, Wang M, Xia Z. A saccharides regulated fluorescence ratio sensing array for bacterial recognition based on lectin response. Talanta 2025; 285:127419. [PMID: 39708570 DOI: 10.1016/j.talanta.2024.127419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.
Collapse
Affiliation(s)
- Chunlan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haijing Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Muhammad W, Song J, Kim S, Ahmed F, Cho E, Lee H, Kim J. Silicon-Based Biosensors: A Critical Review of Silicon's Role in Enhancing Biosensing Performance. BIOSENSORS 2025; 15:119. [PMID: 39997021 PMCID: PMC11852904 DOI: 10.3390/bios15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
This review into recent advancements in silicon-based technology, with a particular emphasis on the biomedical applications of silicon sensors. Owing to their diminutive size, high sensitivity, and intrinsic compatibility with electronic systems, silicon-based sensors have found widespread utilization across healthcare, industrial, and environmental monitoring domains. In the realm of biomedical sensing, silicon has demonstrated significant potential to enhance human health outcomes while simultaneously driving progress in microfabrication techniques for multifunctional device development. The review systematically examines the versatile roles of silicon in the fabrication of electrodes, sensing channels, and substrates. Silicon electrodes are widely used in electrochemical biosensors for glucose monitoring and neural activity recording, while sensing channels in field-effect transistor biosensors enable the detection of cancer biomarkers and small molecules. Porous silicon substrates are applied in optical biosensors for label-free protein and pathogen detection. Key challenges in this field, including the interaction of silicon with biomolecules, the economic barriers to miniaturization, and issues related to signal stability, are critically analyzed. Proposed strategies to address these challenges and improve sensor functionality and reliability are also discussed. Furthermore, the article explores emerging developments in silicon-based biosensors, particularly their integration into wearable technologies. The pivotal role of artificial intelligence (AI) in enhancing the performance, functionality, and real-time capabilities of these sensors is also highlighted. This review provides a comprehensive overview of the current state, challenges, and future directions in the field of silicon-based biomedical sensing technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (W.M.); (J.S.); (S.K.); (F.A.); (E.C.); (H.L.)
| |
Collapse
|
4
|
Cantons JM, Acosta LK, Formentin P, Ferré-Borrull J, Bachhuka A, Marsal LF. Real-Time Detection of Human Growth Hormone Based on Nanoporous Anodic Alumina Interferometric Biosensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:1021. [PMID: 40006250 PMCID: PMC11859889 DOI: 10.3390/s25041021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Human growth hormone (hGH) is a polypeptide hormone that is synthesized and secreted by the anterior pituitary gland, whose excess is linked to acromegaly-causing pituitary adenomas while deficiencies are linked to disorders including short stature and Turner's syndrome. This study investigates the real-time biosensing of hGH using a microfluidic optical biosensor based on reflectometric interferometry Fourier spectroscopy (RIFTS). The biosensing platform is based on a monolayer of nanoporous anodic alumina (NAA) fabricated following the two-step anodization method to produce pore sizes between 30 and 35 nm. The sensitivity of the nanostructure is improved by increasing the effective surface area by widening the pores to about 45 nm. NAA structures are then functionalized to make them selective to hGH. The sensing performance of the system shows a linear detection range from 12.5 µg/mL to 100 µg/mL with a detection limit of 10.6 µg/mL. This biosensing platform demonstrates the capability to detect high concentrations of human growth hormone using a cost-effective, fast, and portable biosensing system.
Collapse
Affiliation(s)
- Josep Maria Cantons
- Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.M.C.); (P.F.); (J.F.-B.)
| | - Laura K. Acosta
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain; (L.K.A.); (A.B.)
| | - Pilar Formentin
- Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.M.C.); (P.F.); (J.F.-B.)
| | - Josep Ferré-Borrull
- Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.M.C.); (P.F.); (J.F.-B.)
| | - Akash Bachhuka
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain; (L.K.A.); (A.B.)
| | - Lluis F. Marsal
- Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.M.C.); (P.F.); (J.F.-B.)
| |
Collapse
|
5
|
Alvandi H, Rezayan AH, Hajghassem H, Rahimi F. Rapid and sensitive whole cell E. coli detection using deep eutectic solvents/graphene oxide/gold nanoparticles field-effect transistor. Talanta 2025; 283:127184. [PMID: 39520924 DOI: 10.1016/j.talanta.2024.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Every year, millions of people suffer from gastrointestinal inflammation caused by E. coli. The increase of antibiotic-resistant strains and similar inflammatory and infectious syndromes symptoms have made rapid and sensitive diagnosis of this pathogen challenging. This study developed a Field-Effect Transistor based on deep eutectic solvents, graphene oxide, and gold nanoparticles (DES/GO/AuNPs-FET) to detect E. coli. Comparing the output current showed DES, which was a mixture of ethylene glycol and choline chloride, with ionic behavior, in addition to improving the electrical properties of GO, also led to the formation of AuNPs by self-assembly, which significantly increased the sensor's sensing performance. E. coli lipopolysaccharide aptamer immobilized on DES/GO/AuNPs-FET; capturing E. coli and changing the conformation caused changes in the charge carrier flow in the FET. This nanobiosensor detected E. coli in a completely selective manner in complex matrices like human blood serum. The excellent sensing performance of this nanobiosensor compared to other biosensors with a low detection limit (LOD = 3 CFU/ml), label-free, fast, and real-time detection showed that DES/GO/AuNPs-FET could be a reliable alternative to existing detection methods.
Collapse
Affiliation(s)
- Hale Alvandi
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Hassan Hajghassem
- MEMS & NEMS Laboratory, Department of Intelligent System, College of Interdisciplinary Science and Technologies, University of Tehran, Tehran, Iran.
| | - Fereshteh Rahimi
- Department of Nanobiotechnology and Biomimetics, School of Bioengineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
7
|
Pham TNL, Nguyen SH, Tran MT. A comprehensive review of transduction methods of lectin-based biosensors in biomedical applications. Heliyon 2024; 10:e38371. [PMID: 39386779 PMCID: PMC11462017 DOI: 10.1016/j.heliyon.2024.e38371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Biosensors have emerged as a pivotal technology in the biomedical field, significantly enhancing the rapidity and precision of biomolecule detection. These advancements are instrumental in refining diagnostic processes, optimizing treatments, and monitoring diseases more effectively. Central to the development of highly sensitive, selective, and stable biosensors are the bioreceptor and transducer components. This review paper discusses the use of lectin as a bioreceptor and explores the prevalent transducer methods employed in lectin-based biosensors, with a particular emphasis on their applications in biomedical research. The paper meticulously examines various transducers, with a spotlight on electrochemical and optical transduction methods, drawing from a wealth of previous studies to offer a comprehensive perspective on the application of these sensors in critical biomedical areas. These areas include early diagnosis, therapeutic interventions, and continuous health monitoring. Moreover, the review addresses the challenges of implementing lectin-based biosensors, such as specificity and stability issues. It also explores future possibilities, examining potential trends to overcome these challenges. In summary, this comprehensive analysis aspires to equip researchers with profound insights into the transformative potential of lectin-based biosensors, underscoring their significant role in the evolution of biomedical research and the broader healthcare landscape.
Collapse
Affiliation(s)
| | - Son Hai Nguyen
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Mai Thi Tran
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Viet Nam
- College of Engineering and Computer Science, VinUniversity, Hanoi, Viet Nam
| |
Collapse
|
8
|
Santos MPMC, de Oliveira LS, Lima-Neto RG, Andrade CAS, Oliveira MDL. New bioelectrode based on graphene quantum dots-polypyrrole film and Concanavalin A for pathogenic microorganism detection. J Pharm Biomed Anal 2024; 248:116299. [PMID: 38865928 DOI: 10.1016/j.jpba.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Infections caused by microorganisms are a public health problem worldwide. New biodetection systems are essential to diagnose with accuracy resulting in more effective treatment. In this work, we propose a ConA-conjugated graphene quantum dots and polypyrrole film-based biosensor for label-free detection of Candida albicans, Candida glabrata, Candida tropicalis, E. coli, B. subitilis, and S. aureus. We modified polypyrrole and graphene quantum dots (PPY-QDGs) with Concanavalin A (Con A) lectin. ConA is a glucose/mannose-specific lectin. The results showed that ConA lectin has the highest binding affinity for C. tropicalis and S. subtilis. PPY-GQDs-ConA binding profile revealed differential response for Candida spp (C. tropicalis > C. albicans > C. glabrata) and bacterial (B. subtilis > S. aureus > E. coli). The limits of detection (LOD) obtained were 1.42 CFU/mL for C. albicans, and 3.72 CFU/mL for C. glabrata. C. tropicalis yielded a LOD of 0.18 CFU/mL. The respective LODs for the evaluated bacteria were 0.39 CFU/mL for S. aureus, 0.72 CFU/mL for S. subtilis, and 2.63 CFU/mL for E. coli. The differential response obtained for the sensor can be attributed to the heterogeneous distribution of carbohydrates on the microorganism's surfaces. The proposed system based on a flexible substrate is effective for microbiological diagnosis.
Collapse
Affiliation(s)
- Maria P M C Santos
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Léony S de Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Reginaldo G Lima-Neto
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| |
Collapse
|
9
|
Ly NH, Aminabhavi TM, Vasseghian Y, Joo SW. Advanced protein nanobiosensors to in-situ detect hazardous material in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121727. [PMID: 39008923 DOI: 10.1016/j.jenvman.2024.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.
Collapse
Affiliation(s)
- Nguyen Hoang Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea; School of Engineering, University of Petroleum and Energy Studies (UPES) Uttarakhand, Dehradun, 248 007, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
10
|
Wang C, Yang R, Wang G, Liu S. An electrochemical biosensor for Staphylococcus aureus detection based on a multilevel surface 3D micro/nanostructure. Analyst 2024; 149:2594-2599. [PMID: 38526507 DOI: 10.1039/d4an00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Detection of pathogens is one of the key concerns for hospitals, the food industry, water suppliers, or other environmental engineering practices because pathogens can cause a wide range of infectious risks. Staphylococcus aureus (S. aureus) is one of the most common pathogens that are hazardous to human health and its existence is an important index to the safety of food, environmental sanitation, or medical products. In this study, we prepared an electrode with designed surface multilevel 3D micro/nano protrusions for facile and efficient S. aureus detection. The existence of these multilevel protrusions enhanced the adsorption of S. aureus. Hence, the detection limit could be as low as 10 CFU mL-1. Furthermore, the electrode was also successfully used to detect S. aureus in actual samples, such as milk and artificial human tissue fluid. It was found that the recovery of the reported approach showed no significant difference from that of the traditional plate count method. However, compared with the plate count method, the detection process of our approach is much more time-saving and easy-operating. These advantages of the approach we report, such as high sensitivity, reliability, quickness, and user-friendliness, make it a potential platform for detecting S. aureus in relation to the food industry and clinical diagnosis.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Rui Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, P. R. China.
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, P. R. China.
| |
Collapse
|
11
|
Pinkeova A, Kosutova N, Jane E, Lorencova L, Bertokova A, Bertok T, Tkac J. Medical Relevance, State-of-the-Art and Perspectives of "Sweet Metacode" in Liquid Biopsy Approaches. Diagnostics (Basel) 2024; 14:713. [PMID: 38611626 PMCID: PMC11011756 DOI: 10.3390/diagnostics14070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life. Finally, some barriers including regulations and quality of clinical validations data are discussed, and a perspective and major challenges in this area are summarised.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Aniko Bertokova
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| |
Collapse
|
12
|
Vercauteren R, Gevers C, Mahillon J, Francis LA. Design of a Porous Silicon Biosensor: Characterization, Modeling, and Application to the Indirect Detection of Bacteria. BIOSENSORS 2024; 14:104. [PMID: 38392023 PMCID: PMC10886929 DOI: 10.3390/bios14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The design of a porous silicon (PSi) biosensor is not often documented, but is of the upmost importance to optimize its performance. In this work, the motivation behind the design choices of a PSi-based optical biosensor for the indirect detection of bacteria via their lysis is detailed. The transducer, based on a PSi membrane, was characterized and models were built to simulate the analyte diffusion, depending on the porous nanostructures, and to optimize the optical properties. Once all performances and properties were analyzed and optimized, a theoretical response was calculated. The theoretical limit of detection was computed as 104 CFU/mL, based on the noise levels of the optical setup. The experimental response was measured using 106 CFU/mL of Bacillus cereus as model strain, lysed by bacteriophage-coded endolysins PlyB221. The obtained signal matched the expected response, demonstrating the validity of our design and models.
Collapse
Affiliation(s)
- Roselien Vercauteren
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| | - Clémentine Gevers
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Laurent A. Francis
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (R.V.); (C.G.)
| |
Collapse
|
13
|
Marvi F, Jafari K. A Biosensing Platform Based on Metamaterials BioNEMS for Lab-on-Chip Systems. IEEE Trans Nanobioscience 2024; 23:11-17. [PMID: 37163409 DOI: 10.1109/tnb.2023.3275137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An optical nanoelectromechanical platform relied on a SRR metamaterial system is presented in this paper as a label-free biosensor. This structure includes a flexible BioNEMS (Bio-Nano-Electro-Mechanical Systems) transducer and a proposed SRR metamaterials for detection of biological changes. Metamaterial cells consist of two parts which are coupled with an air gap distance. A functionalized BioNEMS beam supports one part of the proposed metamaterial cells. When patient samples including target analytes is exposed to the NEMS beam surface, the specific bio-interactions are happened and the energy (surface stress type) is released on the surface. This energy, which is induced only to the one side of the movable beam, causes a differential surface stress and thus displaces the nanomechanical beam. As a result, the air distance between two separated cells of the metamaterial unit is changed. This leads to varying the cell coupling effect which excites plasmon modes in a different wavelength. Therefore, biological quantities can be measured by detecting the resonance wavelength changes. Moreover, analyzing the device by various approaches results its functional characteristics as follows: detection sensitivity of 4251 nm/RIU, figure of merit (FOM) of 500.1 RIU -1 , mechanical sensitivity of [Formula: see text]/Nm -1 and resonant frequency of 17.1 kHz. Consequently, this mechanism is important for label-free biosensing due to its high potential for sensitive and quantitative detection of target analytes which leads to accurate diagnosis of diseases or identification of drugs.
Collapse
|
14
|
Sharma K, Sharma M. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. ENVIRONMENTAL RESEARCH 2023; 236:116826. [PMID: 37543133 DOI: 10.1016/j.envres.2023.116826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
The environmental contamination due to bacterial proliferation vs their identification is the major deciding factor in the spread of diseases leading to pandemics. The advent of drug-resistant pathogenic contaminants in our environment has further added to the load of complications associated with their diagnosis and treatment. Obstructing the spread of such infections, prioritizes the expansion of sensor-based diagnostics, effectuating, a sturdy detection of disease-causing microbes, contaminating our surroundings in shortest possible time, with minimal expenditure. Among many sensors known, optical biosensors promote the recognition of pathogens befouling the environment through a comparatively intuitive, brisk, portable, multitudinous, and thrifty approach. This article reviews the recent progresses in optical biosensor-based systems for effective environmental monitoring. The technical and methodological perspectives of fundamental optical-sensing platforms are reviewed, combined with the pros and cons of every procedure. Eventually, the obstacles lying in the path of development of an effective optical biosensor device for bio-monitoring and its future perspectives are highlighted in the present work.
Collapse
Affiliation(s)
- Kajal Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| | - Meenakshi Sharma
- Molecular Genetics of Aging, Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi (DU), India.
| |
Collapse
|
15
|
Kromer C, Schwibbert K, Radunz S, Thiele D, Laux P, Luch A, Tschiche HR. ROS generating BODIPY loaded nanoparticles for photodynamic eradication of biofilms. Front Microbiol 2023; 14:1274715. [PMID: 37908542 PMCID: PMC10615615 DOI: 10.3389/fmicb.2023.1274715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial biofilms can pose a serious health risk to humans and are less susceptible to antibiotics and disinfection than planktonic bacteria. Here, a novel method for biofilm eradication based on antimicrobial photodynamic therapy utilizing a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was developed. Reactive oxygen species are generated upon illumination with visible light and lead to a strong, controllable and persistent eradication of both planktonic bacteria and biofilms. One of the biggest challenges in biofilm eradication is the penetration of the antimicrobial agent into the biofilm and its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery system for the hydrophobic BODIPY dye and enabled its accumulation within the biofilm. This key feature of delivering the antimicrobial agent to the site of action where it is activated resulted in effective eradication of all tested biofilms. Here, 3 bacterial species that commonly form clinically relevant pathogenic biofilms were selected: Escherichia coli, Staphylococcus aureus and Streptococcus mutans. The development of this antimicrobial photodynamic therapy tool for biofilm eradication takes a promising step towards new methods for the much needed treatment of pathogenic biofilms.
Collapse
Affiliation(s)
- Charlotte Kromer
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Karin Schwibbert
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | | | - Dorothea Thiele
- Department Materials and the Environment, Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R. Tschiche
- Department Chemicals and Product Safety, Product Materials and Nanotechnology, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
16
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
17
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
18
|
Pérez-Lorente AI, Molina-Santiago C, de Vicente A, Romero D. Sporulation Activated via σ W Protects Bacillus from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiol Spectr 2023; 11:e0504522. [PMID: 36916921 PMCID: PMC10100999 DOI: 10.1128/spectrum.05045-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Within bacterial communities, community members engage in interactions employing diverse offensive and defensive tools to reach coexistence. Extracellular-matrix production and sporulation are defensive mechanisms used by Bacillus subtilis cells when they interact with Pseudomonas chlororaphis strains expressing a type VI secretion system (T6SS). Here, we define Tse1 as the main toxin mobilized by the Pseudomonas chlororaphis T6SS that triggers sporulation in Bacillus subtilis. We characterize Tse1 as a peptidoglycan hydrolase that indirectly alters the dynamics and functionality of the Bacillus cell membrane. We also delineate the response of Bacillus cells to Tse1, which through the coordinated actions of the extracellular sigma factor σW and the cytoplasmic histidine kinases KinA and KinB, culminates in activation of the sporulation cascade. We propose that this cellular developmental response permits bacilli to defend against the toxicity of T6SS-mobilized Tse1 effector. IMPORTANCE The study of bacterial interactions is helping to define species-specific strategies used to modulate the competition dynamics underlying the development of community compositions. In this study, we deciphered the role of Pseudomonas T6SS when competing with Bacillus and the mechanism by which a T6SS-toxin modifies Bacillus physiology. We found that Pseudomonas triggers Bacillus sporulation by injecting through T6SS a toxin that we called Tse1. We found that Tse1 is a hydrolase that degrades Bacillus peptidoglycan and indirectly damages Bacillus membrane functionality. In addition, we demonstrated the mechanism by which Bacillus cells increase the sporulation rate upon recognition of the presence of Tse1. Interestingly, asporogenic Bacillus cells are more sensitive to T6SS activity, which led us to propose sporulation as a last resort of bacilli to overcome this family of toxins.
Collapse
Affiliation(s)
- Alicia I. Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
19
|
Herrera-Domínguez M, Morales-Luna G, Mahlknecht J, Cheng Q, Aguilar-Hernández I, Ornelas-Soto N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. BIOSENSORS 2023; 13:bios13030370. [PMID: 36979582 PMCID: PMC10046542 DOI: 10.3390/bios13030370] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/14/2023]
Abstract
The correct detection and quantification of pollutants in water is key to regulating their presence in the environment. Biosensors offer several advantages, such as minimal sample preparation, short measurement times, high specificity and sensibility and low detection limits. The purpose of this review is to explore the different types of optical biosensors, focusing on their biological elements and their principle of operation, as well as recent applications in the detection of pollutants in water. According to our literature review, 33% of the publications used fluorescence-based biosensors, followed by surface plasmon resonance (SPR) with 28%. So far, SPR biosensors have achieved the best results in terms of detection limits. Although less common (22%), interferometers and resonators (4%) are also highly promising due to the low detection limits that can be reached using these techniques. In terms of biological recognition elements, 43% of the published works focused on antibodies due to their high affinity and stability, although they could be replaced with molecularly imprinted polymers. This review offers a unique compilation of the most recent work in the specific area of optical biosensing for water monitoring, focusing on both the biological element and the transducer used, as well as the type of target contaminant. Recent technological advances are discussed.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Mexico City 01219, Mexico
| | - Jürgen Mahlknecht
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Iris Aguilar-Hernández
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| | - Nancy Ornelas-Soto
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| |
Collapse
|
20
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
21
|
Fabrication and Evaluation of Optical Nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP. Anal Chim Acta 2022; 1237:340580. [DOI: 10.1016/j.aca.2022.340580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
22
|
Sharma P, Chauhan R, Pande V, Basu T, Rajesh, Kumar A. Rapid sensing ofTilletia indica - Teliospore in wheat extractby apiezoelectric label free immunosensor. Bioelectrochemistry 2022; 147:108175. [PMID: 35749887 DOI: 10.1016/j.bioelechem.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
'Tilletia indica', a fungal pathogen causes Karnal bunt disease in wheat. It has been renowned as a quarantine pest in more than 50 countries, therefore, urged a threat to wheat in the international market. To date, conventional methods employed to detect the disease involve the tentative identification of spores (teliospores) based on morphology. For effective and specific disease control, it is essential to get the specific protein of the analyte (teliospore) to target. In present study, a label-free immunosensor has been developed to detect Karnal bunt disease. A specifically synthesized anti-teliosporic monoclonal antibody (mAb) was immobilized on a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) to detect teliospore. All modified electrodes were morphologically characterized by scanning electron microscopy (SEM), atomic force microscopy(AFM), Fourier transform infra-red spectroscopy (FT-IR) techniques and analytically characterized by quartz crystal microbalance (QCM) and cyclic voltammetry (CV). The linearity range was 19 pg mL-1-10 ng mL-1, while the detection limit (LOD) was 4.4 pg mL-1 and 12.5 pg mL-1, respectively. The stability, reproducibility, and repeatability of the immunoelectrode was examined by CV, and found stable upto 18 days with negligible variation. The binding affinity (association constant (Ka)) of the developed immunoelectrode was 1.9 × 10-2 ng mL-1. The real sample has been tested in spiked wheat samples and found about 95-103 % recovery with 2.8-4.4 % relative error.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India; Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India.
| | - Ruchika Chauhan
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Tinku Basu
- Amity Centre for Nanomedicine, Amity University Uttar Pradesh, Noida 201303, India
| | - Rajesh
- CSIR- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pant Nagar 263145, Uttarakhand, India; Director Education, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India.
| |
Collapse
|
23
|
Hu A, Kong L, Lu Z, Qiao J, Lv F, Meng F, Bie X. Research on nanogold-assisted HRM-qPCR technology for highly sensitive and accurate detection of Vibrio parahaemolyticus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Naseri M, Maliha M, Dehghani M, Simon GP, Batchelor W. Rapid Detection of Gram-Positive and -Negative Bacteria in Water Samples Using Mannan-Binding Lectin-Based Visual Biosensor. ACS Sens 2022; 7:951-959. [PMID: 35290028 DOI: 10.1021/acssensors.1c01748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Waterborne bacterial infection is a health threat worldwide, making accurate and timely bacteria detection crucial to prevent waterborne disease outbreaks. Inspired by the intrinsic capability of mannan-binding lectin (MBL) in recognizing the pathogen-associated molecular patterns (PAMPs), a visual biosensor is developed here for the on-site detection of both Gram-positive and -negative bacteria. The biosensor was synthesized by immobilization of the MBL protein onto the blue carboxyl-functionalized polystyrene microparticles (PSM), which is then used in a two-step assay to detect bacterial cells in water samples. The first step involved a 20 min incubation following the MBL-PSM and calcium chloride solution addition to the samples. The second step was to add ethanol to the resultant blue mixture and observe the color change with the naked eye after 15 min. The biosensor had a binary (all-or-none) response, which in the presence of bacterial cells kept its blue color, while in their absence the color changed from blue to colorless. Testing the water samples spiked with four Gram-negative bacteria including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and two Gram-positive bacteria of Enterococcus faecalis and Staphylococcus aureus showed that the biosensor could detect all tested bacteria with a concentration as low as 101.5 CFU/ml. The performance of biosensor using the water samples from a water treatment plant also confirmed its capability to detect the pathogens in real-life water samples without the need for instrumentation.
Collapse
Affiliation(s)
- Mahdi Naseri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maisha Maliha
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mostafa Dehghani
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Warren Batchelor
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
26
|
Firoozbakhtian A, Rezayan AH, Hajghassem H, Rahimi F, Ghazani MF, Kalantar M, Mohamadsharifi A. Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP. ACS OMEGA 2022; 7:7341-7349. [PMID: 35252724 PMCID: PMC8892644 DOI: 10.1021/acsomega.1c07271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
C-reactive protein (CRP), an acute-phase protein synthesized in the liver in response to inflammation, is one of the biomarkers used for the detection of several diseases. Sepsis and cardiovascular diseases are two of the most important diseases for which detection of CRP at very early stages in the clinical range can help avert serious consequences. Here, a CNT-based nanobiosensing system, which is portable and reproducible, is used for label-free, online detection of CRP. The system consists of an aptameric CNT-based field-effect transistor benefiting from a buried gate geometry with Al2O3 as a high dielectric layer and can reflect the pro-cytokine concentration. Test results show that the device responds to CRP changes within 8 min, with a limit of detection as low as 150 pM (0.017 mg L-1). The device was found to have a linear behavior in the range of 0.43-42.86 nM (0.05-5 mg L-1). The selectivity of the device was tested with TNF-α, IL-6, and BSA, to which the nanosensing system showed no significant response compared with CRP. The device showed good stability for 14 days and was completely reproducible during this period. These findings indicate that the proposed portable system is a potential candidate for CRP measurements in the clinical range.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Ali Hossein Rezayan
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Hassan Hajghassem
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Fereshteh Rahimi
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Masoud Faraghi Ghazani
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mahsa Kalantar
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Amir Mohamadsharifi
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
27
|
Whyte Ferreira C, Vercauteren R, Francis LA. Passivated Porous Silicon Membranes and Their Application to Optical Biosensing. MICROMACHINES 2021; 13:10. [PMID: 35056175 PMCID: PMC8779296 DOI: 10.3390/mi13010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide Al2O3, hafnium oxide HfO2 and titanium oxide TiO2. The fabricated membranes were characterized in terms of morphology, optical properties and chemical properties. Stability tests and optical probing noise level determination were also performed. Preliminary results using an Al2O3 passivated membranes for a biosensing application are also presented for selective optical detection of Bacillus cereus bacterial lysate. The biosensor was able to detect the bacterial lysate, with an initial bacteria concentration of 106 colony forming units per mL (CFU/mL), in less than 10 min.
Collapse
|
28
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
29
|
Norouz Dizaji A, Ali Z, Ghorbanpoor H, Ozturk Y, Akcakoca I, Avci H, Dogan Guzel F. Electrochemical-based ''antibiotsensor'' for the whole-cell detection of the vancomycin-susceptible bacteria. Talanta 2021; 234:122695. [PMID: 34364491 DOI: 10.1016/j.talanta.2021.122695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
In this study, we aim to develop an antibiotic-based biosensor platform 'Antibiotsensor' for the specific detection of gram-positive bacteria using vancomycin modified Screen Printed Gold Electrodes (SPGEs). Through this pathway, vancomycin molecules were first functionalized with thiol groups and characterized with quadrupole time of flight (q-TOF) mass spectroscopy analysis. Immobilization of thiolated vancomycin molecules (HS-Van) onto SPGEs was carried out based on self-assembled monolayer (SAM) phenomenon. Electrochemical impedance spectroscopy (EIS) was employed to test the detection and showed a considerable change in impedance value upon the binding of HS-Van molecules onto the electrode surface. Atomic Force Microscopy analysis indicated that SPGE was successfully modified upon the treatment with HS-Van molecules based on the shift in surface roughness from 173 ± 2 nm to 301 ± 3 nm. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy proved the EIS and AFM results as well by showing characteristic peaks of immobilized HS-Van molecule. As a proof-of-concept, EIS-based susceptibility testing was performed using Escherichia coli, Staphylococcus aureus and Mycobacterium smegmatis bacteria to prove the specificity of obtained SPGE-Van. EIS data showed that the charge transfer resistance (Rct) values changed from 1.08, 1.18 to 26.5, respectively, indicating that vancomycin susceptible S. aureus was successfully attached onto SPGE-Van surface strongly, while vancomycin resistance E. coli and M. smegmatis did not show any significant attachment properties. In addition, different concentration (108-10 CFU/mL) of S. aureus was performed to investigate sensitivity of proposed sensor platform. Limit of detection and limit of quantitation was calculated as 101.58 and 104.81 CFU/mL, respectively. Scanning electron microscopy (SEM) analysis also confirmed that only S. aureus bacteria was attached to the surface in a dense monolayer distribution. We believe that the proposed approach is selective and sensitive towards the whole-cell detection of vancomycin-susceptible bacteria and can be modified for different purposes in the future.
Collapse
Affiliation(s)
- Araz Norouz Dizaji
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Zahraa Ali
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Hamed Ghorbanpoor
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Yasin Ozturk
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Iremnur Akcakoca
- Department of Material Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering & Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.
| |
Collapse
|
30
|
Modern Analytical Techniques for Detection of Bacteria in Surface and Wastewaters. SUSTAINABILITY 2021. [DOI: 10.3390/su13137229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contamination of surface waters with pathogens as well as all diseases associated with such events are a significant concern worldwide. In recent decades, there has been a growing interest in developing analytical methods with good performance for the detection of this category of contaminants. The most important analytical methods applied for the determination of bacteria in waters are traditional ones (such as bacterial culturing methods, enzyme-linked immunoassay, polymerase chain reaction, and loop-mediated isothermal amplification) and advanced alternative methods (such as spectrometry, chromatography, capillary electrophoresis, surface-enhanced Raman scattering, and magnetic field-assisted and hyphenated techniques). In addition, optical and electrochemical sensors have gained much attention as essential alternatives for the conventional detection of bacteria. The large number of available methods have been materialized by many publications in this field aimed to ensure the control of water quality in water resources. This study represents a critical synthesis of the literature regarding the latest analytical methods covering comparative aspects of pathogen contamination of water resources. All these aspects are presented as representative examples, focusing on two important bacteria with essential implications on the health of the population, namely Pseudomonas aeruginosa and Escherichia coli.
Collapse
|
31
|
Vercauteren R, Leprince A, Mahillon J, Francis LA. Porous Silicon Biosensor for the Detection of Bacteria through Their Lysate. BIOSENSORS 2021; 11:27. [PMID: 33498536 PMCID: PMC7909573 DOI: 10.3390/bios11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Porous silicon (PSi) has been widely used as a biosensor in recent years due to its large surface area and its optical properties. Most PSi biosensors consist in close-ended porous layers, and, because of the diffusion-limited infiltration of the analyte, they lack sensitivity and speed of response. In order to overcome these shortcomings, PSi membranes (PSiMs) have been fabricated using electrochemical etching and standard microfabrication techniques. In this work, PSiMs have been used for the optical detection of Bacillus cereus lysate. Before detection, the bacteria are selectively lysed by PlyB221, an endolysin encoded by the bacteriophage Deep-Blue targeting B. cereus. The detection relies on the infiltration of bacterial lysate inside the membrane, which induces a shift of the effective optical thickness. The biosensor was able to detect a B. cereus bacterial lysate, with an initial bacteria concentration of 105 colony forming units per mL (CFU/mL), in only 1 h. This proof-of-concept also illustrates the specificity of the lysis before detection. Not only does this detection platform enable the fast detection of bacteria, but the same technique can be extended to other bacteria using selective lysis, as demonstrated by the detection of Staphylococcus epidermidis, selectively lysed by lysostaphin.
Collapse
Affiliation(s)
- Roselien Vercauteren
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Laurent A. Francis
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
32
|
Katoch R, Tripathi A. Research advances and prospects of legume lectins. J Biosci 2021; 46:104. [PMID: 34815374 PMCID: PMC8608583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2023]
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|