1
|
Wach A, Bericat-Vadell R, Bacellar C, Cirelli C, Johnson PJM, Castillo RG, Silveira VR, Broqvist P, Kullgren J, Maximenko A, Sobol T, Partyka-Jankowska E, Nordlander P, Halas NJ, Szlachetko J, Sá J. The dynamics of plasmon-induced hot carrier creation in colloidal gold. Nat Commun 2025; 16:2274. [PMID: 40050628 PMCID: PMC11885627 DOI: 10.1038/s41467-025-57657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
The generation and dynamics of plasmon-induced hot carriers in gold nanoparticles offer crucial insights into nonequilibrium states for energy applications, yet the underlying mechanisms remain experimentally elusive. Here, we leverage ultrafast X-ray absorption spectroscopy (XAS) to directly capture hot carrier dynamics with sub-50 fs temporal resolution, providing clear evidence of plasmon decay mechanisms. We observe the sequential processes of Landau damping (~25 fs) and hot carrier thermalization (~1.5 ps), identifying hot carrier formation as a significant decay pathway. Energy distribution measurements reveal carriers in non-Fermi-Dirac states persisting beyond 500 fs and observe electron populations exceeding single-photon excitation energy, indicating the role of an Auger heating mechanism alongside traditional impact excitation. These findings deepen the understanding of hot carrier behavior under localized surface plasmon resonance, offering valuable implications for applications in photocatalysis, photovoltaics, and phototherapy. This work establishes a methodological framework for studying hot carrier dynamics, opening avenues for optimizing energy transfer processes in nanoscale plasmonic systems.
Collapse
Affiliation(s)
- Anna Wach
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
- Paul Scherrer Institut, Villigen PSI, Switzerland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Bericat-Vadell
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden
| | | | | | | | - Rebeca G Castillo
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Mülheim an der Ruhr, Germany
| | - Vitor R Silveira
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden
| | - Peter Broqvist
- Maxepartment of Chemistry-Ångström, Structural Chemistry division, Uppsala University, Uppsala, Sweden
| | - Jolla Kullgren
- Maxepartment of Chemistry-Ångström, Structural Chemistry division, Uppsala University, Uppsala, Sweden
| | - Alexey Maximenko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Tomasz Sobol
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Ewa Partyka-Jankowska
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland.
| | - Jacinto Sá
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Department of Chemistry-Ångström, Physical Chemistry division, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Xu YN, Mei B, Xu Q, Fu HQ, Zhang XY, Liu PF, Jiang Z, Yang HG. In situ/Operando Synchrotron Radiation Analytical Techniques for CO 2/CO Reduction Reaction: From Atomic Scales to Mesoscales. Angew Chem Int Ed Engl 2024; 63:e202404213. [PMID: 38600431 DOI: 10.1002/anie.202404213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.
Collapse
Affiliation(s)
- Yi Ning Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201800, P. R. China
| | - Qiucheng Xu
- Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Huai Qin Fu
- Center for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Inoue I, Yamada J, Kapcia KJ, Stransky M, Tkachenko V, Jurek Z, Inoue T, Osaka T, Inubushi Y, Ito A, Tanaka Y, Matsuyama S, Yamauchi K, Yabashi M, Ziaja B. Femtosecond Reduction of Atomic Scattering Factors Triggered by Intense X-Ray Pulse. PHYSICAL REVIEW LETTERS 2023; 131:163201. [PMID: 37925726 DOI: 10.1103/physrevlett.131.163201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023]
Abstract
X-ray diffraction of silicon irradiated with tightly focused femtosecond x-ray pulses (photon energy, 11.5 keV; pulse duration, 6 fs) was measured at various x-ray intensities up to 4.6×10^{19} W/cm^{2}. The measurement reveals that the diffraction intensity is highly suppressed when the x-ray intensity reaches of the order of 10^{19} W/cm^{2}. With a dedicated simulation, we confirm that the observed reduction of the diffraction intensity can be attributed to the femtosecond change in individual atomic scattering factors due to the ultrafast creation of highly ionized atoms through photoionization, Auger decay, and subsequent collisional ionization. We anticipate that this ultrafast reduction of atomic scattering factor will be a basis for new x-ray nonlinear techniques, such as pulse shortening and contrast variation x-ray scattering.
Collapse
Affiliation(s)
- Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Konrad J Kapcia
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, PL-61614 Poznań, Poland
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michal Stransky
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Victor Tkachenko
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Zoltan Jurek
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Takato Inoue
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Atsuki Ito
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuto Tanaka
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuto Yamauchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Beata Ziaja
- Center of Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
5
|
Welke N, Majernik N, Ash R, Moro A, Agustsson R, Manwani P, Li K, Sakdinawat A, Aquila A, Benediktovitch A, Halavanau A, Rosenzweig J, Bergmann U, Pellegrini C. Development of spinning-disk solid sample delivery system for high-repetition rate x-ray free electron laser experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103005. [PMID: 37801013 DOI: 10.1063/5.0168125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
X-ray free-electron lasers (XFELs) deliver intense x-ray pulses that destroy the sample in a single shot by a Coulomb explosion. Experiments using XFEL pulse trains or the new generation of high-repetition rate XFELs require rapid sample replacement beyond those provided by the systems now used at low repletion-rate XFELs. We describe the development and characterization of a system based on a spinning disk to continuously deliver a solid sample into an XFEL interaction point at very high speeds. We tested our system at the Linac Coherent Light Source and European XFEL hard x-ray nano-focus instruments, employing it to deliver a 25 μm copper foil sample, which can be used as a gain medium for stimulated x-ray emission for the proposed x-ray laser oscillator.
Collapse
Affiliation(s)
- N Welke
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - N Majernik
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - R Ash
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - A Moro
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - R Agustsson
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - P Manwani
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - K Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Sakdinawat
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Aquila
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Benediktovitch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Halavanau
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Rosenzweig
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - U Bergmann
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - C Pellegrini
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
6
|
Doyle MD, Halavanau A, Zhang Y, Michine Y, Everts J, Fuller F, Alonso-Mori R, Yabashi M, Inoue IC, Osaka T, Yamada J, Inubushi Y, Hara T, Kern J, Yano J, Yachandra VK, Rohringer N, Yoneda H, Kroll T, Pellegrini C, Bergmann U. Seeded stimulated X-ray emission at 5.9 keV. OPTICA 2023; 10:513-519. [PMID: 38239819 PMCID: PMC10795508 DOI: 10.1364/optica.485989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 01/22/2024]
Abstract
X-ray free-electron lasers (XFELs) provide intense pulses that can generate stimulated X-ray emission, a phenomenon that has been observed and studied in materials ranging from neon to copper. Two schemes have been employed: amplified spontaneous emission (ASE) and seeded stimulated emission (SSE), where a second color XFEL pulse provides the seed. Both phenomena are currently explored for coherent X-ray laser sources and spectroscopy. Here, we report measurements of ASE and SSE of the 5.9 keV Mn Kα1 fluorescence line from a 3.9 molar NaMnO4 solution, pumped with 7 femtosecond FWHM XFEL pulses at 6.6 keV. We observed ASE at a pump pulse intensity of 1.7 × 1019 W/cm2, consistent with earlier findings. We observed SSE at dramatically reduced pump pulse intensities down to 1.1 × 1017 W/cm2. These intensities are well within the range of many existing XFEL instruments, which supports the experimental feasibility of SSE as a tool to generate coherent X-ray pulses, spectroscopic studies of transition metal complexes, and other applications.
Collapse
Affiliation(s)
- Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aliaksei Halavanau
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yu Zhang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yurina Michine
- Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Joshua Everts
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 9402, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Franklin Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - IChiro Inoue
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jumpei Yamada
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nina Rohringer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, Universität Hamburg, Hamburg 20355, Germany
| | - Hitoki Yoneda
- Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 9402, USA
| | - Claudio Pellegrini
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Hoffman DJ, Van Driel TB, Kroll T, Crissman CJ, Ryland ES, Nelson KJ, Cordones AA, Koralek JD, DePonte DP. Microfluidic liquid sheets as large-area targets for high repetition XFELs. Front Mol Biosci 2022; 9:1048932. [PMID: 36567947 PMCID: PMC9780453 DOI: 10.3389/fmolb.2022.1048932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The high intensity of X-ray free electron lasers (XFELs) can damage solution-phase samples on every scale, ranging from the molecular or electronic structure of a sample to the macroscopic structure of a liquid microjet. By using a large surface area liquid sheet microjet as a sample target instead of a standard cylindrical microjet, the incident X-ray spot size can be increased such that the incident intensity falls below the damage threshold. This capability is becoming particularly important for high repetition rate XFELs, where destroying a target with each pulse would require prohibitively large volumes of sample. We present here a study of microfluidic liquid sheet dimensions as a function of liquid flow rate. Sheet lengths, widths and thickness gradients are shown for three styles of nozzles fabricated from isotropically etched glass. In-vacuum operation and sample recirculation using these nozzles is demonstrated. The effects of intense XFEL pulses on the structure of a liquid sheet are also briefly examined.
Collapse
Affiliation(s)
- David J. Hoffman
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Tim B. Van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, United States
| | - Christopher J. Crissman
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States
- United States Military Academy, West Point, NY, United States
| | - Elizabeth S. Ryland
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, United States
| | - Kacie J. Nelson
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, United States
| | - Amy A. Cordones
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, United States
| | - Jake D. Koralek
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | | |
Collapse
|
8
|
Fransson T, Alonso-Mori R, Chatterjee R, Cheah MH, Ibrahim M, Hussein R, Zhang M, Fuller F, Gul S, Kim IS, Simon PS, Bogacz I, Makita H, de Lichtenberg C, Song S, Batyuk A, Sokaras D, Massad R, Doyle M, Britz A, Weninger C, Zouni A, Messinger J, Yachandra VK, Yano J, Kern J, Bergmann U. Effects of x-ray free-electron laser pulse intensity on the Mn K β 1,3 x-ray emission spectrum in photosystem II-A case study for metalloprotein crystals and solutions. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:064302. [PMID: 34849380 PMCID: PMC8610604 DOI: 10.1063/4.0000130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/24/2021] [Indexed: 05/21/2023]
Abstract
In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kβ x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kβ XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kβ1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry – Ångström Laboratory, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Mohamed Ibrahim
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Rana Hussein
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Miao Zhang
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | - Franklin Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ramzi Massad
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | - Athina Zouni
- Humboldt-Universität zu Berlin, Department of Biology, 10099 Berlin, Germany
| | | | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Fuller FD, Loukianov A, Takanashi T, You D, Li Y, Ueda K, Fransson T, Yabashi M, Katayama T, Weng TC, Alonso-Mori R, Bergmann U, Jan Kern, Yachandra VK, Wernet P, Yano J. Resonant X-ray emission spectroscopy from broadband stochastic pulses at an X-ray free electron laser. Commun Chem 2021; 4:84. [PMID: 35291552 PMCID: PMC8920481 DOI: 10.1038/s42004-021-00512-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/21/2021] [Indexed: 01/27/2023] Open
Abstract
Hard X-ray spectroscopy is an element specific probe of electronic state, but signals are weak and require intense light to study low concentration samples. Free electron laser facilities offer the highest intensity X-rays of any available light source. The light produced at such facilities is stochastic, with spikey, broadband spectra that change drastically from shot to shot. Here, using aqueous ferrocyanide, we show that the resonant X-ray emission (RXES) spectrum can be inferred by correlating for each shot the fluorescence intensity from the sample with spectra of the fluctuating, self-amplified spontaneous emission (SASE) source. We obtain resolved narrow and chemically rich information in core-to-valence transitions of the pre-edge region at the Fe K-edge. Our approach avoids monochromatization, provides higher photon flux to the sample, and allows non-resonant signals like elastic scattering to be simultaneously recorded. The spectra obtained match well with spectra measured using a monochromator. We also show that inaccurate measurements of the stochastic light spectra reduce the measurement efficiency of our approach.
Collapse
Affiliation(s)
| | | | | | | | - Yiwen Li
- Tohoku University, Sendai, Miyagi Japan
| | | | | | | | - Tetsuo Katayama
- RIKEN SPring-8 Center, Sayo, Hyogo Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo Japan
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | | - Jan Kern
- Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Junko Yano
- Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
10
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|