1
|
Bai Y, Yang G, Liu T, Chen F, Xia J. Dynamic Chromatin Accessibility and Transcriptional Regulation in the Eyes of Red Tilapia (Oreochromis sp.) in Response to Wintering Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:47. [PMID: 39937323 DOI: 10.1007/s10126-025-10424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
During wintering, red tilapia may develop variable black spots on their bodies, significantly reducing their market value. Understanding the mechanisms driving this phenomenon is essential for molecular improvements in body color. In this study, we investigated chromatin accessibility landscapes in the eyes of red tilapia with two distinct phenotypes (normal pure red and black spot) under wintering stress using ATAC-seq and RNA-seq analyses. We observed that approximately 32.7% of chromatin accessibility peaks were located in promoter regions, followed by intergenic regions (32.4%) and intronic regions (26.7%). One thousand two hundred twenty-nine differentially accessible regions (DARs) and 1448 differentially expressed genes (DEGs) were identified between the RS and DS groups. Notably, DEGs associated with melanin synthesis, including tyrp1, tyr, tyrp1b, pmela, slc24a5, and mlph, were significantly upregulated in the DS group, which aligns with the observed 1.85-fold increase in melanin content, compared to the RS group. 92 DEGs were associated with significant changes in chromatin accessibility between groups (R2 = 0.8059; p < 0.0001), indicating potential regulatory relationships. Interestingly, 23.92% of the DARs were located on the chromosome 3. Specifically, a 2.5-fold difference in average peak height on LG3: 11,215,273-11,217,225 were observed between DS and RS tilapia. In the region, transcription factors including HSF1 and HSF2 were identified as key regulators of chromatin structure and gene expression under wintering stress. Our findings reveal that dynamic chromatin accessibility in the eyes of red tilapia facilitates adaptation to wintering stress by regulating visual signaling, melanin production, and downstream pigmentation.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Gan Yang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tongde Liu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Fuyan Chen
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Junhong Xia
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Nguyen AV, Berger BH, Abdullaev Z, Gearhart S, Castro-Echeverry E, Aldape K, Trumble E, Lehman NL. Frontal lobe intra-axial schwannoma harboring a CHD7::VGLL3 fusion and heterozygous TSC2 p.F1510del mutation in a young child. Mol Biol Rep 2025; 52:112. [PMID: 39792305 PMCID: PMC11723850 DOI: 10.1007/s11033-024-10201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection. METHODS AND RESULTS We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.1510del mutation in a patient with autism-like symptoms. Although tuberous sclerosis is generally not associated with increased risk of schwannoma, mTORC1 activity, which is inhibited by intact TSC1/TSC2 complex, is involved in schwannoma progression. This patient's tumor also harbored a CHD7::VGLL3 fusion consistent with its genomic DNA methylation classification of CNS Schwannoma, VGLL-fused. The Hippo pathway, mTORC1, and VGLL3 all negatively regulate the YAP1/TEAD cotranscriptional complex. We hypothesize that this schwannoma may have arisen because of increased VGLL3 functional activity from the CHD7::VGLL3 fusion and, perhaps, increased mTORC1 activity due to TSC2 mutation, and their combined effects on the balance between YAP1/TEAD- and VGLL3/TEAD-mediated transcriptional programs. CONCLUSIONS We present a frontal lobe intra-axial parenchymal schwannoma containing a CHD7::VGLL3 gene fusion presenting in a 19 month-old male, the youngest patient yet reported for this lesion.
Collapse
Affiliation(s)
- Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Blaine H Berger
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Samuel Gearhart
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Eduardo Castro-Echeverry
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eric Trumble
- Department of Neurosurgery, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA.
| |
Collapse
|
3
|
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC, Aguilo F. Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep 2024; 14:28495. [PMID: 39557885 PMCID: PMC11574112 DOI: 10.1038/s41598-024-78920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs). To further investigate the CHD7-LSD1 crosstalk, we engineered Chd7 and Chd7/Lsd1 knockout (KO) mouse ESCs. We show that CHD7 is dispensable for ESC self-renewal and survival, while Chd7 KO ESCs can differentiate towards embryoid bodies (EBs) with defective expression of ectodermal markers. Intriguingly, Chd7/Lsd1 double KO mouse ESCs exhibit proliferation defects similar to Lsd1 KO ESCs and have lost the capacity to differentiate properly. Furthermore, the increased co-occupancy of H3K4me1 and CHD7 on chromatin following Lsd1 deletion suggests that LSD1 is required for facilitating the proper binding of CHD7 to chromatin and regulating differentiation. Collectively, our results suggest that LSD1 and CHD7 work in concert to modulate gene expression and influence proper cell fate determination.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Cyrinne Achour
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21, Solna, Sweden
| | - David Martinez-Delgado
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|
4
|
Nolan B, Reznicek TE, Cummings CT, Rowley MJ. The chromatin tapestry as a framework for neurodevelopment. Genome Res 2024; 34:1477-1486. [PMID: 39472026 PMCID: PMC11529992 DOI: 10.1101/gr.278408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The neuronal nucleus houses a meticulously organized genome. Within this structure, genetic material is not simply compacted but arranged into a precise and functional 3D chromatin landscape essential for cellular regulation. This mini-review highlights the importance of this chromatin landscape in healthy neurodevelopment, as well as the diseases that occur with aberrant chromatin architecture. We discuss insights into the fundamental mechanistic relationship between histone modifications, DNA methylation, and genome organization. We then discuss findings that reveal how these epigenetic features change throughout normal neurodevelopment. Finally, we highlight single-gene neurodevelopmental disorders that illustrate the interdependence of epigenetic features, showing how disruptions in DNA methylation or genome architecture can ripple across the entire epigenome. As such, we emphasize the importance of measuring multiple chromatin architectural aspects, as the disruption of one mechanism can likely impact others in the intricate epigenetic network. This mini-review underscores the vast gaps in our understanding of chromatin structure in neurodevelopmental diseases and the substantial research needed to understand the interplay between chromatin features and neurodevelopment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA;
| |
Collapse
|
5
|
Williams RM, Taylor G, Ling ITC, Candido-Ferreira I, Fountain DM, Mayes S, Ateş-Kalkan PS, Haug JO, Price AJ, McKinney SA, Bozhilovh YK, Tyser RCV, Srinivas S, Hughes JR, Sauka-Spengler T. Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors. PLoS Biol 2024; 22:e3002786. [PMID: 39418292 PMCID: PMC11521297 DOI: 10.1371/journal.pbio.3002786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/29/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Neurocristopathies such as CHARGE syndrome result from aberrant neural crest development. A large proportion of CHARGE cases are attributed to pathogenic variants in the gene encoding CHD7, chromodomain helicase DNA binding protein 7, which remodels chromatin. While the role for CHD7 in neural crest development is well documented, how this factor is specifically up-regulated in neural crest cells is not understood. Here, we use epigenomic profiling of chick and human neural crest to identify a cohort of enhancers regulating Chd7 expression in neural crest cells and other tissues. We functionally validate upstream transcription factor binding at candidate enhancers, revealing novel epistatic relationships between neural crest master regulators and Chd7, showing tissue-specific regulation of a globally acting chromatin remodeller. Furthermore, we find conserved enhancer features in human embryonic epigenomic data and validate the activity of the human equivalent CHD7 enhancers in the chick embryo. Our findings embed Chd7 in the neural crest gene regulatory network and offer potentially clinically relevant elements for interpreting CHARGE syndrome cases without causative allocation.
Collapse
Affiliation(s)
- Ruth M. Williams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Guneş Taylor
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Irving T. C. Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, Department of Paediatric Surgery, Children’s Hospital Oxford, Oxford, United Kingdom
| | - Ivan Candido-Ferreira
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Daniel M. Fountain
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Sarah Mayes
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | | | - Julianna O. Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yavor K. Bozhilovh
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Richard C. V. Tyser
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Jim R. Hughes
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| |
Collapse
|
6
|
Lomboni DJ, Ozgun A, de Medeiros TV, Staines W, Naccache R, Woulfe J, Variola F. Electroconductive Collagen-Carbon Nanodots Nanocomposite Elicits Neurite Outgrowth, Supports Neurogenic Differentiation and Accelerates Electrophysiological Maturation of Neural Progenitor Spheroids. Adv Healthc Mater 2024; 13:e2301894. [PMID: 37922888 PMCID: PMC11481026 DOI: 10.1002/adhm.202301894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.
Collapse
Affiliation(s)
- David J. Lomboni
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
| | - Alp Ozgun
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Tayline V. de Medeiros
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - William Staines
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - John Woulfe
- The Ottawa Hospital Research InstituteOttawaONK1Y 4E9Canada
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| |
Collapse
|
7
|
Stathopoulou A, Wang P, Thellier C, Kelly RG, Zheng D, Scambler PJ. CHARGE syndrome-associated CHD7 acts at ISL1-regulated enhancers to modulate second heart field gene expression. Cardiovasc Res 2023; 119:2089-2105. [PMID: 37052590 PMCID: PMC10478754 DOI: 10.1093/cvr/cvad059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/20/2022] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.
Collapse
Affiliation(s)
- Athanasia Stathopoulou
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | | | - Robert G Kelly
- Aix-Marseille University, CNRS UMR 7288, IBDM, Marseille, France
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
8
|
Shi L, Wang Z, Li Y, Song Z, Yin W, Hu B. Deletion of the chd7 Hinders Oligodendrocyte Progenitor Cell Development and Myelination in Zebrafish. Int J Mol Sci 2023; 24:13535. [PMID: 37686337 PMCID: PMC10488005 DOI: 10.3390/ijms241713535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
CHD7, an encoding ATP-dependent chromodomain helicase DNA-binding protein 7, has been identified as the causative gene involved in CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia choanae, Retardation of growth and/or development, Genital abnormalities and Ear abnormalities). Although studies in rodent models have expanded our understanding of CHD7, its role in oligodendrocyte (OL) differentiation and myelination in zebrafish is still unclear. In this study, we generated a chd7-knockout strain with CRISPR/Cas9 in zebrafish. We observed that knockout (KO) of chd7 intensely impeded the oligodendrocyte progenitor cells' (OPCs) migration and myelin formation due to massive expression of chd7 in oilg2+ cells, which might provoke upregulation of the MAPK signal pathway. Thus, our study demonstrates that chd7 is critical to oligodendrocyte migration and myelination during early development in zebrafish and describes a mechanism potentially associated with CHARGE syndrome.
Collapse
Affiliation(s)
- Lingyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Zongyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Yujiao Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Zheng Song
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Wu Yin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
9
|
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, Sjöström M, Chou J, Chang K, Moreno-Rodriguez T, Shrestha R, Baskin A, Zhu X, Weinstein AS, Younger N, Alumkal JJ, Beer TM, Chi KN, Evans CP, Gleave M, Lara PN, Reiter RE, Rettig MB, Witte ON, Wyatt AW, Feng FY, Small EJ, Quigley DA. The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer. Cancer Res 2023; 83:2763-2774. [PMID: 37289025 PMCID: PMC10425725 DOI: 10.1158/0008-5472.can-23-0593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.
Collapse
Affiliation(s)
- Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kevin Chang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Avi Baskin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Alana S. Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Noah Younger
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joshi J. Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Tomasz M. Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher P. Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Department of Urologic Surgery, University of California Davis, Sacramento, California
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Primo N. Lara
- Comprehensive Cancer Center, University of California Davis, Sacramento, California
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, California
| | - Rob E. Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Matthew B. Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
10
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Krueger LA, Bills JD, Lim ZY, Skidmore JM, Martin DM, Morris AC. Chromatin remodeler Chd7 regulates photoreceptor development and outer segment length. Exp Eye Res 2023; 226:109299. [PMID: 36343670 PMCID: PMC10354686 DOI: 10.1016/j.exer.2022.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Mutations in the chromatin remodeling factor CHD7 are the predominant cause of CHARGE syndrome, a congenital disorder that frequently includes ocular coloboma. Although CHD7 is known to be required for proper ocular morphogenesis, its role in retinal development has not been thoroughly investigated. Given that individuals with CHARGE syndrome can experience visual impairment even in the absence of coloboma, a better understanding of CHD7 function in the retina is needed. In this study, we characterized the expression pattern of Chd7 in the developing zebrafish and mouse retina and documented ocular and retinal phenotypes in Chd7 loss-of-function mutants. Zebrafish Chd7 was expressed throughout the retinal neuroepithelium when retinal progenitor cells were actively proliferating, and later in subsets of newly post-mitotic retinal cells. At stages of retinal development when most retinal cell types had terminally differentiated, Chd7 expression remained strong in the ganglion cell layer and in some cells in the inner nuclear layer. Intriguingly, strong expression of Chd7 was also observed in the outer nuclear layer where it was co-expressed with markers of post-mitotic cone and rod photoreceptors. Expression of mouse CHD7 displayed a similar pattern, including expression in the ganglion cells, subsets of inner nuclear layer cells, and in the distal outer nuclear layer as late as P15. Two different mutant chd7 zebrafish lines were characterized for ocular and retinal defects. These mutants displayed microphthalmia, reduced numbers of cone photoreceptors, and truncated rod and cone photoreceptor outer segments. Reduced cone photoreceptor number and abnormal outer segments were also observed in heterozygous Chd7 mutant mice. Taken together, our results in zebrafish and mouse reveal a conserved, previously undescribed role for Chd7 in retinal development and photoreceptor outer segment morphogenesis. Moreover, our work suggests an avenue of future investigation into the pathogenesis of visual system defects in CHARGE syndrome.
Collapse
Affiliation(s)
- Laura A Krueger
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Jessica D Bills
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Zun Yi Lim
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | | | - Donna M Martin
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA.
| |
Collapse
|
12
|
Ritter KE, Lynch SM, Gorris AM, Beyer LA, Kabara L, Dolan DF, Raphael Y, Martin DM. Loss of the chromatin remodeler CHD7 impacts glial cells and myelination in the mouse cochlear spiral ganglion. Hear Res 2022; 426:108633. [PMID: 36288662 PMCID: PMC10184650 DOI: 10.1016/j.heares.2022.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
CHARGE syndrome is a multiple anomaly developmental disorder characterized by a variety of sensory deficits, including sensorineural hearing loss of unknown etiology. Most cases of CHARGE are caused by heterozygous pathogenic variants in CHD7, the gene encoding Chromodomain DNA-binding Protein 7 (CHD7), a chromatin remodeler important for the development of neurons and glial cells. Previous studies in the Chd7Gt/+ mouse model of CHARGE syndrome showed substantial neuron loss in the early stages of the developing inner ear that are compensated for by mid-gestation. In this study, we sought to determine if early developmental delays caused by Chd7 haploinsufficiency affect neurons, glial cells, and inner hair cell innervation in the mature cochlea. Analysis of auditory brainstem response recordings in Chd7Gt/+ adult animals showed elevated thresholds at 4 kHz and 16 kHz, but no differences in ABR Wave I peak latency or amplitude compared to wild type controls. Proportions of neurons in the Chd7Gt/+ adult spiral ganglion and densities of nerve projections from the spiral ganglion to the organ of Corti were not significantly different from wild type controls. Inner hair cell synapse formation also appeared unaffected in mature Chd7Gt/+ cochleae. However, histological analysis of adult Chd7Gt/+ cochleae revealed diminished satellite glial cells and hypermyelinated Type I spiral ganglion axons. We characterized the expression of CHD7 in developing inner ear glia and found CHD7 to be expressed during a tight window of inner ear development at the Schwann cell precursor stage at E9.5. While cochlear neurons appear to differentiate normally in the setting of Chd7 haploinsufficiency, our results suggest an important role for CHD7 in glial cells in the inner ear. This study highlights the dynamic nature of CHD7 activity during inner ear development in mice and contributes to understanding CHARGE syndrome pathology.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sloane M Lynch
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Ashley M Gorris
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Lisa Kabara
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - David F Dolan
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions. Sci Rep 2022; 12:14147. [PMID: 35986054 PMCID: PMC9391418 DOI: 10.1038/s41598-022-18400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Embryoid cells and induced pluripotent stem cells (iPSCs) are pluripotent stem cells (PSCs). They retain differentiation and self-renewal potential. However, the differentiation potential of PSCs can be changed by the culture medium. PSCs retain their differentiation potential when cultured with medium that supports the glycolytic pathway, showing high expression of chromodomain-helicase-DNA-binding protein 7 (CHD7), but lose their differentiation potential with medium that supports mitochondrial function, showing reduced levels of CHD7. Labeling cells by their copy number variant profile revealed that genetically different PSC populations can be cultured by medium selection. Another factor that defines the self-renewal potential of PSCs is culture condition. PSCs form colonies as they grow, and spontaneous differentiation inevitably occurs along the rim of these colonies in areas that lack cell-to-cell contact; because of this, undifferentiated cell populations would diminish if differentiated cells are not removed properly. Seeding cells on a less potent cell-binding material may minimize the inclusion of differentiated cells, exploiting the reduced adhesive properties of differentiated cells. Culturing cells with medium that supports the glycolytic pathway, using CHD7 as a biomarker for differentiation potential, and culturing cells on less sticky material can improve the differentiation potential of already established PSC clones.
Collapse
|
15
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Decaesteker B, Durinck K, Van Roy N, De Wilde B, Van Neste C, Van Haver S, Roberts S, De Preter K, Vermeirssen V, Speleman F. From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk Neuroblastoma. J Pers Med 2021; 11:1286. [PMID: 34945759 PMCID: PMC8707517 DOI: 10.3390/jpm11121286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- G087221N, G.0507.12, G049720N,12U4718N, 11C3921N, 11J8313N, 12B5313N, 1514215N, 1197617N,1238420N, 12Q8322N, 3F018519, 12N6917N Fund for Scientific Research Flanders
- 2018-087, 2018-125, 2020-112 Belgian Foundation against Cancer
Collapse
Affiliation(s)
- Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Nadine Van Roy
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Bram De Wilde
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Christophe Van Neste
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stéphane Van Haver
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Vanessa Vermeirssen
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Zwijnaarde, Belgium
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| |
Collapse
|
17
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
18
|
Ding S, Lan X, Meng Y, Yan C, Li M, Li X, Chen J, Jiang W. CHD8 safeguards early neuroectoderm differentiation in human ESCs and protects from apoptosis during neurogenesis. Cell Death Dis 2021; 12:981. [PMID: 34686651 PMCID: PMC8536677 DOI: 10.1038/s41419-021-04292-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
The chromatin remodeler CHD8, which belongs to the ATP-dependent chromatin remodelers CHD family, is one of the most high-risk mutated genes in autism spectrum disorders. However, the role of CHD8 in neural differentiation and the mechanism of CHD8 in autism remains unclear, despite there are a few studies based on the CHD8 haploinsufficient models. Here, we generate the CHD8 knockout human ESCs by CRISPR/Cas9 technology and characterize the effect of loss-of-function of CHD8 on pluripotency maintenance and lineage determination by utilizing efficient directed differentiation protocols. The results show loss-of-function of CHD8 does not affect human ESC maintenance although having slight effect on proliferation and cell cycle. Interestingly, CHD8 depletion results in defective neuroectoderm differentiation, along with severe cell death in neural progenitor stage. Transcriptome analysis also indicates CHD8 does not alter the expression of pluripotent genes in ESC stage, but in neural progenitor cells depletion of CHD8 induces the abnormal expression of the apoptosis genes and suppresses neuroectoderm-related genes. These results provide the evidence that CHD8 plays an essential role in the pluripotency exit and neuroectoderm differentiation as well as the regulation of apoptosis during neurogenesis.
Collapse
Affiliation(s)
- Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, China Brain Research Center, Medical Research Institute, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 102206, Beijing, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China.
- Human Genetics Resource Preservation Center of Wuhan University, 430071, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, 430071, Wuhan, China.
| |
Collapse
|
19
|
Dickson BC, Antonescu CR, Demicco EG, Leong I, Anderson ND, Swanson D, Zhang L, Fletcher CD, Hornick JL. Hybrid schwannoma-perineurioma frequently harbors VGLL3 rearrangement. Mod Pathol 2021; 34:1116-1124. [PMID: 33649458 PMCID: PMC8154639 DOI: 10.1038/s41379-021-00783-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Benign peripheral nerve tumors include schwannoma, neurofibroma, and perineurioma, as well as a recently recognized group of tumors with dual patterns of differentiation. The molecular pathogenesis of these so-called "hybrid" tumors remains poorly understood. Following identification of a novel CHD7-VGLL3 fusion gene in a hybrid schwannoma-perineurioma, we evaluated an expanded cohort of this tumor-type-as well as tumors with VGLL3 rearrangement identified from a curated molecular database-to characterize the prevalence of fusion genes among these tumors. Eighteen tumors met the inclusion criteria for this study. RNA sequencing identified VGLL3 rearrangement in 14 of these cases; the partner genes included CHD7 (ten cases), CHD9 (two cases), and MAMLD1 (two cases). Two cases possessed altogether unrelated fusions, including: DST-BRAF and SQSTM1-CDX1 fusion genes. Finally, two cases lacked identifiable fusion products. These findings highlight the molecular diversity of these neoplasms, with frequent rearrangement of VGLL3. More importantly, despite their dual pattern of differentiation, our results reveal the pathogenesis of hybrid schwannoma-perineurioma is unrelated to conventional schwannoma and perineurioma, thereby implying this tumor represents an altogether pathologically distinct entity.
Collapse
Affiliation(s)
- Brendan C. Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, Ontario, Canada M5G 1X5; Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada,Corresponding Authors: Brendan C. Dickson, MD, MSc, Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Suite 6.500.12.5, Toronto, Ontario, Canada M5G 1X5, P: (416) 586-4800 / F: (416) 586-8628, ; Jason L. Hornick, MD, PhD, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 02115, P: (617) 525-7257 / F: (617) 566-3897,
| | | | - Elizabeth G. Demicco
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, Ontario, Canada M5G 1X5; Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Iona Leong
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, Ontario, Canada M5G 1X5; Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathaniel D. Anderson
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David Swanson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, Ontario, Canada M5G 1X5; Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D.M. Fletcher
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, Massachusetts, USA, 02115; Harvard Medical School, Boston, Massachusetts, USA
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, Massachusetts, USA, 02115; Harvard Medical School, Boston, Massachusetts, USA,Corresponding Authors: Brendan C. Dickson, MD, MSc, Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Suite 6.500.12.5, Toronto, Ontario, Canada M5G 1X5, P: (416) 586-4800 / F: (416) 586-8628, ; Jason L. Hornick, MD, PhD, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 02115, P: (617) 525-7257 / F: (617) 566-3897,
| |
Collapse
|
20
|
Parodi C, Di Fede E, Peron A, Viganò I, Grazioli P, Castiglioni S, Finnell RH, Gervasini C, Vignoli A, Massa V. Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Front Cell Dev Biol 2021; 9:654467. [PMID: 33959609 PMCID: PMC8093873 DOI: 10.3389/fcell.2021.654467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal exposure to valproate (VPA), an antiepileptic drug, has been associated with fetal valproate spectrum disorders (FVSD), a clinical condition including congenital malformations, developmental delay, intellectual disability as well as autism spectrum disorder, together with a distinctive facial appearance. VPA is a known inhibitor of histone deacetylase which regulates the chromatin state. Interestingly, perturbations of this epigenetic balance are associated with chromatinopathies, a heterogeneous group of Mendelian disorders arising from mutations in components of the epigenetic machinery. Patients affected from these disorders display a plethora of clinical signs, mainly neurological deficits and intellectual disability, together with distinctive craniofacial dysmorphisms. Remarkably, critically examining the phenotype of FVSD and chromatinopathies, they shared several overlapping features that can be observed despite the different etiologies of these disorders, suggesting the possible existence of a common perturbed mechanism(s) during embryonic development.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit-Epilepsy Center, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Viganò
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|