1
|
Waller MJ, Humphries NE, Womersley FC, Loveridge A, Jeffries AL, Watanabe Y, Payne N, Semmens J, Queiroz N, Southall EJ, Sims DW. The vulnerability of sharks, skates, and rays to ocean deoxygenation: Physiological mechanisms, behavioral responses, and ecological impacts. JOURNAL OF FISH BIOLOGY 2024; 105:482-511. [PMID: 38852616 DOI: 10.1111/jfb.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Collapse
Affiliation(s)
- Matt J Waller
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | | | | | - Amy L Jeffries
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Yuuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | - Nicholas Payne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jayson Semmens
- Institue for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Nuno Queiroz
- CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | | | - David W Sims
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Coulon N, Pilet S, Lizé A, Lacoue-Labarthe T, Sturbois A, Toussaint A, Feunteun E, Carpentier A. Shark critical life stage vulnerability to monthly temperature variations under climate change. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106531. [PMID: 38696933 DOI: 10.1016/j.marenvres.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France.
| | - Stanislas Pilet
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France
| | - Anne Lizé
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Anthony Sturbois
- VivArmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Laboratoire des Sciences de l'environnement Marin (LEMAR), UMR 6539, France
| | - Aurèle Toussaint
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 - UPS-CNRS-IRD-INP, Université Paul-Sabatier - Toulouse 3, Toulouse, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; Centre de GéoEcologie Littorale (CGEL, EPHE-PSL), Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Rennes, France
| |
Collapse
|
3
|
Eustache KB, van Loon E, Rummer JL, Planes S, Smallegange I. Spatial and temporal analysis of juvenile blacktip reef shark (Carcharhinus melanopterus) demographies identifies critical habitats. JOURNAL OF FISH BIOLOGY 2024; 104:92-103. [PMID: 37726231 DOI: 10.1111/jfb.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.
Collapse
Affiliation(s)
- Kim B Eustache
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies and the College of Science and Engineering James Cook University, Townsville, Queensland, Australia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL," EPHE, PSL Research University, UPVD, CNRS, UAR 3278 CRIOBE, Papetoai, French Polynesia
| | - Isabel Smallegange
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Giareta EP, Hauser-Davis RA, Abilhoa V, Wosnick N. Carbonic anhydrase in elasmobranchs and implications of the current climate change scenario. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111435. [PMID: 37086909 DOI: 10.1016/j.cbpa.2023.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The enzyme carbonic anhydrase (CA) has well-known functions in acid-base balance, respiratory gas exchange, and osmoregulation in teleost fishes. However, studies concerning the role of CA in elasmobranchs are still scarce. Therefore, the aim of this study is to present the current status of CA studies in sharks and rays, as well as to identify gaps and emerging needs, in order to guide future studies. This review is organized according to the main roles of CA, with further considerations on climate change and CA effects indicated as paramount, as strategies in the face of climate change can be crucial for species response. The literature review revealed a reduction in publications on CA over the years. In addition, a historical research differentiation is noted, where the first assessments on the subject addressed investigations on basic CA functions, while the most recent studies present a comparative approach among species as well as interdisciplinary discussions, such as ecology and phylogeny. Considering that most elasmobranchs are threatened, future studies should prioritize non-lethal methodologies, in addition to expanding studies to climate change effects on CA.
Collapse
Affiliation(s)
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Vinícius Abilhoa
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Wheeler CR, Kneebone J, Heinrich D, Strugnell JM, Mandelman JW, Rummer JL. Diel Rhythm and Thermal Independence of Metabolic Rate in a Benthic Shark. J Biol Rhythms 2022; 37:484-497. [PMID: 35822624 DOI: 10.1177/07487304221107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms that are mediated by exogenous factors, such as light and temperature, drive the physiology of organisms and affect processes ranging from cellular to population levels. For elasmobranchs (i.e. sharks, rays, and skates), studies documenting diel activity and movement patterns indicate that many species are crepuscular or nocturnal in nature. However, few studies have investigated the rhythmicity of elasmobranch physiology to understand the mechanisms underpinning these distinct patterns. Here, we assess diel patterns of metabolic rates in a small meso-predator, the epaulette shark (Hemiscyllium ocellatum), across ecologically relevant temperatures and upon acutely removing photoperiod cues. This species possibly demonstrates behavioral sleep during daytime hours, which is supported herein by low metabolic rates during the day and a 1.7-fold increase in metabolic rates at night. From spring to summer seasons, where average average water temperature temperatures for this species range 24.5 to 28.5 °C, time of day, and not temperature, had the strongest influence on metabolic rate. These results indicate that this species, and perhaps other similar species from tropical and coastal environments, may have physiological mechanisms in place to maintain metabolic rate on a seasonal time scale regardless of temperature fluctuations that are relevant to their native habitats.
Collapse
Affiliation(s)
- Carolyn R Wheeler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jeff Kneebone
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Dennis Heinrich
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - John W Mandelman
- School for the Environment, The University of Massachusetts Boston, Boston, Massachusetts.,Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
Bouyoucos IA, Trujillo JE, Weideli OC, Nakamura N, Mourier J, Planes S, Simpfendorfer CA, Rummer JL. Investigating links between thermal tolerance and oxygen supply capacity in shark neonates from a hyperoxic tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146854. [PMID: 33853007 DOI: 10.1016/j.scitotenv.2021.146854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Temperature and oxygen limit the distribution of marine ectotherms. Haematological traits underlying blood-oxygen carrying capacity are thought to be correlated with thermal tolerance in certain fishes, and this relationship is hypothesised to be explained by oxygen supply capacity. We tested this hypothesis using reef shark neonates as experimental models because they live near their upper thermal limits and are physiologically sensitive to low oxygen conditions. We first described in situ associations between temperature and oxygen at the study site (Moorea, French Polynesia) and found that the habitats for reef shark neonates (Carcharhinus melanopterus and Negaprion acutidens) were hyperoxic at the maximum recorded temperatures. Next, we tested for in situ associations between thermal habitat characteristics and haematological traits of neonates. Contrary to predictions, we only demonstrated a negative association between haemoglobin concentration and maximum habitat temperatures in C. melanopterus. Next, we tested for ex situ associations between critical thermal maximum (CTMax) and haematological traits, but only demonstrated a negative association between haematocrit and CTMax in C. melanopterus. Finally, we measured critical oxygen tension (pcrit) ex situ and estimated its temperature sensitivity to predict oxygen-dependent values of CTMax. Estimated temperature sensitivity of pcrit was similar to reported values for sharks and skates, and predicted values for CTMax equalled maximum habitat temperatures. These data demonstrate unique associations between haematological traits and thermal tolerance in a reef shark that are likely not explained by oxygen supply capacity. However, a relationship between oxygen supply capacity and thermal tolerance remains to be demonstrated empirically.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - José E Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Nao Nakamura
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Johann Mourier
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia; Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
7
|
Yoon GR, Bjornson F, Deslauriers D, Anderson WG. Comparison of methods to quantify metabolic rate and its relationship with activity in larval lake sturgeon Acipenser fulvescens. JOURNAL OF FISH BIOLOGY 2021; 99:73-86. [PMID: 33583016 DOI: 10.1111/jfb.14700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Until recently most studies have focussed on method development for metabolic rate assessment in adult and/or juvenile fish with less focus on measurement of oxygen consumption (ṀO2 ) during early life history stages, including fast-growing larval fish and even less focus on nonteleostean species. In the present study we evaluated measurement techniques for standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope in an Acipenseriform, the lake sturgeon Acipenser fulvescens, throughout the first year of life. Standardized forced exercise protocols to assess MMR were conducted for 5 or 15 min before or after measurement of SMR. We used different levels of oxygen decline during the measurement period of MMR post forced exercise to understand the influence these may have on the calculation of MMR. Opercular rate and tail beat frequencies were recorded by video as measures of behaviours and compared to metabolic rate recorded over a 24 h period. Results indicate that calculated values for aerobic scope were lower in younger fish. Neither exercise sequence nor exercise duration influenced metabolic rate measurements in the younger fish, but exercise duration did affect measurement of MMR in older fish. Finally, there was no strong correlation between metabolic rate and the measured behaviours in the lake sturgeon at either age. Based on the results, we recommend that a minimum of 6 h of acclimation to the respirometry chamber should be given prior to measuring SMR, a chasing protocol to elicit MMR should ideally be performed at the end of experiment, a short chasing time should be avoided to minimize variation and assessment of MMR should balance measurement limitations of the probes along with when and for how long oxygen consumption is measured.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forrest Bjornson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Deslauriers
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|