1
|
Torres-Franco AF, Leroy-Freitas D, García-Encina PA, Muñoz R. Viral RNA reduction from wastewaters using microalgae-based treatments: Elucidating the effect of light and zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2025; 427:132389. [PMID: 40089032 DOI: 10.1016/j.biortech.2025.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microalgae-based systems can potentially inactivate E. coli and viruses. In this work, batch algal-bacterial photobioreactors were operated to elucidate the effect of zero-valent iron (ZVI) nanoparticles and light intensity on the reduction of viral RNA (MS2, Phi6 and Bovine coronavirus, BCoV) and uidA gene (E. coli) during secondary wastewater treatment. Biodegradation and abiotic control photoreactors were operated at high light intensity (1100 µE m-2 s-1), with and without ZVI-nanoparticles addition (HLNP and HL) and low light intensity (450 µE m-2 s-1), without nanoparticles (LL). After 72 h, HLNP matched or increased the reductions of at least 99.9 % for viruses and 99 % for uidA achieved within 192 h in HL and LL. Oxidative reactions in the presence of ZVI-nanoparticles seemed to mediate the decay of viral RNA and uidA. This work demonstrated for the first time the potential for enhanced reduction of viral RNA and E. coli by ZVI-nanoparticles during microalgae-based wastewater treatment.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
2
|
Torko F, Gibson KE. Optimization of An Enveloped Virus Surrogate, Bacteriophage Phi6, Recovery from Hands. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:21. [PMID: 40032703 PMCID: PMC11876259 DOI: 10.1007/s12560-025-09637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Surfaces contaminated with enveloped viruses, such as severe acute respiratory syndrome coronavirus 2 and influenza virus, can potentially spread illness via hand contact. Often, the efficacy of hand hygiene interventions relies on virus recovery from hands. However, the recovery of bacteriophage phi6 (Φ6), a recommended surrogate for enveloped viruses, from the entire hands using the ASTM E2011-21 standard has not been optimized. For Φ6 recovery from the hands, three eluents [lysogeny broth (LC), tryptic soy broth (TSB), and 1.5% beef extract (BE)] and three recovery methods [glove juice method (GJM), hand rinsing, and modified dish method] were examined. The effects of inoculum application on either the palmar surface or the whole hand were compared, and virus recovery was assessed under wet and dry conditions to identify the optimal combinations for maximizing Φ6 recovery. Statistical differences among methods, inoculum application, and recovery types were identified. While no statistical difference was observed among the eluents (P = 0.281), LC demonstrated the highest Φ6 recovery efficiency, while TSB and BE had comparable recoveries. Two-way interaction effects were observed between method type vs. application type (P ≤ 0.05), method type vs. recovery type (P ≤ 0.05), and application type vs. recovery type (P ≤ 0.05), indicating these factors influencing one another. Additionally, no Φ6 recovery was obtained for the dry basis recovery type and the GJM method type. Based on the present study, to maximize Φ6 recovery from the hands during hand hygiene studies, inoculum should be applied to the palmar surface and recovered while it is still wet using LC.
Collapse
Affiliation(s)
- Francis Torko
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA.
| |
Collapse
|
3
|
Pan J, Duggal NK, Lakdawala SS, Rockey NC, Marr LC. Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2192-2200. [PMID: 39823314 DOI: 10.1021/acs.est.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.1% and 0.5% mucin in phosphate-buffered saline (PBS) over 4 h at 20%, 50%, and 80% RH, with a maximum decay of 1.2 log10/mL. In contrast, in pure PBS droplets, the virus decayed by at least 2.6 log10/mL after 4 h at 50% and 80% RH. Mucin's protective effect was independent of its concentration, except at 80% RH after 4 h. Confocal microscopy of the particles revealed that at 20% and 50% RH, mucin led to thicker coffee rings and dendritic patterns where virions colocalized with mucin. At 80% RH, no morphological difference was observed between PBS-only and mucin-containing droplets, but virions still colocalized with mucin in the center of droplets with 0.5% mucin. Analysis by digital droplet PCR showed that mucin helped maintain virus integrity. To our knowledge, this is the first study to localize influenza virus in model respiratory droplets. The results suggest that mucin's colocalization with virions in droplets may protect the virus from environmental stressors, enhancing its stability.
Collapse
Affiliation(s)
- Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Ijaz MK, Zargar B, Nims RW, McKinney J, Sattar SA. Rapid virucidal activity of an air sanitizer against aerosolized MS2 and Phi6 phage surrogates for non-enveloped and enveloped vertebrate viruses, including SARS-CoV-2. Appl Environ Microbiol 2025; 91:e0142624. [PMID: 39641606 PMCID: PMC11784435 DOI: 10.1128/aem.01426-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
An air sanitizer was evaluated using an aerobiology protocol, compliant with the U.S. Environmental Protection Agency's Air Sanitizer Guidelines, for virucidal activity against bacteriophages Phi6 and MS2 (used as surrogates for enveloped and non-enveloped human pathogenic viruses). The phages were suspended in a medium containing a tripartite soil load simulating body fluids and aerosolized using a six-jet Collison nebulizer in an enclosed 25 m3 aerobiology chamber at 22 ± 2°C and 50 ± 10% relative humidity. The air sanitizer was sprayed into the chamber for 30 s. Viable phages in the air were captured directly, in real time, on host bacterial lawns using a slit-to-agar sampler. Reductions in viable phage concentration ≥3.0 log10 (99.9%) were observed after a mean exposure of 3.6 min for Phi6, suggesting efficacy against enveloped viruses (e.g., SARS-CoV-2, influenza, and RSV), and ~10.6 min for MS2, suggesting virucidal efficacy for non-enveloped viruses (e.g., noroviruses and rhinoviruses). This targeted air sanitization approach represents an important non-pharmaceutical public health intervention with virucidal efficacy against airborne viral pathogens.IMPORTANCEAirborne viruses are implicated in the transmission indoors of respiratory and enteric viral infections. Air sanitizers represent a non-pharmaceutical intervention to mitigate the risk of such viral transmission. We have developed a method that is now an ASTM International standard (ASTM E3273-21) as well as a test protocol approved by the U.S. EPA to evaluate the efficacy of air sanitizing sprays for inactivating airborne MS2 and Phi6 bacteriophage (used as surrogates for non-enveloped and enveloped human pathogenic viruses, respectively). The test phages were individually suspended in a soil load and aerosolized into a room-sized aerobiology chamber maintained at ambient temperature and relative humidity. Reductions in viable phage concentration ≥3.0 log10 (99.9%) were observed after a mean exposure of 3.6 min for Phi6, suggesting efficacy against enveloped viruses (e.g., SARS-CoV-2; influenza; RSV), and ~10.6 min for MS2, suggesting virucidal efficacy for non-enveloped viruses (e.g., noroviruses and rhinoviruses). The data suggest the utility of the air sanitizer for mitigating the risk of indoor viral transmission during viral pandemics and outbreaks.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser, Montvale, New Jersey, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser, Montvale, New Jersey, USA
| | - Syed A. Sattar
- CREM Co. Labs., Mississauga, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Beizman-Magen Y, Orevi T, Kashtan N. Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes. Appl Environ Microbiol 2025; 91:e0200424. [PMID: 39714150 PMCID: PMC11784440 DOI: 10.1128/aem.02004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing Bacillus velezensis FZB42 and two bacterial strains susceptible to its antibiotics: Xanthomonas euvesicatoria 85-10 and Pseudomonas syringae DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions. Notably, X. euvesicatoria shows increased protection against both the cells and supernatants of B. velezensis under wet-dry cycles, while P. syringae cells become more susceptible under wet-dry cycles. In addition, we observed a reciprocal interaction between P. syringae and B. velezensis, where P. syringae inhibits B. velezensis under wet conditions. Our findings highlight the important role of hydration conditions in shaping bacterial interference competition, providing valuable insights into the microbial ecology of water-unsaturated surfaces, with implications for applications such as biological control of plant pathogens and mitigating antibiotic resistance.IMPORTANCEOur study reveals that hydration conditions, particularly wet-dry cycles, significantly influence antibiotic-mediated competition between bacterial species. We revealed that the effectiveness of antibiotics produced by Bacillus velezensis against two susceptible bacterial species: Xanthomonas and Pseudomonas varies based on these hydration conditions. Unlike traditional laboratory environments, many real-world habitats, such as soil, plant surfaces, and even animal skin, undergo frequent wet-dry cycles. These conditions affect bacterial competition dynamics and outcomes, with wet-dry cycles providing increased protection for some bacteria while making others more susceptible. Our findings highlight the importance of considering environmental hydration when studying microbial interactions and developing biological control strategies. This research has important implications for improving agricultural practices and understanding natural microbial ecosystems.
Collapse
Affiliation(s)
- Yana Beizman-Magen
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| | - Tomer Orevi
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| | - Nadav Kashtan
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| |
Collapse
|
6
|
Andrews T, Duffy S. Complete genomes of common bacterial hosts of RNA bacteriophage Φ6. Microbiol Resour Announc 2025; 14:e0100024. [PMID: 39655919 PMCID: PMC11737137 DOI: 10.1128/mra.01000-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025] Open
Abstract
Bacterial plant pathogens Pseudomonas savastanoi pv. phaseolicola, P. syringae pv. tomato, P. syringae pv. atrofaciens, and P. oleovorans East River isolate A serve as common laboratory hosts for bacteriophage Φ6, a widely used model organism for enveloped viruses. Here, we report complete genome sequences for strains of these bacterial hosts.
Collapse
Affiliation(s)
- Taylor Andrews
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Pye HV, Krishnamurthi R, Cook R, Adriaenssens EM. Phage diversity in One Health. Essays Biochem 2024; 68:607-619. [PMID: 39475220 PMCID: PMC12055037 DOI: 10.1042/ebc20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Revathy Krishnamurthi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| |
Collapse
|
8
|
Goldblatt A, Loccisano MJ, Mahe MI, Dennehy JJ, Spagnolo F. Risk of infection due to airborne virus in classroom environments lacking mechanical ventilation. PLoS One 2024; 19:e0314002. [PMID: 39576765 PMCID: PMC11584072 DOI: 10.1371/journal.pone.0314002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
The COVID-19 pandemic highlighted the role of indoor environments on disease transmission. However, our understanding of how transmission occurred evolved as the pandemic progressed. Enclosed spaces where pathogen-laden aerosols accumulate were strongly linked to increased transmission events. Most classrooms, particulalry in the U.S., do not have any mechanical ventilation systems but do have many people congregating indoors for long periods of time. Here we employ a safe, non-pathogenic surrogate virus, the bacteriophage phi6, to interrogate aerosol transmission in classroom environments that do not have any natural or mechanical ventilation in order to provide baseline understanding of how effectively aerosols facilitate new infections. We measure exposure risk using a modified passive monitoring technique compliant with applicable standards, including ISO 14698-1:2003. We find that virus-laden aerosols establish new infections over all distances tested within minutes and that the time of exposure did not change transmission rate. We further find that relative humidity, but not temperature nor a UV-based disinfection device, significantly lowered transmission rates. Our data suggest that, even without mechanical ventilation, relative humidity remains an inexpensive and highly effective mitigation strategy while UV air treatment may not.
Collapse
Affiliation(s)
- Alexandra Goldblatt
- Biology Department, Queens College of The City University of New York, Flushing, NY, United States of America
| | - Michael J. Loccisano
- Biology Department, Queens College of The City University of New York, Flushing, NY, United States of America
| | - Mazharul I. Mahe
- Biology Department, Queens College of The City University of New York, Flushing, NY, United States of America
| | - John J. Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, NY, United States of America
- The Graduate Center of The City University of New York, New York, NY, United States of America
| | - Fabrizio Spagnolo
- Department of Life Sciences, Long Island University Post, Brookville, NY, United States of America
| |
Collapse
|
9
|
Williams RC, Perry WB, Lambert-Slosarska K, Futcher B, Pellett C, Richardson-O'Neill I, Paterson S, Grimsley JMS, Wade MJ, Weightman AJ, Farkas K, Jones DL. Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. WATER RESEARCH 2024; 259:121879. [PMID: 38865915 DOI: 10.1016/j.watres.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | - Ben Futcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK; The London Data Company, London, EC2N 2AT, UK
| | - Matthew J Wade
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
10
|
Maneein S, Sangsanont J, Limpiyakorn T, Sirikanchana K, Rattanakul S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: Removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172945. [PMID: 38703849 DOI: 10.1016/j.scitotenv.2024.172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly‑aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.
Collapse
Affiliation(s)
- Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
11
|
Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and droplets. J R Soc Interface 2024; 21:18. [PMID: 38920060 DOI: 10.1098/rsif.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
The inactivation of viruses in aerosol particles (aerosols) and droplets depends on many factors, but the precise mechanisms of inactivation are not known. The system involves complex physical and biochemical interactions. We reviewed the literature to establish current knowledge about these mechanisms and identify knowledge gaps. We identified 168 relevant papers and grouped results by the following factors: virus type and structure, aerosol or droplet size, temperature, relative humidity (RH) and evaporation, chemical composition of the aerosol or droplet, pH and atmospheric composition. These factors influence the dynamic microenvironment surrounding a virion and thus may affect its inactivation. Results indicate that viruses experience biphasic decay as the carrier aerosols or droplets undergo evaporation and equilibrate with the surrounding air, and their final physical state (liquid, semi-solid or solid) depends on RH. Virus stability, RH and temperature are interrelated, but the effects of RH are multifaceted and still not completely understood. Studies on the impact of pH and atmospheric composition on virus stability have raised new questions that require further exploration. The frequent practice of studying virus inactivation in large droplets and culture media may limit our understanding of inactivation mechanisms that are relevant for transmission, so we encourage the use of particles of physiologically relevant size and composition in future research.
Collapse
Affiliation(s)
- Alexandra K Longest
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University , Durham, NC, USA
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University , Atlanta, GA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
12
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
13
|
Gibbons AM, Ohno PE. Relative Humidity-Dependent Phase Transitions in Submicron Respiratory Aerosols. J Phys Chem A 2024; 128:3015-3023. [PMID: 38593044 DOI: 10.1021/acs.jpca.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Respiratory viruses, such as influenza and severe acute respiratory syndrome coronavirus 2, represent a substantial public health burden and are largely transmitted through respiratory droplets and aerosols. Environmental factors such as relative humidity (RH) and temperature impact virus transmission rates, and a precise mechanistic understanding of the connection between these environmental factors and virus transmission would improve efforts to mitigate respiratory disease transmission. Previous studies on supermicrometer particles observed RH-dependent phase transitions and linked particle phase state to virus viability. Phase transitions in atmospheric aerosols are dependent on size in the submicrometer range, and actual respiratory particles are expelled over a large size range, including submicrometer aerosols that can transmit diseases over long distances. Here, we directly investigated the phase transitions of submicrometer model respiratory aerosols. A probe molecule, Nile red, was added to particle systems including multiple mucin/salt mixtures, a growth medium, and simulated lung fluid. For each system, the polarity-dependent fluorescence emission was measured following RH conditioning. Notably, the fluorescence measurements of mucin/NaCl and Dulbecco's modified Eagle's medium particles indicated that liquid-liquid phase separation (LLPS) also occurs in submicron particles, suggesting that LLPS can also impact the viability of viruses in submicron particles and thus affect aerosol virus transmission. Furthermore, the utility of fluorescence-based measurements to study submicrometer respiratory particle physicochemical properties in situ is demonstrated.
Collapse
Affiliation(s)
- Angel M Gibbons
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Paul E Ohno
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
14
|
Zhang J, Zhan J, Jin J, Ma C, Zhao R, O’Connell J, Jiang Y, Koelsch BL, Zhang H, Chatterjee N. An Ensemble Penalized Regression Method for Multi-ancestry Polygenic Risk Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.15.532652. [PMID: 36993331 PMCID: PMC10055041 DOI: 10.1101/2023.03.15.532652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the prediction of complex traits and diseases. However, most existing PRS are primarily trained on European ancestry populations, limiting their transferability to non-European populations. In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-wide association studies (GWAS) summary statistics from diverse populations to develop ancestry-specific PRS with improved predictive power for minority populations. The method uses a combination of ℒ 1 (lasso) and ℒ 2 (ridge) penalty functions, a parsimonious specification of the penalty parameters across populations, and an ensemble step to combine PRS generated across different penalty parameters. We evaluate the performance of PROSPER and other existing methods on large-scale simulated and real datasets, including those from 23andMe Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can substantially improve multi-ancestry polygenic prediction compared to alternative methods across a wide variety of genetic architectures. In real data analyses, for example, PROSPER increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, PROSPER is computationally highly scalable for the analysis of large SNP contents and many diverse populations.
Collapse
Affiliation(s)
- Jingning Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Jin Jin
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheng Ma
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Ruzhang Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Garg A, Hawks S, Pan J, Wang W, Duggal N, Marr LC, Vikesland P, Zhou W. Machine learning-driven SERS fingerprinting of disintegrated viral components for rapid detection of SARS-CoV-2 in environmental dust. Biosens Bioelectron 2024; 247:115946. [PMID: 38141443 DOI: 10.1016/j.bios.2023.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Surveillance of airborne viruses in crowded indoor spaces is crucial for managing outbreaks, as highlighted by the SARS-CoV-2 pandemic. However, the rapid and on-site detection of fast-mutating viruses, such as SARS-CoV-2, in complex environmental backgrounds remains challenging. Our study introduces a machine learning (ML)-driven surface-enhanced Raman spectroscopy (SERS) approach for detecting viruses within environmental dust matrices. By decomposing intact virions into individual structural components via a Raman-background-free lysis protocol and concentrating them into nanogap SERS hotspots, we significantly enhance the SERS signal intensity and fingerprint information density from viral structural components. Utilizing Principal Component Analysis (PCA), we establish a robust connection between the SERS data of these structural components and their biological sequences, laying a solid foundation for virus detection through SERS. Furthermore, we demonstrate reliable quantitative detection of SARS-CoV-2 using identified SARS-CoV-2 peaks at concentrations down to 102 pfu/ml through Gaussian Process Regression (GPR) and a digital SERS methodology. Finally, applying a Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm, we identify SARS-CoV-2, influenza A virus, and Zika virus within an environmental dust background with over 86% accuracy. Therefore, our ML-driven SERS approach holds promise for rapid environmental virus monitoring to manage future outbreaks.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Seth Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Nisha Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
16
|
Watts S, Hänni E, Smith GN, Mahmoudi N, Freire RVM, Lim S, Salentinig S. Human antimicrobial peptide inactivation mechanism of enveloped viruses. J Colloid Interface Sci 2024; 657:971-981. [PMID: 38096780 DOI: 10.1016/j.jcis.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert. However, the exact mechanism of action is not yet understood. EXPERIMENTS Here, the mechanism of LL-37 triggered changes in the structure and function of an enveloped virus is investigated. The bacteriophage "Phi6" is used as a surrogate for pathogenic enveloped viruses. Small angle X-ray and neutron scattering combined with light scattering techniques demonstrate that LL-37 actively integrates into the virus's lipid envelope. FINDINGS LL-37 addition to Phi6 leads to curvature modification in the lipid bilayer, ultimately separating the envelope from the nucleocapsid. Additional biological assays confirm the loss of virus infectivity in the presence of LL-37, which coincides with the structural transformations. The results provide a fundamental understanding of the structure-activity relationship related to enveloped viruses. The knowledge of peptide-virus interactions can guide the design of future peptide-based antiviral drugs and therapies.
Collapse
Affiliation(s)
- Samuel Watts
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland; School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore
| | - Eliane Hänni
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Gregory N Smith
- ISIS Neutron and Muon Souce, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Najet Mahmoudi
- ISIS Neutron and Muon Souce, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Rockey NC, Le Sage V, Marr LC, Lakdawala SS. Seasonal influenza viruses decay more rapidly at intermediate humidity in droplets containing saliva compared to respiratory mucus. Appl Environ Microbiol 2024; 90:e0201023. [PMID: 38193683 PMCID: PMC10880610 DOI: 10.1128/aem.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.
Collapse
Affiliation(s)
- Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Rufyikiri AS, Martinez R, Addo PW, Wu BS, Yousefi M, Malo D, Orsat V, Vidal SM, Fritz JH, MacPherson S, Lefsrud M. Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2. Photochem Photobiol Sci 2024; 23:339-354. [PMID: 38308169 DOI: 10.1007/s43630-023-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024]
Abstract
Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.
Collapse
Affiliation(s)
- Anne Sophie Rufyikiri
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Rebecca Martinez
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Philip W Addo
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mitra Yousefi
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Danielle Malo
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Medicine, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Valérie Orsat
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Silvia M Vidal
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Jörg H Fritz
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
19
|
Chen M, Xing Y, Kong J, Wang D, Lu Y. Bubble manipulates the release of viral aerosols in aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132534. [PMID: 37741211 DOI: 10.1016/j.jhazmat.2023.132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Bubble bursting is a common phenomenon in many industrial and natural processes, plays an important role in mediating mass transfer across the water-air interface. But the interplay between bubbles and pathogens remains unclear and the mechanisms of virus aerosolization by the bubble properties have not been well studied. The main objective of this study was to evaluate the water-to-air transfer of viruses by bubbles of different sizes. Unlike the dominant view of smaller bubbles less bioaerosols, it was found that the smaller bubbles could generate significantly more viral aerosols regardless of the virus species (Phi6, MS2, PhiX174, and T7), when the Sauter mean bubble diameters were between 0.56 and 1.65 mm under constant aeration flow rate. The mechanism studies denied the possibilities of more aerosols or better dispersion of viruses in the aerosols generated by the smaller bubbles. However, deeper bubbling could transfer more viruses to the air for MS2, PhiX174, and T7. Their concentrations in aerosols were linearly related to the bubbling depth for these non-enveloped viruses, which demonstrates the bubble-scavenging effect as a main mechanism except for the enveloped virus Phi6. Whereas, unlike these three non-enveloped viruses, Phi6 could survive relatively better in the aerosols generated from the smaller bubbles, though the enhancement of aerosolization by the smaller bubbles was much larger than the improvement of survival. Other mechanisms still remain unknown for this enveloped virus. This study suggests that the attempt of decreasing the bubble size in aeration tank of the wastewater treatment plant might significantly increase the solubility of oxygen as well as the risk of viral aerosols.
Collapse
Affiliation(s)
- Menghao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingying Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
21
|
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One 2023; 18:e0294972. [PMID: 38079398 PMCID: PMC10712891 DOI: 10.1371/journal.pone.0294972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.
Collapse
Affiliation(s)
- Lorena Reyes-Carmona
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar A. Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Juan Manuel Bello-Lopez
- Dirección de Investigación, Hospital Juárez de México, Magdalena de las Salinas, CDMX, México
| | - Carlos Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
22
|
Xie T, Yang J, Fang C, Zhang J, Lin H, Zhu Y, Tang T, Wang C. The survival of murine hepatitis virus (a surrogate of SARS-CoV-2) on conventional packaging materials under cold chain conditions. Front Public Health 2023; 11:1319828. [PMID: 38115844 PMCID: PMC10728718 DOI: 10.3389/fpubh.2023.1319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction The cold chain conditions have been suggested to facilitate long-distance transmission of SARS-CoV-2, but it is unclear how viable the virus is on cold chain packaging materials. Methods This study used the MHV-JHM strain of murine hepatitis virus as a model organism to investigate the viability of SARS-CoV-2 on foam, plastic, cardboard, and wood sheets at different temperatures (-40°C, -20°C, and 4°C). In addition, the ability of peracetic acid and sodium hypochlorite to eliminate the MHV-JHM on plastic and cardboard sheets were also evaluated. Results The results indicate that MHV-JHM can survive on foam, plastic, or cardboard sheets for up to 28 days at -40°C and -20°C, and up to 14 days on foam and plastic surfaces at 4°C. Although viral nucleic acids were still detectable after storing at 4°C for 28 days, the corresponding virus titer was below the limit of quantification (LOQ). Discussion The study highlights that a positive nucleic acid test result may not indicate that the virus is still viable, and confirms that peracetic acid and sodium hypochlorite can effectively eliminate MHV-JHM on packaging materials under cold chain conditions.
Collapse
Affiliation(s)
- Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chubin Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Nguyen HM, Watanabe S, Sharmin S, Kawaguchi T, Tan XE, Wannigama DL, Cui L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int J Mol Sci 2023; 24:17029. [PMID: 38069353 PMCID: PMC10707117 DOI: 10.3390/ijms242317029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
RNA and single-stranded DNA (ssDNA) phages make up an understudied subset of bacteriophages that have been rapidly expanding in the last decade thanks to advancements in metaviromics. Since their discovery, applications of genetic engineering to ssDNA and RNA phages have revealed their immense potential for diverse applications in healthcare and biotechnology. In this review, we explore the past and present applications of this underexplored group of phages, particularly their current usage as therapeutic agents against multidrug-resistant bacteria. We also discuss engineering techniques such as recombinant expression, CRISPR/Cas-based genome editing, and synthetic rebooting of phage-like particles for their role in tailoring phages for disease treatment, imaging, biomaterial development, and delivery systems. Recent breakthroughs in RNA phage engineering techniques are especially highlighted. We conclude with a perspective on challenges and future prospects, emphasizing the untapped diversity of ssDNA and RNA phages and their potential to revolutionize biotechnology and medicine.
Collapse
Affiliation(s)
- Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Sultana Sharmin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Yamagata, Japan;
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| |
Collapse
|
24
|
Stachurska X, Mizielińska M, Ordon M, Nawrotek P. The use of plant extracts and bacteriophages as an alternative therapy approach in combatting bacterial infections: the study of lytic phages and Stevia rebaudiana. J Vet Res 2023; 67:545-557. [PMID: 38130461 PMCID: PMC10730388 DOI: 10.2478/jvetres-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In the light of the problem of antibiotic resistance, the use of combined alternative therapies in combatting bacteria-related disorders has gained popularity. Bacteriophages are one element implemented in new combination therapy. Stevia rebaudiana is known to have antimicrobial activity and regarded as potentially having a synergistic effect with bacteriophages. Therefore, possible interactions of lytic bacteriophages (MS2, T4 and Phi6) with acetone and methanol S. rebaudiana extracts (SRa and SRm) in the bacterial environment were examined. Material and Methods The interactions were tested using a microdilution method, phage-extract co-incubation assay, static interaction (synography) and dynamic growth profile experiments in a bioreactor. Results The interactions of the tested factors in a static environment differed from those in a dynamic environment. Dynamic conditions altered the effect of the extracts in a concentration-dependent manner. How different the effect of the SRa extract was to that of the SRm extract on bacterial growth in a dynamic environment depended on the species of the phage and bacterial host. The greatest differences were observed for E. coli strains and their phages, whereas Pseudomonas syringae and the Phi6 phage reacted very similarly to both extracts. Differences also emerged for the same extract in different E. coli strains and their phages. Conclusion Every extract type should be tested on a case-by-case basis and experiment outcomes should not be generalised before gathering data. Moreover, many varied experiments should be performed, especially when examining such multifactorial mixtures. The tested mixtures could potentially be used in multidrug-resistant bacterial infection treatments.
Collapse
Affiliation(s)
- Xymena Stachurska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, Szczecin, Poland
| | - Małgorzata Mizielińska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-311Szczecin, Poland
| | - Magdalena Ordon
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-311Szczecin, Poland
| | - Paweł Nawrotek
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, Szczecin, Poland
| |
Collapse
|
25
|
Pitol AK, Venkatesan S, Hoptroff M, Hughes GL. Persistence of SARS-CoV-2 and its surrogate, bacteriophage Phi6, on surfaces and in water. Appl Environ Microbiol 2023; 89:e0121923. [PMID: 37902315 PMCID: PMC10686083 DOI: 10.1128/aem.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic spurred research on the persistence of SARS-CoV-2 and its surrogates. Here we highlight the importance of evaluating viral surrogates and experimental methodologies when studying pathogen survival in the environment.
Collapse
Affiliation(s)
- Ana K. Pitol
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samiksha Venkatesan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
26
|
Kong ZM, Sandhu HS, Qiu L, Wu J, Tian WJ, Chi XJ, Tao Z, Yang CFJ, Wang XJ. Virus Dynamics and Decay in Evaporating Human Saliva Droplets on Fomites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17737-17750. [PMID: 35904357 DOI: 10.1021/acs.est.2c02311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmission of most respiratory pathogens, including SARS-CoV-2, occurs via virus-containing respiratory droplets, and thus, factors that affect virus viability in droplet residues on surfaces are of critical medical and public health importance. Relative humidity (RH) is known to play a role in virus survival, with a U-shaped relationship between RH and virus viability. The mechanisms affecting virus viability in droplet residues, however, are unclear. This study examines the structure and evaporation dynamics of virus-containing saliva droplets on fomites and their impact on virus viability using four model viruses: vesicular stomatitis virus, herpes simplex virus 1, Newcastle disease virus, and coronavirus HCoV-OC43. The results support the hypothesis that the direct contact of antiviral proteins and virions within the "coffee ring" region of the droplet residue gives rise to the observed U-shaped relationship between virus viability and RH. Viruses survive much better at low and high RH, and their viability is substantially reduced at intermediate RH. A phenomenological theory explaining this phenomenon and a quantitative model analyzing and correlating the experimentally measured virus survivability are developed on the basis of the observations. The mechanisms by which RH affects virus viability are explored. At intermediate RH, antiviral proteins have optimal influence on virions because of their largest contact time and overlap area, which leads to the lowest level of virus activity.
Collapse
Affiliation(s)
- Zi-Meng Kong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Harpal Singh Sandhu
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
- Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Lu Qiu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jicheng Wu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiao-Jing Chi
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhi Tao
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Sinclair LG, Ilieva Z, Morris G, Anderson JG, MacGregor SJ, Maclean M. Viricidal Efficacy of a 405-nm Environmental Decontamination System for Inactivation of Bacteriophage Phi6: Surrogate for SARS-CoV-2. Photochem Photobiol 2023; 99:1493-1500. [PMID: 36872097 PMCID: PMC10952546 DOI: 10.1111/php.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
The highly transmittable nature of SARS-CoV-2 has increased the necessity for novel strategies to safely decontaminate public areas. This study investigates the efficacy of a low irradiance 405-nm light environmental decontamination system for the inactivation of bacteriophage phi6 as a surrogate for SARS-CoV-2. Bacteriophage phi6 was exposed to increasing doses of low irradiance (~0.5 mW cm-2 ) 405-nm light while suspended in SM buffer and artificial human saliva at low (~103-4 PFU mL-1 ) and high (~107-8 PFU mL-1 ) seeding densities, to determine system efficacy for SARS-CoV-2 inactivation and establish the influence of biologically relevant suspension media on viral susceptibility. Complete/near-complete (≥99.4%) inactivation was demonstrated in all cases, with significantly enhanced reductions observed in biologically relevant media (P < 0.05). Doses of 43.2 and 172.8 J cm-2 were required to achieve ~3 log10 reductions at low density, and 97.2 and 259.2 J cm-2 achieved ~6 log10 reductions at high density, in saliva and SM buffer, respectively: 2.6-4 times less dose was required when suspended in saliva compared to SM buffer. Comparative exposure to higher irradiance (~50 mW cm-2 ) 405-nm light indicated that, on a per unit dose basis, 0.5 mW cm-2 treatments were capable of achieving up to 5.8 greater log10 reductions with up to 28-fold greater germicidal efficiency than that of 50 mW cm-2 treatments. These findings establish the efficacy of low irradiance 405-nm light systems for inactivation of a SARS-CoV-2 surrogate and demonstrate the significant enhancement in susceptibility when suspended in saliva, which is a major vector in COVID-19 transmission.
Collapse
Affiliation(s)
- Lucy G. Sinclair
- Department of Electronic & Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowUK
| | - Zornitsa Ilieva
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowUK
| | - Georgina Morris
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowUK
| | - John G. Anderson
- Department of Electronic & Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowUK
| | - Scott J. MacGregor
- Department of Electronic & Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowUK
| | - Michelle Maclean
- Department of Electronic & Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowUK
- Department of Biomedical EngineeringUniversity of StrathclydeGlasgowUK
| |
Collapse
|
28
|
Mäntynen S, Salomaa MM, Poranen MM. Diversity and Current Classification of dsRNA Bacteriophages. Viruses 2023; 15:2154. [PMID: 38005832 PMCID: PMC10674327 DOI: 10.3390/v15112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Half a century has passed since the discovery of Pseudomonas phage phi6, the first enveloped dsRNA bacteriophage to be isolated. It remained the sole known dsRNA phage for a quarter of a century and the only recognised member of the Cystoviridae family until the year 2018. After the initial discovery of phi6, additional dsRNA phages have been isolated from globally distant locations and identified in metatranscriptomic datasets, suggesting that this virus type is more ubiquitous in nature than previously acknowledged. Most identified dsRNA phages infect Pseudomonas strains and utilise either pilus or lipopolysaccharide components of the host as the primary receptor. In addition to the receptor-mediated strictly lytic lifestyle, an alternative persistent infection strategy has been described for some dsRNA phages. To date, complete genome sequences of fourteen dsRNA phage isolates are available. Despite the high sequence diversity, similar sets of genes can typically be found in the genomes of dsRNA phages, suggesting shared evolutionary trajectories. This review provides a brief overview of the recognised members of the Cystoviridae virus family and related dsRNA phage isolates, outlines the current classification of dsRNA phages, and discusses their relationships with eukaryotic RNA viruses.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; (M.M.S.); (M.M.P.)
| | | | | |
Collapse
|
29
|
Upadrasta A, Daniels S, Thompson TP, Gilmore B, Humphreys H. In situ generation of cold atmospheric plasma-activated mist and its biocidal activity against surrogate viruses for COVID-19. J Appl Microbiol 2023; 134:lxad181. [PMID: 37580171 DOI: 10.1093/jambio/lxad181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
AIMS To provide an alternative to ultra violet light and vapourized hydrogen peroxide to enhance decontamination of surfaces as part of the response to the COVID-19 pandemic. METHODS AND RESULTS We developed an indirect method for in situ delivery of cold plasma and evaluated the anti-viral activity of plasma-activated mist (PAM) using bacteriophages phi6, MS2, and phiX174, surrogates for SARS-CoV-2. Exposure to ambient air atmospheric pressure derived PAM caused a 1.71 log10 PFU ml-1 reduction in phi6 titer within 5 min and a 7.4 log10 PFU ml-1 reduction after 10 min when the the PAM source was at 5 and 10 cm. With MS2 and phiX174, a 3.1 and 1.26 log10 PFU ml-1 reduction was achieved, respectively, after 30 min. The rate of killing was increased with longer exposure times but decreased when the PAM source was further away. Trace amounts of reactive species, hydrogen peroxide and nitrite were produced in the PAM, and the anti-viral activity was probably attributable to these and their secondary reactive species. CONCLUSIONS PAM exhibits virucidal activity against surrogate viruses for COVID-19, which is time and distance from the plasma source dependent.
Collapse
Affiliation(s)
- Aditya Upadrasta
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D09 YD60, Ireland
| | - Stephen Daniels
- School of Electronic Engineering, Dublin City University, Dublin, D09 V209, Ireland
| | | | - Brendan Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D09 YD60, Ireland
| |
Collapse
|
30
|
Wani H, Menon S, Desai D, D’Souza N, Bhathena Z, Desai N, Rose JB, Shrivastava S. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence and Correlation with Clinical Cases. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:131-143. [PMID: 37133676 PMCID: PMC10155169 DOI: 10.1007/s12560-023-09555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Wastewater-based epidemiology has been recognized as a tool to monitor the progress of COVID-19 pandemic worldwide. The study presented herein aimed at quantitating the SARS-CoV-2 RNA in the wastewaters, predicting the number of infected individuals in the catchment areas, and correlating it with the clinically reported COVID-19 cases. Wastewater samples (n = 162) from different treatment stages were collected from three wastewater treatment plants (WWTPs) from Mumbai city during the 2nd surge of COVID-19 (April 2021 to June 2021). SARS-CoV-2 causing COVID-19, was detected in 76.2% and 4.8% of raw and secondary treated (n = 63 each) wastewater samples respectively while all tertiary treated samples (n = 36) were negative. The quantity of SARS-CoV-2 RNA determined as gene copies/100 mL varied among all the three WWTPs under study. The gene copy numbers thus obtained were further used to estimate the number of infected individuals within the population served by these WWTPs using two published methods. A positive correlation (p < 0.05) was observed between the estimated number of infected individuals and clinically confirmed COVID-19 cases reported during the sampling period in two WWTPs. Predicted infected individuals calculated in this study were 100 times higher than the reported COVID-19 cases in all the WWTPs assessed. The study findings demonstrated that the present wastewater treatment technologies at the three WWTPs studied were adequate to remove the virus. However, SARS-CoV-2 genome surveillance with emphasis on monitoring its variants should be implemented as a routine practice to prepare for any future surge in infections.
Collapse
Affiliation(s)
- Hima Wani
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Smita Menon
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Dipen Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishita D’Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Zarine Bhathena
- Department of Microbiology, Bhavan’s College, Andheri West, Mumbai, Maharashtra 400058 India
| | - Nishith Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 USA
| | - Sandhya Shrivastava
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, Maharashtra 400058 India
| |
Collapse
|
31
|
Hamilton AN, Chandran S, Baker CA, Gibson KE. Surface Inactivation of a SARS-CoV-2 Surrogate with Hypochlorous Acid is Impacted by Surface Type, Contact Time, Inoculum Matrix, and Concentration. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:116-122. [PMID: 36680664 PMCID: PMC9862229 DOI: 10.1007/s12560-023-09549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 06/13/2023]
Abstract
Indirect contact with contaminated surfaces is a potential transmission route for COVID-19. Therefore, it is necessary to investigate convenient and inexpensive surface sanitization methods, such as HOCl, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 surrogate, Phi6 (~ 7 log PFU/mL), was prepared in artificial saliva and tripartite matrices, spot inoculated on coupons of either stainless steel or vinyl, and allowed to dry. The coupons were sprayed with either 500 ppm or 1000 ppm HOCl, and remained on the surface for 0 s (control), 5 s, 30 s, or 60 s. Samples were enumerated via the double agar overlay assay. Statistical analysis was completed in R using a generalized linear model with Quasipoisson error approximations. Time, concentration, surface type, and inoculum matrix were all significant contributors to log reduction at P = 0.05. Significant three-way interactions were observed for 1000 ppm, vinyl, and 60 s (P = 0.03) and 1000 ppm, tripartite, and 60 s (P = 0.0121). A significant two-way interaction between vinyl and 60 s was also observed (P = 0.0168). Overall, increased HOCl concentration and exposure time led to increased Phi6 reduction. Notably, the highest estimated mean log reduction was 3.31 (95% CI 3.14, 3.49) for stainless steel at 60 s and 1000 ppm HOCl in artificial saliva, indicating that this method of sanitization may not adequately reduce enveloped viruses to below infective thresholds.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Christopher A Baker
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD, 20740, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA.
| |
Collapse
|
32
|
Jeong SB, Shin JH, Kim SW, Seo SC, Jung JH. Performance evaluation of an electrostatic precipitator with a copper plate using an aerosolized SARS-CoV-2 surrogate (bacteriophage phi 6). ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 30:103124. [PMID: 36987524 PMCID: PMC10035800 DOI: 10.1016/j.eti.2023.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.
Collapse
Affiliation(s)
- Sang Bin Jeong
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Hak Shin
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sam Woong Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Sung Chul Seo
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea
| | - Jae Hee Jung
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
33
|
Plohl O, Kokol V, Filipić A, Fric K, Kogovšek P, Fratnik ZP, Vesel A, Kurečič M, Robič J, Gradišnik L, Maver U, Zemljič LF. Screen-printing of chitosan and cationised cellulose nanofibril coatings for integration into functional face masks with potential antiviral activity. Int J Biol Macromol 2023; 236:123951. [PMID: 36898451 PMCID: PMC9995302 DOI: 10.1016/j.ijbiomac.2023.123951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.
Collapse
Affiliation(s)
- Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Arijana Filipić
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Katja Fric
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Polona Kogovšek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Zdenka Peršin Fratnik
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Alenka Vesel
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Teslova 30, 1000 Ljubljana, Slovenia.
| | - Manja Kurečič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Jure Robič
- Omega Air d.o.o Ljubljana, Cesta Dolomitskega odreda 10, 1000 Ljubljana, Slovenia.
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
34
|
Zupanc M, Zevnik J, Filipić A, Gutierrez-Aguirre I, Ješelnik M, Košir T, Ortar J, Dular M, Petkovšek M. Inactivation of the enveloped virus phi6 with hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2023; 95:106400. [PMID: 37060711 PMCID: PMC10085970 DOI: 10.1016/j.ultsonch.2023.106400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The COVID -19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.
Collapse
Affiliation(s)
- Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Zevnik
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Meta Ješelnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Jernej Ortar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Lee LYY, Landry SA, Jamriska M, Subedi D, Joosten SA, Barr JJ, Brown R, Kevin K, Schofield R, Monty J, Subbarao K, McGain F. Quantifying the reduction of airborne infectious virus load using a ventilated patient hood. J Hosp Infect 2023; 136:110-117. [PMID: 37105259 PMCID: PMC10125916 DOI: 10.1016/j.jhin.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Healthcare workers treating SARS-CoV-2 patients are at risk of infection by respiratory exposure to patient-emitted, virus-laden aerosols. Source control devices such as ventilated patient isolation hoods have been shown to limit the dissemination of non-infectious airborne particles in laboratory tests, but data on their performance in mitigating the airborne transmission risk of infectious viruses are lacking. AIM We used an infectious airborne virus to quantify the ability of a ventilated hood to reduce infectious virus exposure in indoor environments. METHODS We nebulized 109 plaque forming units (pfu) of bacteriophage PhiX174 virus into a ∼30-m3 room when the hood was active or inactive. The airborne concentration of infectious virus was measured by BioSpot-VIVAS and settle plates using plaque assay quantification on the bacterial host Escherichia coli C. The airborne particle number concentration (PNC) was also monitored continuously using an optical particle sizer. FINDINGS The median airborne viral concentration in the room reached 1.41 × 105 pfu/m3 with the hood inactive. When active, the hood reduced infectious virus concentration in air samples by 374-fold. The deposition of infectious virus on the surface of settle plates was reduced by 87-fold. This was associated with a 109-fold reduction in total airborne particle number escape rate. CONCLUSION A personal ventilation hood significantly reduced airborne particle escape, considerably lowering infectious virus contamination in an indoor environment. Our findings support the further development of source control devices to mitigate nosocomial infection risk among healthcare workers exposed to airborne viruses in clinical settings.
Collapse
Affiliation(s)
- L Y Y Lee
- Department of Microbiology and Immunology, University of Melbourne, At the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - S A Landry
- Department of Physiology, School of Biomedical Sciences & Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - M Jamriska
- Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - D Subedi
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - S A Joosten
- School of Biological Sciences, Monash University, Clayton, VIC, Australia; Monash Lung, Sleep, Allergy and Immunology, Monash Health, Clayton, VIC, Australia; School of Clinical Sciences, Monash University, Melbourne, VIC, Australia; Monash Partners, Epworth, Victoria, VIC, Australia
| | - J J Barr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - R Brown
- Defence Science and Technology Group, Fishermans Bend, VIC, Australia
| | - K Kevin
- School of Mechanical Engineering, University of Melbourne, Melbourne VIC, Australia
| | - R Schofield
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - J Monty
- School of Mechanical Engineering, University of Melbourne, Melbourne VIC, Australia
| | - K Subbarao
- Department of Microbiology and Immunology, University of Melbourne, At the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - F McGain
- Departments of Anaesthesia and Intensive Care, Western Health, Melbourne, VIC, Australia; Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia; School of Public Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Dogan AB, Dabkowski KE, Cadnum JL, Donskey CJ, von Recum HA. Polymer Additives to Personal Protective Equipment can Inactivate Pathogens. Ann Biomed Eng 2023; 51:833-845. [PMID: 36243778 PMCID: PMC9569176 DOI: 10.1007/s10439-022-03100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Face masks have been proven to be medicine's best public health tool for preventing transmission of airborne pathogens. However, in situations with continuous exposure, lower quality and "do-it-yourself" face masks cannot provide adequate protection against pathogens, especially when mishandled. In addition, the use of multiple face masks each day places a strain on personal protective equipment (PPE) supply and is not environmentally sustainable. Therefore, there is a significant clinical and commercial need for a reusable, pathogen-inactivating face mask. Herein, we propose adding quaternary poly(dimethylaminohexadecyl methacrylate), q(PDMAHDM), abbreviated to q(PDM), to existing fabric networks to generate "contact-killing" face masks-effectively turning cotton, polypropylene, and polyester into pathogen resistant materials. It was found that q(PDM)-integrated face masks were able to inactivate both Gram-positive and Gram-negative bacteria in liquid culture and aerosolized droplets. Furthermore, q(PDM) was electrospun into homogeneous polymer fibers, which makes the polymer practical for low-cost, scaled-up production.
Collapse
Affiliation(s)
- Alan B Dogan
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | | | - Jennifer L Cadnum
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44116, USA
| | - Curtis J Donskey
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44116, USA
| | - Horst A von Recum
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
37
|
Aranega-Bou P, Brown N, Stigling A, D’Costa W, Verlander NQ, Pottage T, Bennett A, Moore G. Laboratory Evaluation of a Quaternary Ammonium Compound-Based Antimicrobial Coating Used in Public Transport during the COVID-19 Pandemic. Appl Environ Microbiol 2023; 89:e0174422. [PMID: 36856438 PMCID: PMC10057021 DOI: 10.1128/aem.01744-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
The virucidal activity of the Zoono Z71 Microbe Shield surface sanitizer and protectant, a quaternary ammonium compound (QAC)-based antimicrobial coating that was used by the United Kingdom rail industry during the COVID-19 pandemic, was evaluated, using the bacteriophage ɸ6 as a surrogate for SARS-CoV-2. Immediately after application and in the absence of interfering substances, the product effectively reduced (>3 log10) the viability of ɸ6 on some materials that are typically used in rail carriages (stainless steel, high-pressure laminate, plastic). If, after the application of the product, these surfaces remained undisturbed, the antimicrobial coating retained its efficacy for at least 28 days. However, efficacy depended on the material being coated. The product provided inconsistent results when applied to glass surfaces and was ineffective (i.e., achieved <3 log10 reduction) when applied to a train arm rest that was made of Terluran 22. Regardless of the material that was coated or the time since application, the presence of organic debris (fetal bovine serum) significantly reduced the viricidal activity of the coating. Wiping the surface with a wetted cloth after the deposition of organic debris was not sufficient to restore efficacy. We conclude that the product is likely to be of limited effectiveness in a busy, multiuser environment, such as public transport. IMPORTANCE This study evaluated the performance of a commercially available antimicrobial coating that was used by the transport industry in the United Kingdom during the COVID-19 pandemic. While the product was effective against ɸ6, the efficacy of the coating depended upon the material to which it was applied. Similarly, and regardless of the surface material, the presence of organic debris severely impaired viricidal activity, and efficacy could not be recovered through wiping (cleaning) the surface. This highlights the importance of including relevant materials and conditions when evaluating antimicrobial coatings in the laboratory. Further efforts are required to identify suitable infection prevention and control practices for the transport industry.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Natalie Brown
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Abigail Stigling
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Wilhemina D’Costa
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Neville Q. Verlander
- Statistics, Modelling and Economics Department, United Kingdom Health Security Agency, United Kingdom
| | - Thomas Pottage
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
38
|
Garg A, Nam W, Wang W, Vikesland P, Zhou W. In Situ Spatiotemporal SERS Measurements and Multivariate Analysis of Virally Infected Bacterial Biofilms Using Nanolaminated Plasmonic Crystals. ACS Sens 2023; 8:1132-1142. [PMID: 36893064 DOI: 10.1021/acssensors.2c02412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In situ spatiotemporal biochemical characterization of the activity of living multicellular biofilms under external stimuli remains a significant challenge. Surface-enhanced Raman spectroscopy (SERS), combining the molecular fingerprint specificity of vibrational spectroscopy with the hotspot sensitivity of plasmonic nanostructures, has emerged as a promising noninvasive bioanalysis technique for living systems. However, most SERS devices do not allow reliable long-term spatiotemporal SERS measurements of multicellular systems because of challenges in producing spatially uniform and mechanically stable SERS hotspot arrays to interface with large cellular networks. Furthermore, very few studies have been conducted for multivariable analysis of spatiotemporal SERS datasets to extract spatially and temporally correlated biological information from multicellular systems. Here, we demonstrate in situ label-free spatiotemporal SERS measurements and multivariate analysis of Pseudomonas syringae biofilms during development and upon infection by bacteriophage virus Phi6 by employing nanolaminate plasmonic crystal SERS devices to interface mechanically stable, uniform, and spatially dense hotspot arrays with the P. syringae biofilms. We exploited unsupervised multivariate machine learning methods, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), to resolve the spatiotemporal evolution and Phi6 dose-dependent changes of major Raman peaks originating from biochemical components in P. syringae biofilms, including cellular components, extracellular polymeric substances (EPS), metabolite molecules, and cell lysate-enriched extracellular media. We then employed supervised multivariate analysis using linear discriminant analysis (LDA) for the multiclass classification of Phi6 dose-dependent biofilm responses, demonstrating the potential for viral infection diagnosis. We envision extending the in situ spatiotemporal SERS method to monitor dynamic, heterogeneous interactions between viruses and bacterial networks for applications such as phage-based anti-biofilm therapy development and continuous pathogenic virus detection.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Electronic Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
39
|
Pal A, Gope A, Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv Colloid Interface Sci 2023; 314:102870. [PMID: 37002959 DOI: 10.1016/j.cis.2023.102870] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.
Collapse
Affiliation(s)
- Anusuya Pal
- University of Warwick, Department of Physics, Coventry CV47AL, West Midlands, UK; Worcester Polytechnic Institute, Department of Physics, Worcester 01609, MA, USA.
| | - Amalesh Gope
- Tezpur University, Department of Linguistics and Language Technology, Tezpur 784028, Assam, India
| | - Anupam Sengupta
- University of Luxembourg, Physics of Living Matter, Department of Physics and Materials Science, Luxembourg L-1511, Luxembourg
| |
Collapse
|
40
|
Viral Preservation with Protein-Supplemented Nebulizing Media in Aerosols. Appl Environ Microbiol 2023; 89:e0154522. [PMID: 36856430 PMCID: PMC10057872 DOI: 10.1128/aem.01545-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The outbreak of SARS-CoV-2 has emphasized the need for a deeper understanding of infectivity, spread, and treatment of airborne viruses. Bacteriophages (phages) serve as ideal surrogates for respiratory pathogenic viruses thanks to their high tractability and the structural similarities tailless phages bear to viral pathogens. However, the aerosolization of enveloped SARS-CoV-2 surrogate phi6 usually results in a >3-log10 reduction in viability, limiting its usefulness as a surrogate for aerosolized coronavirus in "real world" contexts, such as a sneeze or cough. Recent work has shown that saliva or artificial saliva greatly improves the stability of viruses in aerosols and microdroplets relative to standard dilution/storage buffers like suspension medium (SM) buffer. These findings led us to investigate whether we could formulate media that preserves the viability of phi6 and other phages in artificially derived aerosols. Results indicate that SM buffer supplemented with bovine serum albumin (BSA) significantly improves the recovery of airborne phi6, MS2, and 80α and outperforms commercially formulated artificial saliva. Particle sizing and acoustic particle trapping data indicate that BSA supplementation dose-dependently improves viral survivability by reducing the extent of particle evaporation. These data suggest that our viral preservation medium may facilitate a lower-cost alternative to artificial saliva for future applied aerobiology studies. IMPORTANCE We have identified common and inexpensive lab reagents that confer increased aerosol survivability on phi6 and other phages. Our results suggest that soluble protein is a key protective component in nebulizing medium. Protein supplementation likely reduces exposure of the phage to the air-water interface by reducing the extent of particle evaporation. These findings will be useful for applications in which researchers wish to improve the survivability of these (and likely other) aerosolized viruses to better approximate highly transmissible airborne viruses like SARS-CoV-2.
Collapse
|
41
|
Żywicka A, Ciecholewska-Juśko D, Charęza M, Drozd R, Sobolewski P, Junka A, Gorgieva S, El Fray M, Fijałkowski K. Argon plasma-modified bacterial cellulose filters for protection against respiratory pathogens. Carbohydr Polym 2023; 302:120322. [PMID: 36604039 DOI: 10.1016/j.carbpol.2022.120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
In this work, we present novel, sustainable filters based on bacterial cellulose (BC) functionalized with low-pressure argon plasma (LPP-Ar). The "green" production process involved BC biosynthesis by Komagataeibacter xylinus, followed by simple purification, homogenization, lyophilization, and finally LPP-Ar treatment. The obtained LPP-Ar-functionalized BC-based material (LPP-Ar-BC-bM) showed excellent antimicrobial and antiviral properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, and an enveloped bacteriophage phage Φ6, with no cytotoxicity versus murine fibroblasts in vitro. Further, filters consisting of three layers of LPP-Ar-BC-bM had >99 % bacterial and viral filtration efficiency, while maintaining sufficiently low airflow resistance (6 mbar at an airflow of 95 L/min). Finally, as a proof-of-concept, we were able to prepare 80 masks with LPP-Ar-BC-bM filter and ~85 % of volunteer medical staff assessed them as "good" or "very good" in terms of comfort. We conclude that our novel sustainable, biobased, biodegradable filters are suitable for respiratory personal protective equipment (PPE), such as surgical masks and respirators.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Magdalena Charęza
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| |
Collapse
|
42
|
Pilaquinga F, Bosch R, Morey J, Bastidas-Caldes C, Torres M, Toscano F, Debut A, Pazmiño-Viteri K, Nieves Piña MDL. High in vitroactivity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. NANOTECHNOLOGY 2023; 34:175705. [PMID: 36689773 DOI: 10.1088/1361-6528/acb558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- Laboratory of Nanotechnology, School of Chemistry Sciences, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB); and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Redondel del Ciclista, Antigua Vía a Nayón, Quito, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, Plaza de Caldereros, s/n, Extremadura, Spain
| | - Marbel Torres
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Katherine Pazmiño-Viteri
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - María de Las Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
43
|
Gungordu Er S, Tabish TA, Edirisinghe M, Matharu RK. Antiviral properties of porous graphene, graphene oxide and graphene foam ultrafine fibers against Phi6 bacteriophage. Front Med (Lausanne) 2022; 9:1032899. [PMID: 36507513 PMCID: PMC9730705 DOI: 10.3389/fmed.2022.1032899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
As the world has experienced in the Coronavirus Disease 2019 pandemic, viral infections have devastating effects on public health. Personal protective equipment with high antiviral features has become popular among healthcare staff, researchers, immunocompromised people and more to minimize this effect. Graphene and its derivatives have been included in many antimicrobial studies due to their exceptional physicochemical properties. However, scientific studies on antiviral graphene are much more limited than antibacterial and antifungal studies. The aim of this study was to produce nanocomposite fibers with high antiviral properties that can be used for personal protective equipment and biomedical devices. In this work, 10 wt% polycaprolactone-based fibers were prepared with different concentrations (0.1, 0.5, 1, 2, 4 w/w%) of porous graphene, graphene oxide and graphene foam in acetone by using electrospinning. SEM, FTIR and XRD characterizations were applied to understand the structure of fibers and the presence of materials. According to SEM results, the mean diameters of the porous graphene, graphene oxide and graphene foam nanofibers formed were around 390, 470, and 520 nm, respectively. FTIR and XRD characterization results for 2 w/w% concentration nanofibers demonstrated the presence of graphene oxide, porous graphene and graphene foam nanomaterials in the fiber. The antiviral properties of the formed fibers were tested against Pseudomonas phage Phi6. According to the results, concentration-dependent antiviral activity was observed, and the strongest viral inhibition graphene oxide-loaded nanofibers were 33.08 ± 1.21% at the end of 24 h.
Collapse
Affiliation(s)
- Seda Gungordu Er
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Tanveer A. Tabish
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford Begbroke Science Park, Oxford, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Rupy Kaur Matharu
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| |
Collapse
|
44
|
Antiviral activity of nano-monocaprin against Phi6 as a surrogate for SARS-CoV-2. Int Microbiol 2022; 26:379-387. [PMID: 36422769 PMCID: PMC9685086 DOI: 10.1007/s10123-022-00300-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.
Collapse
|
45
|
Abstract
Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (-), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage φ6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(-). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications.
Collapse
|
46
|
Oksanen L, Auvinen M, Kuula J, Malmgren R, Romantschuk M, Hyvärinen A, Laitinen S, Maunula L, Sanmark E, Geneid A, Sofieva S, Salokas J, Veskiväli H, Sironen T, Grönholm T, Hellsten A, Atanasova N. Combining Phi6 as a surrogate virus and computational large-eddy simulations to study airborne transmission of SARS-CoV-2 in a restaurant. INDOOR AIR 2022; 32:e13165. [PMID: 36437671 PMCID: PMC10100099 DOI: 10.1111/ina.13165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/18/2023]
Abstract
COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant. Aerosolized Phi6 viruses were detected with several methods. The aerosol dispersion was modeled by using the Large-Eddy Simulation (LES) technique. Three risk-reduction strategies were studied: (1) augmenting ventilation with air purifiers, (2) spatial partitioning with dividers, and (3) combination of 1 and 2. In all simulations infectious viruses were detected throughout the space proving the existence long-distance aerosol transmission indoors. Experimental cumulative virus numbers and LES dispersion results were qualitatively similar. The LES results were further utilized to derive the evolution of infection probability. Air purifiers augmenting the effective ventilation rate by 65% reduced the spatially averaged infection probability by 30%-32%. This relative reduction manifests with approximately 15 min lag as aerosol dispersion only gradually reaches the purifier units. Both viral findings and LES results confirm that spatial partitioning has a negligible effect on the mean infection-probability indoors, but may affect the local levels adversely. Exploitation of high-resolution LES jointly with microbiological measurements enables an informative interpretation of the experimental results and facilitates a more complete risk assessment.
Collapse
Affiliation(s)
- Lotta Oksanen
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Rasmus Malmgren
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Martin Romantschuk
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
| | | | | | - Leena Maunula
- Faculty of Veterinary Medicine, Food Hygiene and Environmental HealthUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Julija Salokas
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Helin Veskiväli
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Tarja Sironen
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Veterinary Biosciences, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | | | | | - Nina Atanasova
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
47
|
Abney SE, Wilson AM, Ijaz MK, McKinney J, Reynolds KA, Gerba CP. Minding the matrix: The importance of inoculum suspensions on finger transfer efficiency of virus. J Appl Microbiol 2022; 133:3083-3093. [PMID: 35916494 DOI: 10.1111/jam.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023]
Abstract
AIMS The aim of this study was to determine how the transfer efficiency of MS-2 coliphage from the toilet seat to hands and fingertip to lip differs according to the suspension of the inoculum. METHODS AND RESULTS Hands were sampled after lifting a toilet seat which was inoculated with MS-2 on the underneath side. MS-2 was suspended in a spectrum of proteinaceous and non-proteinaceous solutions. Transfer efficiencies were greatest with the ASTM tripartite soil load (3.02% ± 4.03) and lowest with phosphate-buffered saline (PBS) (1.10% ± 0.81) for hand-to-toilet seat contacts. Finger-to-lip transfer rates were significantly different (p < 0.05) depending on suspension matrix, with PBS yielding the highest transfer (52.53% ± 4.48%) and tryptose soy broth (TSB) the lowest (23.15% ± 24.27%). Quantitative microbial risk assessment was used to estimate the probability of infection from adenovirus and norovirus from finger contact with a toilet seat. CONCLUSIONS The greatest transfer as well as the largest variation of transfer were measured for finger-to-lip contacts as opposed to toilet seat-to-finger contacts. These factors influence the estimation of the probability of infection from micro-activity, that is, toilet seat adjustment. SIGNIFICANCE AND IMPACT Viruses may be transferred from various human excreta with differing transfer efficiencies, depending on the protein content.
Collapse
Affiliation(s)
- Sarah E Abney
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Amanda M Wilson
- Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA.,Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, New York, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - Kelly A Reynolds
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA.,Department of Community, Environment, and Policy, University of Arizona, Tucson, Arizona, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
48
|
Buhr TL, Borgers-Klonkowski E, Gutting BW, Hammer EE, Hamilton SM, Huhman BM, Jackson SL, Kennihan NL, Lilly SD, Little JD, Luck BB, Matuczinski EA, Miller CT, Sides RE, Yates VL, Young AA. Ultraviolet dosage and decontamination efficacy were widely variable across 14 UV devices after testing a dried enveloped ribonucleic acid virus surrogate for SARS-CoV-2. Front Bioeng Biotechnol 2022; 10:875817. [PMID: 36267449 PMCID: PMC9578676 DOI: 10.3389/fbioe.2022.875817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: The dosages and efficacy of 14 ultraviolet (UV) decontamination technologies were measured against a SARS-CoV-2 surrogate virus that was dried onto different materials for laboratory and field testing. Methods and results: A live enveloped, ribonucleic acid (RNA) virus surrogate for SARS-CoV-2 was dried on stainless steel 304 (SS304), Navy Top Coat-painted SS304 (NTC), cardboard, polyurethane, polymethyl methacrylate (PMMA), and acrylonitrile butadiene styrene (ABS) materials at > 8.0 log10 plaque-forming units (PFU) per test coupon. The coupons were then exposed to UV radiation during both laboratory and field testing. Commercial and prototype UV-emitting devices were measured for efficacy: four handheld devices, three room/surface-disinfecting machines, five air disinfection devices, and two larger custom-made machines. UV device dosages ranged from 0.01 to 729 mJ cm-2. The antiviral efficacy among the different UV devices ranged from no decontamination up to nearly achieving sterilization. Importantly, cardboard required far greater dosage than SS304. Conclusion: Enormous variability in dosage and efficacy was measured among the different UV devices. Porous materials limit the utility of UV decontamination. Significance and impact of the study: UV devices have wide variability in dosages, efficacy, hazards, and UV output over time, indicating that each UV device needs independent technical measurement and assessment for product development prior to and during use.
Collapse
Affiliation(s)
- Tony L. Buhr
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Erica Borgers-Klonkowski
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Bradford W. Gutting
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Emlyn E. Hammer
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Shelia M. Hamilton
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Brett M. Huhman
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Stuart L. Jackson
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Neil L. Kennihan
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Samuel D. Lilly
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - John D. Little
- Naval Research Laboratory (Plasma Physics Division), Washington, DC, United States
| | - Brooke B. Luck
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Emily A. Matuczinski
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Charles T. Miller
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Rachel E. Sides
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Vanessa L. Yates
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| | - Alice A. Young
- Naval Surface Warfare Center-Dahlgren Division, Concepts and Experimentation Branch (B64), Dahlgren, VA, United States
| |
Collapse
|
49
|
Oksanen LAH, Virtanen J, Sanmark E, Rantanen N, Venkat V, Sofieva S, Aaltonen K, Kivistö I, Svirskaite J, Pérez AD, Kuula J, Levanov L, Hyvärinen A, Maunula L, Atanasova NS, Laitinen S, Anttila V, Lehtonen L, Lappalainen M, Geneid A, Sironen T. SARS-CoV-2 indoor environment contamination with epidemiological and experimental investigations. INDOOR AIR 2022; 32:e13118. [PMID: 36305066 PMCID: PMC9828560 DOI: 10.1111/ina.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 μm, 7.0-12.0 μm, >10 μm, and <100 μm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.
Collapse
Affiliation(s)
- Lotta‐Maria A. H. Oksanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Jenni Virtanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Noora Rantanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Vinaya Venkat
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | - Kirsi Aaltonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ilkka Kivistö
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Julija Svirskaite
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Lev Levanov
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Leena Maunula
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Nina S. Atanasova
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | | | - Veli‐Jukka Anttila
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Inflammation CenterHelsinki University HospitalHelsinkiFinland
| | - Lasse Lehtonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Maija Lappalainen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Ahmed Geneid
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Tarja Sironen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
50
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|