1
|
Ivaskiene T, Kaspute G, Ramanavicius A, Prentice U. Molecularly Imprinted Polymer Advanced Hydrogels as Tools for Gastrointestinal Diagnostics. Gels 2025; 11:269. [PMID: 40277704 DOI: 10.3390/gels11040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Gastroenterology faces significant challenges due to the global burden of gastrointestinal (GI) diseases, driven by socio-economic disparities and their wide-ranging impact on health and healthcare systems. Advances in molecularly imprinted polymers (MIPs) offer promising opportunities for developing non-invasive, cost-effective diagnostic tools that enhance the accuracy and accessibility of GI disease detection. This research explores the potential of MIP-based sensors in revolutionizing gastrointestinal diagnostics and improving early detection and disease management. Biomarkers are vital in diagnosing, monitoring, and personalizing disease treatment, particularly in gastroenterology, where advancements like MIPs offer highly selective and non-invasive diagnostic solutions. MIPs mimic natural recognition mechanisms, providing stability and sensitivity even in complex biological environments, making them ideal for early disease detection and real-time monitoring. Their integration with advanced technologies, including conducting polymers, enhances their functionality, enabling rapid, point-of-care diagnostics for gastrointestinal disorders. Despite regulatory approval and scalability challenges, ongoing innovations promise to revolutionize diagnostics and improve patient outcomes through precise approaches.
Collapse
Affiliation(s)
- Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
| | - Greta Kaspute
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Urte Prentice
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
2
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
3
|
Latif F, Mubbashir A, Khan MS, Shaikh Z, Memon A, Alvares J, Azhar A, Jain H, Ahmed R, Kanagala SG. Trimethylamine N-oxide in cardiovascular disease: Pathophysiology and the potential role of statins. Life Sci 2025; 361:123304. [PMID: 39672256 DOI: 10.1016/j.lfs.2024.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular diseases are one of the leading causes of mortality and morbidity worldwide, with the total number of cases increasing to 523 million in 2019. Despite the advent of new drugs, cardiovascular mortality has increased at an alarming rate of 53.7 % from 12.1 million deaths in 1990. Recently, the role of gut microbiome metabolites, such as Trimethylamine N-Oxide (TMAO), in the pathogenesis of cardiovascular disease (CVD) has attracted significant attention. The gut microbiome is critical in various physiological processes including metabolism, immune function, and inflammation. Elevated TMAO levels are associated with atherosclerosis, heart failure, arrhythmia, and atrial fibrillation. TMAO accelerates atherosclerosis by promoting vascular inflammation and reducing reverse cholesterol transport, which leads to lipid accumulation and vessel narrowing. Previous research has indicated that a Mediterranean diet rich in fiber and phytochemicals can reduce TMAO levels by limiting precursors and fostering beneficial gut microbiota. Prebiotics and probiotics also decrease TMAO, while drugs such as meldonium, aspirin, and antibiotics have shown promise. However, recent studies have demonstrated major potential for the use of statins in reducing TMAO levels. Statin therapy can significantly reduce TMAO levels independent of their cholesterol-lowering effects. This reduction may involve direct interactions with the gut microbiome, changes in cholesterol metabolism, and changes in bile acid composition. This review aims to comprehensively evaluate the therapeutic potential of statins in reducing TMAO levels to improve CV outcomes.
Collapse
Affiliation(s)
- Fakhar Latif
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Mubbashir
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Muhammad Sohaib Khan
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Zain Shaikh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Aaima Memon
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Jenelle Alvares
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Azhar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | - Raheel Ahmed
- Heart Division Royal Brompton Hospital, Guy's and St Thomas' NHS Trust London, United Kingdom; National Heart and Lung Institute, Imperial College London London, United Kingdom.
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, New York, NY, USA.
| |
Collapse
|
4
|
Li Q, Wu D, Song Y, Zhang L, Wang T, Chen X, Zhang M. In vivo mechanism of the interaction between trimethylamine lyase expression and glycolytic pathways. Food Funct 2025; 16:87-101. [PMID: 39604809 DOI: 10.1039/d4fo03809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent studies confirmed that host-gut microbiota interactions modulate disease-linked metabolite TMA production via TMA lyase. However, microbial enzyme production mechanisms remain unclear. In the present study, we investigated the impact of dietary and intervention factors on gut microbiota, microbial gene expression, and the interplay between TMA lyase and glycolytic pathways in mice. Using 16S rRNA gene sequencing, metagenomics, and metabolomics, the gut microbiota composition and microbial functional gene expression profiles related to TMA lyase and glycolytic enzymes were determined. The results revealed that distinct diets and intervention factors altered gut microbiota, gene expression, and metabolites linked to glycine metabolism and glycolysis. Notably, an arabinoxylan-rich diet suppressed genes linked to choline, glycine, glycolysis, and TMA lyase, favoring glycine utilization via pyruvate pathways. Glycolytic inhibitors amplified these effects, mainly inhibiting pyruvate kinase. Our findings underscored the crosstalk between TMA lyase and glycolytic pathways, regulating glycine levels, and suggested avenues for targeted interventions and personalized diets to curb choline TMA lyase production.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Di Wu
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Yu Song
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Lu Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Ting Wang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Xiaoxu Chen
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300392, PR China.
- Key Laboratory of Smart Breeding Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, PR China
- Tianjin Agricultural University Nutritious and Healthy Food Sino-Thailand Joint Research Center, Tianjin Agricultural University, Tianjin 300392, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
5
|
Peng D, Huang X, Wang Q, Huang L, Liu F, Xia X, Liu F, Cai C, Deng T. Reaction-Based Fluorescence Assays for the Determination of Food Trimethylamine Oxide. LUMINESCENCE 2024; 39:e70056. [PMID: 39663122 DOI: 10.1002/bio.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Trimethylamine oxide (TMAO), a microbial metabolite commonly found in foods, has been attracting increasing attention as it is associated with the risk of several diseases. Simple and accurate analytical methods are crucial for TMAO study. In the present study, we proposed a chemical reaction-based fluorescence assay for TMAO detection using synthetic small molecular probes. After systematic screening and optimization, the sensitive and selective quantification of TMAO has been achieved based on a fluorescence probe P6 (3-iodopropanyl group modified resorufin). Excellent linearity (R2 = 0.997) was found between 6.25 and 50 μM, and the limit of detection (LOD) was 0.20 μM. Using this method, TMAO levels in several marine fishes and shellfishes have been successfully analyzed. The probe-based assay offers a simple and useful way for TMAO determination. The design is inspired by the unique oxidation reaction between TMAO and halogen, which opens a new perspective in the development of more advanced analytical assays for TMAO in the future.
Collapse
Affiliation(s)
- Danfeng Peng
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinxin Huang
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liying Huang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangle Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Chun Cai
- Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, China
| | - Tao Deng
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
6
|
Chakravorty S, Archana, Lakshmi G, Solanki PR, Kumar A. Trimethylamine N-oxide detection by electrochemical sensor based on screen printed electrode modified with molecularly imprinted polypyrrole-molybdenum(III) sulfide nanosheets. Colloids Surf B Biointerfaces 2024; 244:114164. [PMID: 39180990 DOI: 10.1016/j.colsurfb.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a gut metabolite produced by dietary L-carnitine and choline metabolism. Its altered level in the serum has been implicated in human health and diseases such as colorectal cancer, chronic kidney diseases, cardiovascular diseases, etc. Early detection of TMAO in body fluids has been presumed to be significant in understanding the pathogenesis and treatment of many diseases. Hence, developing reliable and rapid technologies for its detection may augment our understanding of pathogenesis and diagnosis of diseases. Hence, in the present work, polypyrrole (Ppy)@molybdenum(III)sulfide (Mo2S3) nanosheets (NS) composite molecularly imprinted polymer (MIP) (Ppy@Mo2S3-MIP) based electrochemical sensor has been fabricated for the detection of TMAO. Polypyrrole (Ppy) and Mo2S3 NS have been synthesized by chemical oxidative polymerization and hydrothermal techniques, respectively. The synthesized nanocomposite has been validated using different techniques such as X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The fabricated Ppy@Mo2S3-MIP sensor showed a linear detection range from 30 µM to 210 µM, a sensitivity of 1.21 μA μM-1 cm-2 and a limit of detection as 1.4 μM for the detection of TMAO and found more robust and improved when compared with Ppy-MIP using identical parameters. The fabricated sensor is also highly selective towards TMAO. It can be further used to detect TMAO in human samples such as urine quickly.
Collapse
Affiliation(s)
- Shreeti Chakravorty
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Archana
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gbvs Lakshmi
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Nano-bio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
7
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Archana, Kumar A, Solanki PR. 4-Ethylphenyl Sulfate Detection by an Electrochemical Sensor Based on a MoS 2 Nanosheet-Modified Molecularly Imprinted Biopolymer. ACS APPLIED BIO MATERIALS 2024; 7:3841-3853. [PMID: 38836520 DOI: 10.1021/acsabm.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
One of the gut-derived uremic toxins 4-ethylphenyl sulfate (4-EPS) exhibits significantly elevated plasma levels in chronic kidney diseases and autism, and its early quantification in bodily fluids is important. Therefore, the development of rapid and sensitive technologies for 4-EPS detection is of significant importance for clinical diagnosis. In the current work, the synthesis of a molecularly imprinted biopolymer (MIBP) carrying 4-EPS specific cavities only using the biopolymer polydopamine (PDA) and molybdenum disulfide (MoS2) nanosheets has been reported. The fabricated electrode was prepared using screen-printed carbon electrodes on a polyvinyl chloride substrate. The synthesized material was characterized using several techniques, and electrochemical studies were performed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The DPV technique for the electrochemical sensing of 4-EPS using the fabricated sensor (PDA@MoS2-MIBP) determined a sensitivity of 0.012 μA/ng mL/cm2 and a limit of detection of 30 ng/mL in a broad linear range of 1-2200 ng/mL. Also, the interferent study was performed to evaluate the selectivity of the fabricated sensor along with the control and stability study. Moreover, the performance of the sensor was evaluated in the spiked urine sample, and a comparison was made with the data obtained by ultraperformance liquid chromatography-tandem mass spectroscopy.
Collapse
Affiliation(s)
- Archana
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Dolkar P, Deyang T, Anand N, Rathipriya AG, Hediyal TA, Chandrasekaran V, Krishnamoorthy NK, Gorantla VR, Bishir M, Rashan L, Chang SL, Sakharkar MK, Yang J, Chidambaram SB. Trimethylamine-N-oxide and cerebral stroke risk: A review. Neurobiol Dis 2024; 192:106423. [PMID: 38286388 DOI: 10.1016/j.nbd.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono‑oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.
Collapse
Affiliation(s)
- Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John's, Po Box W-1451, Antigua and Barbuda
| | | | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Naveen Kumar Krishnamoorthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Biomedical sciences, Research Faculty, West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah, Sultanate of Oman
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079, USA
| | - Meena Kishore Sakharkar
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Yang
- Drug discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
10
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
11
|
Lin WC, Hsieh YY, Ho PR, Zeng RJ, Hsieh CT, Chang MC, Yeh CW, Lo CJ, Cheng ML, Liao CH. Rapid and Direct Detection of Trimethylamine N-oxide Using an Off-Chip Capacitance Biosensor with Readout SoC for Early-Stage Thrombosis and Cardiovascular Disease. ACS Sens 2024; 9:638-645. [PMID: 38350035 DOI: 10.1021/acssensors.3c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
A demonstration of an off-chip capacitance array sensor with a limit of detection of 1 μM trimethylamine N-oxide (TMAO) to diagnose a chronic metabolism disease in urine is presented. The improved Cole-Cole model is employed to determine the parameters of R_catalyzed, C_catalyzed, and Rp_catalyzed, enabling the prediction of the catalytic resistance of enzyme, reduction effects of the analyte, and characterize the small signal alternating current properties of ionic strength caused by catalysis. Based on the standard solutions, we investigate the effects of pixel geometry parameters, driving electrode width, and sensing electrode width on the electrical field change of the off-chip capacitance sensor; the proposed off-chip sensor with readout system-on-chip exhibits a high sensitivity of 21 analog-to-digital converter counts/μM TMAO (or 2.5 mV/μM TMAO), response time of 1 s, repetition of 98.9%, and drift over time of 0.5 mV. The proposed off-chip sensor effectively discriminates TMAO in a phosphate-buffered saline solution based on minute changes in capacitance induced by the TorA enzyme, resulting in a discernible 2.15% distinction. These measurements have been successfully corroborated using the conventional cyclic voltammetry method, demonstrating a mere 0.024% variance. The off-chip sensor is crafted with a specific focus on detecting TMAO, achieved by excluding any reduction reactions between the TMAO-specific enzyme TorA and the compounds creatine and creatinine present in urine. This deliberate omission ensures that the sensor's attention remains solely on TMAO, thereby enhancing its precision in achieving accurate and reliable TMAO detection.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Trauma and Emergency, Chang Gung Memorial Hospital, Linko 33302, Taiwan
| | - Yun-Yu Hsieh
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Peng-Ru Ho
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ren-Jie Zeng
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Ting Hsieh
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ming-Chiu Chang
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Wei Yeh
- Department of Electrical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Clinical Metabolomics Core Laboratory,Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Clinical Metabolomics Core Laboratory,Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hung Liao
- Department of Trauma and Emergency, Chang Gung Memorial Hospital, Linko 33302, Taiwan
| |
Collapse
|
12
|
Phasuksom K, Ariyasajjamongkol N, Sirivat A. Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor. Heliyon 2024; 10:e24346. [PMID: 38293452 PMCID: PMC10826182 DOI: 10.1016/j.heliyon.2024.e24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The enzymatic glucose sensors as modified by MXene-dPIn and MWCNT-dPIn on a screen-printed carbon electrode (SPCE) were investigated. Herein, MXene was molybdenum carbide (Mo3C2) which has never been utilized and reported for glucose sensors. The biopolymer type to support the enzyme immobilization was examined and compared between chitosan (CHI) and κ-carrageenan (κC). MWCNT-dPIn obviously showed a larger electroactive surface area, lower charge transfer resistance and higher redox current than Mo3C2-dPIn, indicating that MWCNT-dPIn is superior to Mo3C2-dPIn. For the chitosan-based sensors, the sensitivity value of CHI-GOD/Mo3C2-dPIn is 3.53 μA mM-1 cm-2 in the linear range of 2.5-10 mM with the calculated LOD of 1.57 mM. The sensitivity value of CHI-GOD/MWCNT-dPIn is 18.85 μA mM-1 cm-2 in the linear range of 0.5-25 mM with the calculated LOD of 0.115 mM. For the κ-carrageenan based sensors, κC-GOD/MWCNT-dPIn exhibits the sensitivity of 15.80 μA mM-1 cm-2 and the widest linear range from 0.1 to 50 mM with the calculated LOD of 0.03 mM. The presently fabricated sensors exhibit excellent reproducibility, good selectivity, high stability, and disposal use. The fabricated glucose sensors are potential as practical glucose sensors as the detectable glucose ranges well cover the glucose levels found in blood, urine, and sweat for both healthy people and diabetic patients.
Collapse
Affiliation(s)
- Katesara Phasuksom
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Ariyasajjamongkol
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
14
|
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H. Chronic kidney disease and gut microbiota. Heliyon 2023; 9:e18991. [PMID: 37609403 PMCID: PMC10440536 DOI: 10.1016/j.heliyon.2023.e18991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a range of various pathophysiological processes correlated with abnormal renal function and a progressive loss in GFR. Just as dysbiosis and altered pathology of the gut are accompanied with hypertension, which is a significant CKD risk factor. Gut dysbiosis in CKD patients is associated with an elevated levels of uremic toxins, which in turn increases the CKD progression. According to research results, the gut-kidney axis has a role in the formation of kidney stones, also in IgAN. A number of researchers have categorized the gut microbiota as enterotypes, and others, skeptical of theory of enterotypes, have suggested biomarkers to describe taxa that related to lifestyle, nutrition, and disease status. Metabolome-microbiome studies have been used to investigate the interactions of host-gut microbiota in terms of the involvement of metabolites in these interactions and are yielded promising results. The correlation between gut microbiota and CKD requires further multi-omic researches. Also, with regard to systems biology, studies on the communication network of proteins and transporters such as SLC and ABC, can help us achieve a deeper understanding of the gut-liver-kidney axis communication and can thus provide promising new horizons in the treatment of CKD patients. Probiotic-based treatment is an approach to reduce uremic poisoning, which is accomplished by swallowing microbes those can catalyze URS in the gut. If further comprehensive studies are carried out, we will know about the probiotics impact in slowing the renal failure progression and reducing inflammatory markers.
Collapse
Affiliation(s)
- Siamak Amini Khiabani
- Research center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Yadav AK, Verma D, Kumar A, Bhatt AN, Solanki PR. Biocompatible epoxysilane substituted polymer-based nano biosensing platform for label-free detection of cancer biomarker SP17 in patient serum samples. Int J Biol Macromol 2023; 239:124325. [PMID: 37054852 DOI: 10.1016/j.ijbiomac.2023.124325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Herein, we report the results of the studies relating to developing a simple, sensitive, cost-effective, and disposable electrochemical-based label-free immunosensor for real-time detection of a new cancer biomarker, sperm protein-17 (SP17), in complex serum samples. An indium tin oxide (ITO) coated glass substrate modified with self-assembled monolayers (SAMs) of 3-glycidoxypropyltrimethoxysilane (GPTMS) was functionalized via covalent immobilization of monoclonal anti-SP17 antibodies using EDC(1-(3-(dimethylamine)-propyl)-3-ethylcarbodiimide hydrochloride) - NHS (N-hydroxy succinimide) chemistry. The developed immunosensor platform (BSA/anti-SP17/GPTMS@SAMs/ITO) was characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA), Fourier transform infrared (FT-IR) spectroscopic, and electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The fabricated BSA/anti-SP17/GPTMS@SAMs/ITO immunoelectrode platform was used to measure changes in the magnitude of the current of the electrodes through an electrochemical CV and DPV technique. A calibration curve between current and SP17 concentrations exhibited a broad linear detection range of (100-6000 & 50-5500 pg mL-1), with enhanced sensitivity (0.047 & 0.024 μA pg mL-1 cm-2), limit of detection (LOD) and limit of quantification (LOQ) of 47.57 & 142.9 pg mL-1 and 158.58 & 476.3 pg mL-1, by CV and DPV technique, respectively with a rapid response time of 15 min. It possessed exceptional repeatability, outstanding reproducibility, five-time reusability, and high stability. The biosensor's performance was evaluated in human serum samples, giving satisfactory findings obtained via the commercially available enzyme-linked immunosorbent assay (ELISA) technique, proving the clinical applicability for early diagnosis of cancer patients. Moreover, various in vitro studies in murine fibroblast cell line L929 have been performed to assess the cytotoxicity of GPTMS. The results demonstrated that GPTMS has excellent biocompatibility and can be used for biosensor fabrication.
Collapse
Affiliation(s)
- Amit K Yadav
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Verma
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhishek Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Pratima R Solanki
- Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
16
|
Shanmugham M, Bellanger S, Leo CH. Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals (Basel) 2023; 16:ph16040504. [PMID: 37111261 PMCID: PMC10142468 DOI: 10.3390/ph16040504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a biologically active gut microbiome-derived dietary metabolite. Recent studies have shown that high circulating plasma TMAO levels are closely associated with diseases such as atherosclerosis and hypertension, and metabolic disorders such as diabetes and hyperlipidemia, contributing to endothelial dysfunction. There is a growing interest to understand the mechanisms underlying TMAO-induced endothelial dysfunction in cardio-metabolic diseases. Endothelial dysfunction mediated by TMAO is mainly driven by inflammation and oxidative stress, which includes: (1) activation of foam cells; (2) upregulation of cytokines and adhesion molecules; (3) increased production of reactive oxygen species (ROS); (4) platelet hyperreactivity; and (5) reduced vascular tone. In this review, we summarize the potential roles of TMAO in inducing endothelial dysfunction and the mechanisms leading to the pathogenesis and progression of associated disease conditions. We also discuss the potential therapeutic strategies for the treatment of TMAO-induced endothelial dysfunction in cardio-metabolic diseases.
Collapse
Affiliation(s)
- Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chen Huei Leo
- Science, Math & Technology, Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
- Correspondence: ; Tel.: +65-6434-8213
| |
Collapse
|
17
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
18
|
Sánchez-Tirado E, Agüí L, González-Cortés A, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical (Bio)Sensing Devices for Human-Microbiome-Related Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:837. [PMID: 36679633 PMCID: PMC9864681 DOI: 10.3390/s23020837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The study of the human microbiome is a multidisciplinary area ranging from the field of technology to that of personalized medicine. The possibility of using microbiota biomarkers to improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical chemistry. The well-known advantages of electrochemical biosensors-high sensitivity, fast response, and the possibility of miniaturization, together with the potential for new nanomaterials to improve their design and performance-position them as unique tools to provide a better understanding of the entities of the human microbiome and raise the prospect of huge and important developments in the coming years. This review article compiles recent applications of electrochemical (bio)sensors for monitoring microbial metabolites and disease biomarkers related to different types of human microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical devices applied to real samples are critically discussed, as well as challenges to be faced and where future developments are expected to go.
Collapse
Affiliation(s)
| | | | | | | | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
19
|
Ngashangva L, Chattopadhyay S. Biosensors for point-of-care testing and personalized monitoring of gastrointestinal microbiota. Front Microbiol 2023; 14:1114707. [PMID: 37213495 PMCID: PMC10196119 DOI: 10.3389/fmicb.2023.1114707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The gastrointestinal (GI) microbiota is essential in maintaining human health. Alteration of the GI microbiota or gut microbiota (GM) from homeostasis (i.e., dysbiosis) is associated with several communicable and non-communicable diseases. Thus, it is crucial to constantly monitor the GM composition and host-microbe interactions in the GI tract since they could provide vital health information and indicate possible predispositions to various diseases. Pathogens in the GI tract must be detected early to prevent dysbiosis and related diseases. Similarly, the consumed beneficial microbial strains (i.e., probiotics) also require real-time monitoring to quantify the actual number of their colony-forming units within the GI tract. Unfortunately, due to the inherent limitations associated with the conventional methods, routine monitoring of one's GM health is not attainable till date. In this context, miniaturized diagnostic devices such as biosensors could provide alternative and rapid detection methods by offering robust, affordable, portable, convenient, and reliable technology. Though biosensors for GM are still at a relatively preliminary stage, they can potentially transform clinical diagnosis in the near future. In this mini-review, we have discussed the significance and recent advancements of biosensors in monitoring GM. Finally, the progresses on future biosensing techniques such as lab-on-chip, smart materials, ingestible capsules, wearable devices, and fusion of machine learning/artificial intelligence (ML/AI) have also been highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- *Correspondence: Lightson Ngashangva,
| | - Santanu Chattopadhyay
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
The Role of Gut Microbiota and Trimethylamine N-oxide in Cardiovascular Diseases. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10330-0. [PMID: 36251229 DOI: 10.1007/s12265-022-10330-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/30/2022] [Indexed: 10/24/2022]
Abstract
Changes in the intestinal flora and its metabolites have been associated with cardiovascular disease (CVD). Short-chain fatty acids, bile acids, and especially trimethylamine N-oxide (TMAO), an endothelial toxic factor produced by gut microbiota from phosphatidylcholine in meat, have been identified to be closely related to endothelial cell dysfunction as well as tightly affiliated with CVD, the two main types being coronary artery disease (CAD) and coronary microvascular disease (CMVD). We discuss how changes in the gut flora and the metabolite TMAO contribute to the development of CAD and CMVD. The above insight might serve as a stepping stone for novel CAD and CMVD diagnostics and therapies centered on microbiota.
Collapse
|
21
|
Nanomaterial-Based Electrochemical Nanodiagnostics for Human and Gut Metabolites Diagnostics: Recent Advances and Challenges. BIOSENSORS 2022; 12:bios12090733. [PMID: 36140118 PMCID: PMC9496054 DOI: 10.3390/bios12090733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Metabolites are the intermediatory products of metabolic processes catalyzed by numerous enzymes found inside the cells. Detecting clinically relevant metabolites is important to understand their physiological and biological functions along with the evolving medical diagnostics. Rapid advances in detecting the tiny metabolites such as biomarkers that signify disease hallmarks have an immense need for high-performance identifying techniques. Low concentrations are found in biological fluids because the metabolites are difficult to dissolve in an aqueous medium. Therefore, the selective and sensitive study of metabolites as biomarkers in biological fluids is problematic. The different non-electrochemical and conventional methods need a long time of analysis, long sampling, high maintenance costs, and costly instrumentation. Hence, employing electrochemical techniques in clinical examination could efficiently meet the requirements of fully automated, inexpensive, specific, and quick means of biomarker detection. The electrochemical methods are broadly utilized in several emerging and established technologies, and electrochemical biosensors are employed to detect different metabolites. This review describes the advancement in electrochemical sensors developed for clinically associated human metabolites, including glucose, lactose, uric acid, urea, cholesterol, etc., and gut metabolites such as TMAO, TMA, and indole derivatives. Different sensing techniques are evaluated for their potential to achieve relevant degrees of multiplexing, specificity, and sensitivity limits. Moreover, we have also focused on the opportunities and remaining challenges for integrating the electrochemical sensor into the point-of-care (POC) devices.
Collapse
|
22
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022; 61:e202205193. [DOI: 10.1002/anie.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Emily E. Harrison
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Marcey L. Waters
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
23
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
24
|
Wu RY, Tandon P, Oh JS, Ambrosio L, Hotte N, Shah-Gandhi B, Madsen KL, Dieleman LA, Elahi S, Kroeker KI, Huang V. Urine and Serum Metabolomic Profiles Differ by Disease Activity in Pregnant Women With Inflammatory Bowel Diseases. GASTRO HEP ADVANCES 2022; 1:993-1005. [PMID: 39131249 PMCID: PMC11308627 DOI: 10.1016/j.gastha.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Inflammatory bowel disease (IBD), inclusive of ulcerative colitis and Crohn's disease, are chronic inflammatory conditions that impact women of childbearing age. It has been previously shown that IBD is associated with altered metabolomic profiles, but whether metabolomic changes also affect pregnant patients with IBD is completely unknown. Methods This was a prospective cohort study comprised of 48 pregnant women with IBD who were followed throughout preconception and pregnancy. IBD disease activity was measured using biochemical markers C-reactive protein or fecal calprotectin using enzyme-linked immunosorbent assay and clinical disease activity using Harvey-Bradshaw Index or partial Mayo scores. Serum and urine samples were collected from preconception, trimester 1, and trimester 2 and analyzed using nuclear magnetic resonance spectroscopy combined with metabolomics set enrichment analysis. Results We identified a total of 24 urine metabolites and 17 serum metabolites which were altered by active disease across pregnancy. First trimester (T1) active disease-associated metabolites were enriched in "amino acid metabolism" and "fatty-acid β-oxidation." The leading urine metabolites at T1 were trimethyl-N-oxide (TMAO), succinic acid, and 3-hydroxy-2-methylbutyric acid, and leading serum metabolites were TMAO, glucose, and acetic acid. Multivariate modeling using serum TMAO, glucose, and acetic acid predicts T1 disease activity and correlated with mode of delivery and infant weights at delivery. Moreover, cross-time point modeling using metabolomes predicted future disease flare-up during pregnancy. Conclusion These results suggest select host metabolites may be able to discriminate and predict disease activity and are correlated with pregnancy outcomes at delivery. This warrants further validation of metabolomics to monitor IBD in pregnancy.
Collapse
Affiliation(s)
- Richard Y. Wu
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Parul Tandon
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Joyce S. Oh
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Lindsy Ambrosio
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Binal Shah-Gandhi
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Karen L. Madsen
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Karen I. Kroeker
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Vivian Huang
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Detection of the UV-vis silent biomarker trimethylamine-N-oxide via outer-sphere interactions in a lanthanide metal-organic framework. Commun Chem 2022; 5:74. [PMID: 36697642 PMCID: PMC9814541 DOI: 10.1038/s42004-022-00690-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a biomarker of the cardiovascular disease that is one of the leading causes of worldwide death. Facile detection of TMAO can significantly improve the survival rate of this disease by allowing early prevention. However, the UV-vis silent nature of TMAO makes it intricated to be detected by conventional sensing materials or analytical instruments. Here we show a bilanthanide metal-organic framework functionalized by borono group for the recognition of TMAO. Superior sensitivity, selectivity and anti-interference ability were achieved by the inverse emission intensity changes of the two lanthanide centers. The limit of detection is 15.6 μM, covering the clinical urinary concentration range of TMAO. A smartphone application was developed based on the change in R-G-B chromaticity. The sensing mechanism via a well-matched outer-sphere interaction governing the sensing function was studied in detail, providing fundamentals in molecular level for the design of advanced sensing materials for UV-Vis silent molecules.
Collapse
|
26
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emily E. Harrison
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry UNITED STATES
| | - Marcey L. Waters
- UNC Chapel Hill Dept. of Chemistry CB 3290 27599 Chapel Hill UNITED STATES
| |
Collapse
|
27
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
29
|
Singh AK, Lakshmi G, Fernandes M, Sarkar T, Gulati P, Singh RP, Solanki PR. A simple detection platform based on molecularly imprinted polymer for AFB1 and FuB1 mycotoxins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol 2021; 105:7651-7660. [PMID: 34568962 DOI: 10.1007/s00253-021-11582-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023]
Abstract
Among gut microbiota-derived metabolites, trimethylamine-N-oxide (TMAO) is receiving increased attention due to its possible role in the carcinogenesis of colorectal cancer (CRC). In spite of numerous reports implicating TMAO with CRC, there is a lack of empirical mechanistic evidences to concretize the involvement of TMAO in the carcinogenesis of CRC. Possible mechanisms such as inflammation, oxidative stress, DNA damage, and protein misfolding by TMAO have been discussed in this review in the light of the latest advancements in the field. This review is an attempt to discuss the probable correlation between TMAO and CRC but this linkage can be concretized only once we get sufficient empirical evidences from the mechanistic studies. We believe, this review will augment the understanding of linking TMAO with CRC and will motivate researchers to move towards mechanistic study for reinforcing the idea of implicating TMAO with CRC causation. KEY POINTS: • TMAO is a gut bacterial metabolite which has been implicated in CRC in recent years. • The valid mechanistic approach of CRC causation by TMAO is unknown. • The article summarizes the possible mechanisms which need to be explored for validation.
Collapse
|
31
|
Fabrication of label-free and ultrasensitive electrochemical immunosensor based on molybdenum disulfide nanoparticles modified disposable ITO: An analytical platform for antibiotic detection in food samples. Food Chem 2021; 363:130245. [PMID: 34147899 DOI: 10.1016/j.foodchem.2021.130245] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
Here, we aimed to fabricate a label-free immunosensing platform for the first time based on molybdenum disulfide nanoparticles (nMoS2NPs) deposited on ITO) coated glass substrate for the electrochemical detection of ampicillin (AMP). The stable and high surface area of nMoS2NPs were made by a low-temperature one-step hydrothermal route, bestowing the carrying capacity of anti-AMP (antibody against AMP) through an amide linkage. The spectroscopic, morphological, and structural characterization of the proposed electrodes were performed using various analytical and electrochemical techniques. The differential pulse voltammetry technique was utilized to evaluate anti-AMP and AMP interaction on the electrode surface. The developed immunosensor exhibits high sensitivity, a broad detection range having a significant detection limit towards detection of AMP having excellent selectivity, acceptable stability, and reproducibility. Furthermore, the applicability of the proposed immunosensor was tested in spiked milk, water, and orange juice, and the results confirmed the consistency of the immunosensor.
Collapse
|
32
|
Waffo AFT, Mitrova B, Tiedemann K, Iobbi-Nivol C, Leimkühler S, Wollenberger U. Electrochemical Trimethylamine N-Oxide Biosensor with Enzyme-Based Oxygen-Scavenging Membrane for Long-Term Operation under Ambient Air. BIOSENSORS 2021; 11:bios11040098. [PMID: 33801724 PMCID: PMC8066520 DOI: 10.3390/bios11040098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 µM and 15 mM, with a sensitivity of 2.75 ± 1.7 µA/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10% human serum, where the lowest detectable concentration is of 10 µM TMAO.
Collapse
Affiliation(s)
- Armel F. T. Waffo
- Institute for Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany; (A.F.T.W.); (B.M.); (K.T.); (S.L.)
| | - Biljana Mitrova
- Institute for Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany; (A.F.T.W.); (B.M.); (K.T.); (S.L.)
| | - Kim Tiedemann
- Institute for Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany; (A.F.T.W.); (B.M.); (K.T.); (S.L.)
| | - Chantal Iobbi-Nivol
- CNRS, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France;
| | - Silke Leimkühler
- Institute for Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany; (A.F.T.W.); (B.M.); (K.T.); (S.L.)
| | - Ulla Wollenberger
- Institute for Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany; (A.F.T.W.); (B.M.); (K.T.); (S.L.)
| |
Collapse
|
33
|
Molecular Imprinting Strategies for Tissue Engineering Applications: A Review. Polymers (Basel) 2021; 13:polym13040548. [PMID: 33673361 PMCID: PMC7918123 DOI: 10.3390/polym13040548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Tissue Engineering (TE) represents a promising solution to fabricate engineered constructs able to restore tissue damage after implantation. In the classic TE approach, biomaterials are used alongside growth factors to create a scaffolding structure that supports cells during the construct maturation. A current challenge in TE is the creation of engineered constructs able to mimic the complex microenvironment found in the natural tissue, so as to promote and guide cell migration, proliferation, and differentiation. In this context, the introduction inside the scaffold of molecularly imprinted polymers (MIPs)—synthetic receptors able to reversibly bind to biomolecules—holds great promise to enhance the scaffold-cell interaction. In this review, we analyze the main strategies that have been used for MIP design and fabrication with a particular focus on biomedical research. Furthermore, to highlight the potential of MIPs for scaffold-based TE, we present recent examples on how MIPs have been used in TE to introduce biophysical cues as well as for drug delivery and sequestering.
Collapse
|