1
|
Kacem H, Kunz L, Korysko P, Ollivier J, Tsoutsou P, Martinotti A, Rieker V, Bateman J, Farabolini W, Baldacchino G, Loo BW, Limoli CL, Dosanjh M, Corsini R, Vozenin MC. Modification of the microstructure of the CERN- CLEAR-VHEE beam at the picosecond scale modifies ZFE morphogenesis but has no impact on hydrogen peroxide production. Radiother Oncol 2025:110942. [PMID: 40403880 DOI: 10.1016/j.radonc.2025.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND FLASH radiotherapy has emerged as a promising advancement in radiation oncology, demonstrating the potential to minimize normal tissue toxicity while preserving tumoricidal efficacy. However, the precise beam parameters required for clinical translation remain to be fully defined. METHODS To optimize beam parameters for clinical application, we employed Very High Energy Electrons (VHEE) at the CLEAR facility, capable of targeting deep-seated tumors. These were used alongside a FLASH-validated Intermediate Energy Electron (IIE) beam and a 160-225 keV X-ray beam, collectively delivering dose rates from 1 Gy/min to 1011 Gy/s. High-throughput chemical assays investigated the radiochemical effects across this dose range, while zebrafish embryos provided an in vivo model to evaluate biological responses and developmental outcomes. This study offers the first comprehensive analysis of FLASH effects across a wide spectrum of dose rates and temporal parameters, from early physico-chemical interactions to complex biological systems. RESULTS Data from CLEAR demonstrated that beam intensity, particularly bunch charge, is a critical determinant of the FLASH effect, and uncovered an unforeseen biological response when electrons are delivered over the picosecond timescale. CONCLUSION Our findings suggest that scanning strategies employing high intensity beamlets may be optimal for the clinical implementation of FLASH radiotherapy. These insights are pivotal for guiding the development of future FLASH protocols in radiation oncology.
Collapse
Affiliation(s)
- Houda Kacem
- Sector of Radiobiology Applied to Radiotherapy/Radiation Oncology Department/Geneva University Hospital, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology /CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louis Kunz
- Sector of Radiobiology Applied to Radiotherapy/Radiation Oncology Department/Geneva University Hospital, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland
| | - Pierre Korysko
- CERN, European Organization for Nuclear Research, Meyrin, Switzerland; University of Oxford, Oxford, UK
| | - Jonathan Ollivier
- Sector of Radiobiology Applied to Radiotherapy/Radiation Oncology Department/Geneva University Hospital, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology /CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pelagia Tsoutsou
- Sector of Radiobiology Applied to Radiotherapy/Radiation Oncology Department/Geneva University Hospital, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland
| | - Adrien Martinotti
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology /CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vilde Rieker
- CERN, European Organization for Nuclear Research, Meyrin, Switzerland; Oslo University, Oslo, Norway
| | - Joseph Bateman
- CERN, European Organization for Nuclear Research, Meyrin, Switzerland; University of Oxford, Oxford, UK
| | | | - Gérard Baldacchino
- University of Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France; CY Cergy Paris Université, CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Manjit Dosanjh
- CERN, European Organization for Nuclear Research, Meyrin, Switzerland; University of Oxford, Oxford, UK
| | - Roberto Corsini
- CERN, European Organization for Nuclear Research, Meyrin, Switzerland
| | - Marie-Catherine Vozenin
- Sector of Radiobiology Applied to Radiotherapy/Radiation Oncology Department/Geneva University Hospital, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland; Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology /CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [PMID: 40309475 PMCID: PMC12038406 DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Aubrun C, Doussineau T, Carmès L, Meyzaud A, Boux F, Dufort S, Delfour A, De Beaumont O, Mirjolet C, Le Duc G. Mechanisms of Action of AGuIX as a Pan-Cancer Nano-Radiosensitizer: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:519. [PMID: 40283954 PMCID: PMC12030438 DOI: 10.3390/ph18040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: This review provides an overview of the current knowledge regarding the mechanisms of action of AGuIX, a clinical-stage theranostic nano-radiosensitizer composed of gadolinium. It covers the steps following the administration, from the internalization in tumor cells to the interaction with X-rays and the subsequent physical, chemical, biological, and immunological events. Results: After intravenous injection, AGuIX accumulates in tumors through the enhanced permeability and retention (EPR) effect, and its specific retention properties allow its persistence in tumors for several days. At the cellular level, the nanomedicine is internalized by endocytic processes and mainly located in the cytoplasm, especially in lysosomes. AGuIX enhances the effects of radiotherapy (RT) at several levels, starting from radiation-matter interactions to a chemical stage of reactive oxygen species (ROS) production, followed by a cascade of biological events leading to tumor cell death and immune response. Indeed, AGuIX induces a local increase in radiation dose deposition through the emission of Auger electrons, leading to a subsequent increase in ROS generation. AGuIX also impacts RT-induced biological mechanisms, including DNA damage and cell death mechanisms such as apoptosis, autophagic cell death, and ferroptosis. Last, the combination of AGuIX and RT stimulates an antitumor immune response through the induction of immunogenic cell death (ICD), the activation of dendritic and T cells, and the reprogramming of tumor-associated macrophages (TAMs) into a pro-inflammatory phenotype. Conclusions: AGuIX is a clinical-stage nanoparticle (NP) intravenously administered with pan-cancer potential due to its specific biodistribution properties and a strong ability to amplify RT-induced mechanisms.
Collapse
Affiliation(s)
- Clémentine Aubrun
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Tristan Doussineau
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Léna Carmès
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Aurélien Meyzaud
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Fabien Boux
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Sandrine Dufort
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Adeline Delfour
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
- X-Rain: Research Unit in Radiotherapy Combined with Immunotherapies and Nanoparticles, IMATHERA, Radiation Therapy Department, Centre Georges-François Leclerc, 21000 Dijon, France;
- TIReCS Team, CTM (Center for Translational and Molecular Medicine), INSERM UMR 1231, 21000 Dijon, France
| | - Olivier De Beaumont
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Céline Mirjolet
- X-Rain: Research Unit in Radiotherapy Combined with Immunotherapies and Nanoparticles, IMATHERA, Radiation Therapy Department, Centre Georges-François Leclerc, 21000 Dijon, France;
- TIReCS Team, CTM (Center for Translational and Molecular Medicine), INSERM UMR 1231, 21000 Dijon, France
| | - Géraldine Le Duc
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| |
Collapse
|
4
|
Kunz LV, Schaefer R, Kacem H, Ollivier J, Togno M, Chappuis F, Weber D, Lomax A, Limoli CL, Psoroulas S, Vozenin MC. Plasmid DNA Strand Breaks Are Dose Rate Independent at Clinically Relevant Proton Doses and Under Biological Conditions. Radiat Res 2025; 203:214-222. [PMID: 40010373 DOI: 10.1667/rade-24-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/13/2024] [Indexed: 02/28/2025]
Abstract
We investigated the effect of proton FLASH radiation on plasmid DNA. Purified supercoiled pBR322 plasmids were irradiated with clinical doses (≤10 Gy) of protons at ultra-high and conventional dose rates using the Paul Scherrer Institute (PSI) isochronous cyclotron. The proton beam in this clinical facility has been validated to produce the FLASH effect in preclinical models. Plasmid samples were irradiated under various oxygen tensions, scavenger levels, pH conditions and Fe (II) concentrations as these biochemical parameters vary across tissues and tumors. Over the range of doses used, plasmid DNA strand breaks were found to be dose rate independent at all conditions investigated. Irradiation within the Bragg peak and spread-out Bragg peak increased clustered strand breaks, except in the presence of scavengers. With this model system, we demonstrate conclusively that plasmid DNA strand breakage is dose rate independent at doses below 10 Gy and does not constitute a high throughput assay endpoint predictive of the biological effect of FLASH.
Collapse
Affiliation(s)
- Louis V Kunz
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robert Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Houda Kacem
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Flore Chappuis
- Institute of Radiation Physics (IRA), Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital, Lausanne, Switzerland
| | - Damien Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Anthony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Marie-Catherine Vozenin
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Guo Z, Liu S, Zhou B, Liu J, Wang H, Pi Y, Wang X, Mo Y, Guo B, Hua J, Wan Y, Lu W. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype. Nat Commun 2025; 16:1895. [PMID: 39988613 PMCID: PMC11847918 DOI: 10.1038/s41467-025-57122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Radiotherapy using very-high-energy electron (VHEE) beams (50-300 MeV) has attracted considerable attention due to its advantageous dose deposition characteristics, enabling deep penetration and easy manipulation by magnetic components. One promising approach to compactly delivering these high energy electron beams in a cost-effective manner is laser wakefield acceleration (LWFA), which offers ultra-strong accelerating gradients. However, the transition from this concept to a functional machine intended for tumor treatment remains elusive. Here we present the self-developed pro- totype for LWFA-based VHEE radiotherapy, exhibiting compactness (occupying less than 5 m2) and long-term operational stability (validated over a period of one month). Subsequently, we employ this device to irradiate a tumor implanted in a mouse model. Following a dose delivery of 5.8 ± 0.2 Gy with precise tumor conformity, all irradiated mice exhibit pronounced control of tumor growth. For comparison, this tumor-control efficacy is similar to that achieved using commercial X-ray radiotherapy equipment operating at equivalent doses. These results demonstrate a compact and stable laser-driven VHEE system dedicated for preclinical studies involving small animal models and its promising prospects for future clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Zhiyuan Guo
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Shuang Liu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Bing Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifei Pi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Guo
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Jianfei Hua
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Yang Wan
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China.
- Beijing Academy of Artificial Intelligence, Beijing, China.
| | - Wei Lu
- Department of Engineering Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Li XK, Amirkhanyan Z, Grebinyk A, Gross M, Komar Y, Riemer F, Asoyan A, Boonpornprasert P, Borchert P, Davtyan H, Dmytriiev D, Frohme M, Hoffmann A, Krasilnikov M, Loisch G, Lotfi Z, Müller F, Schmitz M, Obier F, Oppelt A, Philipp S, Richard C, Vashchenko G, Villani D, Worm S, Stephan F. Demonstration of ultra-high dose rate electron irradiation at FLASH lab@PITZ. Phys Med Biol 2025; 70:055010. [PMID: 39907068 DOI: 10.1088/1361-6560/adb276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Objective.The photo injector test facility at DESY in Zeuthen (PITZ) is building up an R&D platform, known as FLASHlab@PITZ, for systematically studying the FLASH effect in cancer treatment with its high-brightness electron beams, which can provide a uniquely large dose parameter range for radiation experiments. In this paper, we demonstrate the capabilities by experiments with a reduced parameter range on a startup beamline and study the potential performance of the full beamline by simulations.Approach.To measure the dose, Gafchromic films are installed both in front of and after the samples; Monte Carlo simulations are conducted to predict the dose distribution during beam preparation and help understand the dose distribution inside the sample. Plasmid DNA is irradiated under various doses at conventional and ultra-high dose rate (UHDR) to study the DNA damage by radiations. Start-to-end simulations are performed to verify the performance of the full beamline.Main results.On the startup beamline, reproducible irradiation has been established with optimized electron beams and the delivered dose distributions have been measured with Gafchromic films and compared to FLUKA simulations. The functionality of this setup has been further demonstrated in biochemical experiments at conventional dose rate of 0.05 Gy s-1and UHDR of several 105 Gy s-1and a varying dose up to 60 Gy, with the UHDR experiments finished within a single RF pulse (less than 1 millisecond); the observed conformation yields of the irradiated plasmid DNA revealed its dose-dependent radiation damage. The upgrade to the full FLASHlab@PITZ beamline is justified by simulations with homogeneous radiation fields generated by both pencil beam scanning and scattering beams.Significance.With the demonstration of UHDR irradiation and the simulated performance of the new beamline, FLASHlab@PITZ will serve as a powerful platform for studying the FLASH effects in cancer treatment.
Collapse
Affiliation(s)
- X-K Li
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Z Amirkhanyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Grebinyk
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - M Gross
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Y Komar
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - F Riemer
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Asoyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Boonpornprasert
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Borchert
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - H Davtyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Dmytriiev
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Frohme
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - A Hoffmann
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Krasilnikov
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Z Lotfi
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Müller
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Schmitz
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - F Obier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Oppelt
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Philipp
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - C Richard
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Vashchenko
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Villani
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Worm
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
7
|
Castelli L, Camazzola G, Fuss MC, Boscolo D, Krämer M, Tozzini V, Durante M, Scifoni E. Probing Spatiotemporal Effects of Intertrack Recombination with a New Implementation of Simultaneous Multiple Tracks in TRAX-CHEM. Int J Mol Sci 2025; 26:571. [PMID: 39859287 PMCID: PMC11765274 DOI: 10.3390/ijms26020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances. We analyzed the yields of different radicals as compared to the non-interacting track conditions and we evaluated the difference. We find a negligible role of intertrack for spatial distances larger than 1 μm, while for temporal distances up to μs, a non-negligible interaction is observed especially at higher LET. In addition, we emphasize the non-monotonic behavior of some relative yield as a function of the time separation, in particular of H2O2, due to the onset of a different reaction involving solvated electrons besides well-known OH· recombination.
Collapse
Affiliation(s)
- Lorenzo Castelli
- Department of Physics, University of Trento, 38121 Trento, Italy;
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
| | - Gianmarco Camazzola
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Martina C. Fuss
- Department of Medical Physics, MedAustron, 2700 Wiener Neustadt, Austria
| | - Daria Boscolo
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Michael Krämer
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Valentina Tozzini
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
- INFN, 56127 Pisa, Italy
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
| |
Collapse
|
8
|
Panaino CMV, Piccinini S, Andreassi MG, Bandini G, Borghini A, Borgia M, Di Naro A, Labate LU, Maggiulli E, Portaluri MGA, Gizzi LA. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers (Basel) 2025; 17:181. [PMID: 39857964 PMCID: PMC11763822 DOI: 10.3390/cancers17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols. In addition, the perspective of VHEE to access ultra-high dose-rate regime presents a promising avenue for the practical integration of FLASH radiotherapy of deep tumors and metastases with VHEET (FLASH-VHEET), enhancing normal tissue sparing while maintaining the inherent dosimetric advantages of VHEET. However, FLASH-VHEET systems require validation of time-dependent dose parameters, thus introducing additional technological challenges. Here, we discuss recent progress in VHEET research, focusing on both conventional and FLASH modalities, and covering key aspects including dosimetric properties, radioprotection, accelerator technology, beam focusing, radiobiological effects, and clinical outcomes. Furthermore, we comprehensively analyze initial VHEET in silico studies on coverage across various tumor sites.
Collapse
Affiliation(s)
- Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | - Gabriele Bandini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | | | - Angelo Di Naro
- ASST Papa Giovanni XXIII Hospital, Radiotherapy, 24127 Bergamo, Italy; (A.D.N.); (M.G.A.P.)
| | - Luca Umberto Labate
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| | | | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| |
Collapse
|
9
|
Barty CPJ, Algots JM, Amador AJ, Barty JCR, Betts SM, Castañeda MA, Chu MM, Daley ME, De Luna Lopez RA, Diviak DA, Effarah HH, Feliciano R, Garcia A, Grabiel KJ, Griffin AS, Hartemann FV, Heid L, Hwang Y, Imeshev G, Jentschel M, Johnson CA, Kinosian KW, Lagzda A, Lochrie RJ, May MW, Molina E, Nagel CL, Nagel HJ, Peirce KR, Peirce ZR, Quiñonez ME, Raksi F, Ranganath K, Reutershan T, Salazar J, Schneider ME, Seggebruch MWL, Yang JY, Yeung NH, Zapata CB, Zapata LE, Zepeda EJ, Zhang J. Design, Construction, and Test of Compact, Distributed-Charge, X-Band Accelerator Systems that Enable Image-Guided, VHEE FLASH Radiotherapy. ARXIV 2025:arXiv:2408.04082v2. [PMID: 39148931 PMCID: PMC11326425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
Collapse
Affiliation(s)
- Christopher P. J. Barty
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | | | | | | | | | | | | | | | | | - Haytham H. Effarah
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | - Adan Garcia
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | - Leslie Heid
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
| | - Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | - Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | | | | | | | | | - Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | - Trevor Reutershan
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | | | - Michael W. L. Seggebruch
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
| | - Joy Y. Yang
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | | |
Collapse
|
10
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
11
|
Wanstall HC, Burkart F, Dinter H, Kellermeier M, Kuropka W, Mayet F, Vinatier T, Santina E, Chadwick AL, Merchant MJ, Henthorn NT, Köpke M, Stacey B, Jaster-Merz S, Jones RM. First in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY. Sci Rep 2024; 14:10957. [PMID: 38740830 DOI: 10.1038/s41598-024-60585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Florian Burkart
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Hannes Dinter
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Max Kellermeier
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Willi Kuropka
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Frank Mayet
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Thomas Vinatier
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael Köpke
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Blae Stacey
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Sonja Jaster-Merz
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
12
|
McElligott O, Nikandrovs M, McCavana P, McClean B, León Vintró L. Estimation of the relative biological effectiveness for double strand break induction of clinical kilovoltage beams using Monte Carlo simulations. Med Phys 2024; 51:3796-3805. [PMID: 38588477 DOI: 10.1002/mp.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The Relative Biological Effectiveness (RBE) of kilovoltage photon beams has been previously investigated in vitro and in silico using analytical methods. The estimated values range from 1.03 to 1.82 depending on the methodology and beam energies examined. PURPOSE The focus of this work was to independently estimate RBE values for a range of clinically used kilovoltage beams (70-200 kVp) while investigating the suitability of using TOPAS-nBio for this task. METHODS Previously validated spectra of clinical beams were used to generate secondary electron spectra at several depths in a water tank phantom via TOPAS Monte Carlo (MC) simulations. Cell geometry was irradiated with the secondary electrons in TOPAS-nBio MC simulations. The deposited dose and the calculated number of DNA strand breaks were used to estimate RBE values. RESULTS Monoenergetic secondary electron simulations revealed the highest direct and indirect double strand break yield at approximately 20 keV. The average RBE value for the kilovoltage beams was calculated to be 1.14. CONCLUSIONS TOPAS-nBio was successfully used to estimate the RBE values for a range of clinical radiotherapy beams. The calculated value was in agreement with previous estimates, providing confidence in its clinical use in the future.
Collapse
Affiliation(s)
- Oran McElligott
- School of Physics, University College Dublin, Dublin, Ireland
| | - Mihails Nikandrovs
- School of Physics, University College Dublin, Dublin, Ireland
- St. Lukes Radiation Oncology Network, Dublin, Ireland
| | - Patrick McCavana
- St. Lukes Radiation Oncology Network, Dublin, Ireland
- Centre for Physics in Health and Medicine, University College Dublin, Dublin, Ireland
| | - Brendan McClean
- St. Lukes Radiation Oncology Network, Dublin, Ireland
- Centre for Physics in Health and Medicine, University College Dublin, Dublin, Ireland
| | - Luis León Vintró
- School of Physics, University College Dublin, Dublin, Ireland
- St. Lukes Radiation Oncology Network, Dublin, Ireland
- Centre for Physics in Health and Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Han Y, Geng C, Liu Y, Wu R, Li M, Yu C, Altieri S, Tang X. Calculation of the DNA damage yield and relative biological effectiveness in boron neutron capture therapy via the Monte Carlo track structure simulation. Phys Med Biol 2023; 68:175028. [PMID: 37524085 DOI: 10.1088/1361-6560/acec2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.Approach. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.Main results. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6μm) were found to be 13.28, 17.34, 22.15 Gy Gbp-1for boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbp-1for sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.Significance. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Renyao Wu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Mingzhu Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Chenxi Yu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), the section of Pavia, Pavia, Italy
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Cuitiño MC, Fleming JL, Jain S, Cetnar A, Ayan AS, Woollard J, Manring H, Meng W, McElroy JP, Blakaj DM, Gupta N, Chakravarti A. Comparison of Gonadal Toxicity of Single-Fraction Ultra-High Dose Rate and Conventional Radiation in Mice. Adv Radiat Oncol 2023; 8:101201. [PMID: 37008254 PMCID: PMC10050676 DOI: 10.1016/j.adro.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Increasing evidence suggests that ultra-high-dose-rate (UHDR) radiation could result in similar tumor control as conventional (CONV) radiation therapy (RT) while reducing toxicity to surrounding healthy tissues. Considering that radiation toxicity to gonadal tissues can cause hormone disturbances and infertility in young patients with cancer, the purpose of this study was to assess the possible role of UHDR-RT in reducing toxicity to healthy gonads in mice compared with CONV-RT. Methods and Materials Radiation was delivered to the abdomen or pelvis of female (8 or 16 Gy) and male (5 Gy) C57BL/6J mice, respectively, at conventional (∼0.4 Gy/s) or ultrahigh (>100 Gy/s) dose rates using an IntraOp Mobetron linear accelerator. Organ weights along with histopathology and immunostaining of irradiated gonads were used to compare toxicity between radiation modalities. Results CONV-RT and UHDR-RT induced a similar decrease in uterine weights at both studied doses (∼50% of controls), which indicated similarly reduced ovarian follicular activity. Histologically, ovaries of CONV- and UHDR-irradiated mice exhibited a comparable lack of follicles. Weights of CONV- and UHDR-irradiated testes were reduced to ∼30% of controls, and the percentage of degenerate seminiferous tubules was also similar between radiation modalities (∼80% above controls). Pairwise comparisons of all quantitative data indicated statistical significance between irradiated (CONV or UHDR) and control groups (from P ≤ .01 to P ≤ .0001) but not between radiation modalities. Conclusions The data presented here suggest that the short-term effects of UHDR-RT on the mouse gonads are comparable to those of CONV-RT.
Collapse
Affiliation(s)
- Maria C. Cuitiño
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jessica L. Fleming
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Sagarika Jain
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ashley Cetnar
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ahmet S. Ayan
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey Woollard
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Heather Manring
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Meng
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Joseph P. McElroy
- Department of Biomedical Informatics, Center for Biostatistics, Ohio State University, Columbus, Ohio
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Nilendu Gupta
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
15
|
Wanstall HC, Henthorn NT, Jones J, Santina E, Chadwick AL, Angal-Kalinin D, Morris G, Warmenhoven JW, Smith R, Mathisen S, Merchant MJ, Jones RM. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments. JOURNAL OF RADIATION RESEARCH 2023:7153712. [PMID: 37154587 DOI: 10.1093/jrr/rrad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Indexed: 05/10/2023]
Abstract
The pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell. We show that increasing hydroxyl scavenger concentration significantly reduced post-irradiation DNA damage to pBR322 plasmid DNA consistently and equally with three radiation modalities. At low scavenging capacities, irradiation with both 35 MeV electrons and 228 MeV protons resulted in increased DNA damage per dose compared with 300 kVp X-rays. We quantify both single-strand break (SSB) and double-strand break (DSB) induction between the modalities as a ratio of yields relative to X-rays, referred to as relative biological effectiveness (RBE). RBESSB values of 1.16 ± 0.15 and 1.18 ± 0.08 were calculated for protons and electrons, respectively, in a low hydroxyl scavenging environment containing 1 mM Tris-HCl for SSB induction. In higher hydroxyl scavenging capacity environments (above 1.1 × 106 s-1), no significant differences in DNA damage induction were found between radiation modalities when using SSB induction as a measure of RBE. Considering DSB induction, significant differences were only found between X-rays and 35 MeV electrons, with an RBEDSB of 1.72 ± 0.91 for 35 MeV electrons, indicating that electrons result in significantly more SSBs and DSBs per unit of dose than 300 kVp X-rays.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Jones
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Deepa Angal-Kalinin
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Geoffrey Morris
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - John-William Warmenhoven
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Rob Smith
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Storm Mathisen
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Michael J Merchant
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| |
Collapse
|
16
|
Oancea C, Granja C, Marek L, Jakubek J, Šolc J, Bodenstein E, Gantz S, Pawelke J, Pivec J. Out-of-field measurements and simulations of a proton pencil beam in a wide range of dose rates using a Timepix3 detector: Dose rate, flux and LET. Phys Med 2023; 106:102529. [PMID: 36657235 DOI: 10.1016/j.ejmp.2023.102529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.
Collapse
Affiliation(s)
- Cristina Oancea
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic; University of Bucharest, Bucharest, Romania.
| | - Carlos Granja
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| | - Lukas Marek
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Jan Jakubek
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| | - Jaroslav Šolc
- Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic
| | - Elisabeth Bodenstein
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Sebastian Gantz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jiri Pivec
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| |
Collapse
|
17
|
Royba E, Repin M, Balajee AS, Shuryak I, Pampou S, Karan C, Wang YF, Lemus OD, Obaid R, Deoli N, Wuu CS, Brenner DJ, Garty G. Validation of a High-Throughput Dicentric Chromosome Assay Using Complex Radiation Exposures. Radiat Res 2023; 199:1-16. [PMID: 35994701 PMCID: PMC9947868 DOI: 10.1667/rade-22-00007.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Adayabalam S. Balajee
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Cytogenetic Biodosimetry Laboratory (CBL), Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening facility, Columbia University Irving Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Olga Dona Lemus
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Razib Obaid
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
- Currently at Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California
| | - Naresh Deoli
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
- Radiological Research Accelerator facility, Columbia University Irving Medical Center, Irvington, New York
| |
Collapse
|
18
|
Souli MP, Nikitaki Z, Puchalska M, Brabcová KP, Spyratou E, Kote P, Efstathopoulos EP, Hada M, Georgakilas AG, Sihver L. Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232415606. [PMID: 36555249 PMCID: PMC9779025 DOI: 10.3390/ijms232415606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Modeling ionizing radiation interaction with biological matter is a major scientific challenge, especially for protons that are nowadays widely used in cancer treatment. That presupposes a sound understanding of the mechanisms that take place from the early events of the induction of DNA damage. Herein, we present results of irradiation-induced complex DNA damage measurements using plasmid pBR322 along a typical Proton Treatment Plan at the MedAustron proton and carbon beam therapy facility (energy 137-198 MeV and Linear Energy Transfer (LET) range 1-9 keV/μm), by means of Agarose Gel Electrophoresis and DNA fragmentation using Atomic Force Microscopy (AFM). The induction rate Mbp-1 Gy-1 for each type of damage, single strand breaks (SSBs), double-strand breaks (DSBs), base lesions and non-DSB clusters was measured after irradiations in solutions with varying scavenging capacity containing 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) and coumarin-3-carboxylic acid (C3CA) as scavengers. Our combined results reveal the determining role of LET and Reactive Oxygen Species (ROS) in DNA fragmentation. Furthermore, AFM used to measure apparent DNA lengths provided us with insights into the role of increasing LET in the induction of highly complex DNA damage.
Collapse
Affiliation(s)
- Maria P Souli
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Zacharenia Nikitaki
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | | | | | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Panagiotis Kote
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce 39/64, 180 86 Prague, Czech Republic
| |
Collapse
|
19
|
FLASHlab@PITZ: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation biology under preparation at PITZ. Phys Med 2022; 104:174-187. [PMID: 36463582 DOI: 10.1016/j.ejmp.2022.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
At the Photo Injector Test facility at DESY in Zeuthen (PITZ), an R&D platform for electron FLASH and very high energy electron radiation therapy and radiation biology is being prepared (FLASHlab@PITZ). The beam parameters available at PITZ are worldwide unique. They are based on experiences from 20 + years of developing high brightness beam sources and an ultra-intensive THz light source demonstrator for ps scale electron bunches with up to 5 nC bunch charge at MHz repetition rate in bunch trains of up to 1 ms length, currently 22 MeV (upgrade to 250 MeV planned). Individual bunches can provide peak dose rates up to 1014 Gy/s, and 10 Gy can be delivered within picoseconds. Upon demand, each bunch of the bunch train can be guided to a different transverse location, so that either a "painting" with micro beams (comparable to pencil beam scanning in proton therapy) or a cumulative increase of absorbed dose, using a wide beam distribution, can be realized at the tumor. Full tumor treatment can hence be completed within 1 ms, mitigating organ movement issues. With extremely flexible beam manipulation capabilities, FLASHlab@PITZ will cover the current parameter range of successfully demonstrated FLASH effects and extend the parameter range towards yet unexploited short treatment times and high dose rates. A summary of the plans for FLASHlab@PITZ and the status of its realization will be presented.
Collapse
|
20
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
21
|
New damage model for simulating radiation-induced direct damage to biomolecular systems and experimental validation using pBR322 plasmid. Sci Rep 2022; 12:11345. [PMID: 35790804 PMCID: PMC9256689 DOI: 10.1038/s41598-022-15521-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we proposed a new damage model for estimating radiation-induced direct damage to biomolecular systems and validated its the effectiveness for pBR322 plasmids. The proposed model estimates radiation-induced damage to biomolecular systems by: (1) simulation geometry modeling using the coarse-grained (CG) technique to replace the minimum repeating units of a molecule with a single bead, (2) approximation of the threshold energy for radiation damage through CG potential calculation, (3) calculation of cumulative absorption energy for each radiation event in microscopic regions of CG models using the Monte Carlo track structure (MCTS) code, and (4) estimation of direct radiation damage to biomolecular systems by comparing CG potentials and absorption energy. The proposed model replicated measured data with an average error of approximately 14.2% in the estimation of radiation damage to pBR322 plasmids using the common MCTS code Geant4-DNA. This is similar to the results of previous simulation studies. However, in existing damage models, parameters are adjusted based on experimental data to increase the reliability of simulation results, whereas in the proposed model, they can be determined without using empirical data. Because the proposed model proposed is applicable to DNA and various biomolecular systems with minimal experimental data, it provides a new method that is convenient and effective for predicting damage in living organisms caused by radiation exposure.
Collapse
|
22
|
Sala L, Lyshchuk H, Šáchová J, Chvátil D, Kočišek J. Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2'-Deoxy-2'-fluorocytidine Observed on DNA Origami Nanoframe Supports. J Phys Chem Lett 2022; 13:3922-3928. [PMID: 35472278 PMCID: PMC9083549 DOI: 10.1021/acs.jpclett.2c00584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
DNA origami nanoframes with two parallel DNA sequences are used to evaluate the effect of nucleoside substituents on radiation-induced DNA damage. Double strand breaks (DSB) of DNA are counted using atomic force microscopy (AFM), and total number of lesions is evaluated using real-time polymerase chain reaction (RT-PCR). Enhanced AT or GC content does not increase the number of DNA strand breaks. Incorporation of 8-bromoadenosine results in the highest enhancement in total number of lesions; however, the highest enhancement in DSB is observed for 2'-deoxy-2'-fluorocytidine, indicating different mechanisms of radiosensitization by nucleoside analogues with the halogen substituent on base or sugar moieties, respectively. "Bystander" effects are observed, when the number of DSB in a sequence is enhanced by a substituent in the parallel DNA sequence. The present approach eliminates limitations of previously developed methods and motivates detailed studies of poorly understood conformation or bystander effects in radiation induced damage to DNA.
Collapse
Affiliation(s)
- Leo Sala
- J.
Heyrovský Institute of Physical Chemistry of CAS, Dolejškova 3, 18223 Prague, Czech Republic
| | - Hlib Lyshchuk
- J.
Heyrovský Institute of Physical Chemistry of CAS, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jana Šáchová
- Laboratory
of Genomics and Bioinformatics, Institute
of Molecular Genetics of the CAS, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - David Chvátil
- Nuclear
Physics Institute of the CAS, Řež 130, 250 68 Řež, Czech
Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry of CAS, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
23
|
Schwarz M, Traneus E, Safai S, Kolano A, van de Water S. Treatment planning for Flash radiotherapy: general aspects and applications to proton beams. Med Phys 2022; 49:2861-2874. [PMID: 35213040 DOI: 10.1002/mp.15579] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
The increased radioresistence of healthy tissues when irradiated at very high dose rates (known as the Flash effect) is a radiobiological mechanism that is currently investigated in order to increase the therapeutic ratio of radiotherapy treatments. To maximize the benefits of the clinical application of Flash, a patient-specific balance between different properties of the dose distribution should be found, i.e. Flash needs to be one of the variables considered in treatment planning. We investigated the Flash potential of three proton therapy planning and beam delivery techniques, each on a different anatomical region. Based on a set of beam delivery parameters, on hypotheses on the dose and dose rate thresholds needed for the Flash effect to occur, and on two definitions of Flash dose rate, we generated exemplary illustrations of the capabilities of current proton therapy equipment to generate Flash dose distributions. All techniques investigated could both produce dose distributions comparable with a conventional proton plan and reach the Flash regime, to an extent that was strongly dependent on the dose per fraction and the Flash dose threshold. The beam current, Flash dose rate threshold and dose rate definition typically had a more moderate effect on the amount of Flash dose in normal tissue. A systematic estimation of the impact of Flash on different patient anatomies and treatment protocols is possible only if Flash-specific treatment planning features become readily available. Planning evaluation tools such as a voxel-based dose delivery time structure, and the inclusion in the optimization cost function of parameters directly associated with Flash (e.g. beam current, spot delivery sequence and scanning speed), are needed to generate treatment plans that are taking full advantage of the potential benefits of the Flash effect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Schwarz
- Proton therapy Department, Trento Hospital and TIFPA-INFN, Trento, Italy
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm SE-103 65, Sweden
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Anna Kolano
- Advanced Oncotherapy plc, London, England - Application of Detectors and Accelerators to Medicine(ADAM), Geneva, Switzerland
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Perstin A, Poirier Y, Sawant A, Tambasco M. Quantifying the DNA-damaging effects of FLASH irradiation with plasmid DNA. Int J Radiat Oncol Biol Phys 2022; 113:437-447. [PMID: 35124135 DOI: 10.1016/j.ijrobp.2022.01.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate a plasmid DNA nicking assay approach for isolating and quantifying the DNA damaging effects of ultra-high dose rate (i.e., FLASH) irradiation relative to conventional dose rate irradiation. METHODS We constructed and irradiated phantoms containing plasmid DNA to nominal doses of 20 Gy and 30 Gy using 16 MeV electrons at conventional (0.167 Gy/s) and FLASH (46.6 Gy/s and 93.2 Gy/s) dose rates. We delivered conventional dose rates using a standard clinical Varian iX linac and FLASH dose rates (FDR) using a modified Varian 21EX C-series linac. We ran the irradiated DNA and controls (0 Gy) through an agarose gel electrophoresis procedure that sorted and localized the DNA into bands associated with single strand breaks (SSBs), double strand breaks (DSBs), and undamaged DNA. We quantitatively analyzed the gel images to compute the relative yields of SSBs and DSBs, and applied a mathematical model of plasmid DNA damage as a function of dose to compute relative biological effectiveness (RBE) of SSB and DSB (RBESSBandRBEDSB) damage for a given endpoint and FDR. RESULTS Both RBESSBandRBEDSB were less than unity with the FDR irradiations, indicating FLASH sparing. With regard to the more deleterious DNA DSB damage, RBEDSBs of FLASH beams at dose rates of 46.6 Gy/s and 93.2 Gy/s relative to the conventional 16 MeV beam dose rate were 0.54 ± 0.15 and 0.55 ± 0.17, respectively. CONCLUSION We have demonstrated the feasibility of using a DNA-based phantom to isolate and assess the FLASH sparing effect on DNA. We also found that FLASH irradiation causes less damage to DNA compared to a conventional dose rate. This result supports the notion that the protective effect of FLASH irradiation occurs at least partially via fundamental biochemical processes.
Collapse
Affiliation(s)
- Alan Perstin
- Physics Graduate Student, San Diego State University
| | - Yannick Poirier
- Assistant Professor, Oncology, Department of Radiation Oncology, University of Maryland
| | - Amit Sawant
- Professor and Vice Chair, Department of Radiation Oncology, University of Maryland
| | - Mauro Tambasco
- Associate Professor/Medical Physicist, Associate Program Director, Medical Physics Residency, Associate Director, Medical Physics , Department of Physics, San Diego State University.
| |
Collapse
|
25
|
Kacem H, Almeida A, Cherbuin N, Vozenin MC. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int J Radiat Biol 2021; 98:506-516. [PMID: 34788193 DOI: 10.1080/09553002.2021.2004328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A reemergence of research implementing radiation delivery at ultra-high dose rates (UHDRs) has triggered intense interest in the radiation sciences and has opened a new field of investigation in radiobiology. Much of the promise of UHDR irradiation involves the FLASH effect, an in vivo biological response observed to maintain anti-tumor efficacy without the normal tissue complications associated with standard dose rates. The FLASH effect has been validated primarily, using intermediate energy electron beams able to deliver high doses (>7 Gy) in a very short period of time (<200 ms), but has also been found with photon and proton beams. The clinical implications of this new area of research are highly significant, as FLASH radiotherapy (FLASH-RT) has the potential to enhance the therapeutic index, opening new possibilities for eradicating radio-resistant tumors without toxicity. As pioneers in this field, our group has developed a multidisciplinary research team focused on investigating the mechanisms and clinical translation of the FLASH effect. Here, we review the field of UHDR, from the physico-chemical to the biological mechanisms.
Collapse
Affiliation(s)
- Houda Kacem
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aymeric Almeida
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Cherbuin
- Department of Medical Radiology, Institute of Radiation Physics, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers (Basel) 2021; 13:4942. [PMID: 34638424 PMCID: PMC8507836 DOI: 10.3390/cancers13194942] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.
Collapse
Affiliation(s)
- Maria Grazia Ronga
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- Thales AVS Microwave & Imaging Sub-Systems, 78141 Vélizy-Villacoublay, France
| | - Marco Cavallone
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Annalisa Patriarca
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Amelia Maia Leite
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| | - Pierre Loap
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Vincent Favaudon
- INSERM U 1021-CNRS UMR 3347, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France;
| | - Gilles Créhange
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
| | - Ludovic De Marzi
- Centre de Protonthérapie d’Orsay, Department of Radiation Oncology, Campus Universitaire, Institut Curie, PSL Research University, 91898 Orsay, France; (M.G.R.); (M.C.); (A.P.); (A.M.L.); (P.L.); (G.C.)
- INSERM LITO U1288, Campus Universitaire, Institut Curie, PSL Research University, University Paris Saclay, 91898 Orsay, France
| |
Collapse
|
27
|
Whitmore L, Mackay RI, van Herk M, Jones JK, Jones RM. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Sci Rep 2021; 11:14013. [PMID: 34234203 PMCID: PMC8263594 DOI: 10.1038/s41598-021-93276-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
This paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.
Collapse
Affiliation(s)
- L Whitmore
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- The Cockcroft Institute of Science and Technology, Daresbury, Warrington, UK
| | - R I Mackay
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - M van Herk
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - J K Jones
- The Cockcroft Institute of Science and Technology, Daresbury, Warrington, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - R M Jones
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- The Cockcroft Institute of Science and Technology, Daresbury, Warrington, UK.
| |
Collapse
|
28
|
First theoretical determination of relative biological effectiveness of very high energy electrons. Sci Rep 2021; 11:11242. [PMID: 34045625 PMCID: PMC8160353 DOI: 10.1038/s41598-021-90805-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Very high energy electrons (VHEEs, E > 70 MeV) present promising clinical advantages over conventional beams due to their increased range, improved penumbra and relative insensitivity to tissue heterogeneities. They have recently garnered additional interest in their application to spatially fractionated radiotherapy or ultra-high dose rate (FLASH) therapy. However, the lack of radiobiological data limits their rapid development. This study aims to provide numerical biologically-relevant information by characterizing VHEE beams (100 and 300 MeV) against better-known beams (clinical energy electrons, photons, protons, carbon and neon ions). Their macro- and microdosimetric properties were compared, using the dose-averaged linear energy transfer ([Formula: see text]) as the macroscopic metric, and the dose-mean lineal energy [Formula: see text] and the dose-weighted lineal energy distribution, yd(y), as microscopic metrics. Finally, the modified microdosimetric kinetic model was used to calculate the respective cell survival curves and the theoretical RBE. From the macrodosimetric point of view, VHEEs presented a potential improved biological efficacy over clinical photon/electron beams due to their increased [Formula: see text]. The microdosimetric data, however, suggests no increased biological efficacy of VHEEs over clinical electron beams, resulting in RBE values of approximately 1, giving confidence to their clinical implementation. This study represents a first step to complement further radiobiological experiments.
Collapse
|