1
|
Montes-Narváez O, García-Juárez M, Beltrán-Pérez G, Espinosa-García C, González-Flores O, Delgado-Macuil RJ. ATR-FTIR spectroscopy to evaluate serum protein expression in a murine cerebral ischemia model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125261. [PMID: 39395276 DOI: 10.1016/j.saa.2024.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Stroke is a prevalent vascular disease that causes disability and death worldwide. Molecular techniques have been developed to assess serum concentrations of biomarkers associated with this disease, such as some proteins. ATR-FTIR was proposed as an alternative technique to determine protein expression during the early stages of stroke. Serum samples from sham, ischemic, and ischemic treated with estradiol benzoate (EB; as a neuroprotective agent) male rats were evaluated at 0, 2-, 4-, 6-, 12-, and 24-hours post-ischemia. The analysis was developed in the mid-infrared region but mainly focused on the protein region (1500-1700 cm-1), where it was possible to observe the modulation in the absorbance intensity. The peaks at 1545, 1645, 1635, and 1650 cm-1 associated with amide II, amide I, β-sheets, and α-helixes, respectively, were prominent peaks where protein modulation was observed. The results demonstrate that infrared spectroscopy could be a good alternative technique to determine the modulation of protein expression during stroke events.
Collapse
Affiliation(s)
- Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico.
| | - Georgina Beltrán-Pérez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claudia Espinosa-García
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico
| | - Raúl Jacobo Delgado-Macuil
- Instituto Politécnico Nacional, Centro de investigación en Biotecnología Aplicada, Tepetitla, Tlaxcala 90700, Mexico
| |
Collapse
|
2
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
O'Donnell M, Fontaine A, Caldwell J, Weir R. Direct dorsal root ganglia (DRG) injection in mice for analysis of adeno-associated viral (AAV) gene transfer to peripheral somatosensory neurons. J Neurosci Methods 2024; 411:110268. [PMID: 39191304 DOI: 10.1016/j.jneumeth.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Delivering optogenetic genes to the peripheral sensory nervous system provides an efficient approach to study and treat neurological disorders and offers the potential to reintroduce sensory feedback to prostheses users and those who have incurred other neuropathies. Adeno-associated viral (AAV) vectors are a common method of gene delivery due to efficiency of gene transfer and minimal toxicity. AAVs are capable of being designed to target specific tissues, with transduction efficacy determined through the combination of serotype and genetic promoter selection, as well as location of vector administration. The dorsal root ganglia (DRGs) are collections of cell bodies of sensory neurons which project from the periphery to the central nervous system (CNS). The anatomical make-up of DRGs make them an ideal injection location to target the somatosensory neurons in the peripheral nervous system (PNS). COMPARISON TO EXISTING METHODS Previous studies have detailed methods of direct DRG injection in rats and dorsal horn injection in mice, however, due to the size and anatomical differences between rats and strains of mice, there is only one other published method for AAV injection into murine DRGs for transduction of peripheral sensory neurons using a different methodology. NEW METHOD/RESULTS Here, we detail the necessary materials and methods required to inject AAVs into the L3 and L4 DRGs of mice, as well as how to harvest the sciatic nerve and L3/L4 DRGs for analysis. This methodology results in optogenetic expression in both the L3/L4 DRGs and sciatic nerve and can be adapted to inject any DRG.
Collapse
Affiliation(s)
- Michael O'Donnell
- Department of Bioengineering, University of Colorado - Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Arjun Fontaine
- Department of Bioengineering, University of Colorado - Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - John Caldwell
- Department of Cell and Developmental Biology, University of Colorado - Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Weir
- Department of Bioengineering, University of Colorado - Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Sarkar A, Ajijola OA. Pathophysiologic Mechanisms in Cardiac Autonomic Nervous System and Arrhythmias. Card Electrophysiol Clin 2024; 16:261-269. [PMID: 39084719 DOI: 10.1016/j.ccep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system, including the central nervous system and the cardiac plexus, maintains cardiac physiology. In diseased states, autonomic changes through neuronal remodeling generate electrical mechanisms of arrhythmia such as triggered activity or increased automaticity. This article will focus on the pathophysiological mechanisms of arrhythmia to highlight the role of the autonomic nervous system in disease and the related therapeutic interventions.
Collapse
Affiliation(s)
- Abdullah Sarkar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Ren H, Cheng Y, Wen G, Wang J, Zhou M. Emerging optogenetics technologies in biomedical applications. SMART MEDICINE 2023; 2:e20230026. [PMID: 39188295 PMCID: PMC11235740 DOI: 10.1002/smmd.20230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 08/28/2024]
Abstract
Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yi Cheng
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Gaolin Wen
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhou
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
6
|
Matarazzo JV, Ajay EA, Payne SC, Trang EP, Thompson AC, Marroquin JB, Wise AK, Fallon JB, Richardson RT. Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers. Front Neurosci 2023; 17:1190662. [PMID: 37360169 PMCID: PMC10285517 DOI: 10.3389/fnins.2023.1190662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation. Methods The sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. Results Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aβ) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aβ hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aβ fiber and myogenic thresholds (p = 0.008, n = 4). Discussion The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aβ fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.
Collapse
Affiliation(s)
| | - Elise A. Ajay
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | - Ella P. Trang
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | - Alex C. Thompson
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | | | - Andrew K. Wise
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| | - Rachael T. Richardson
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
7
|
Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Stathopoulou TR, Perkins J, Shearing PR, Aristovich K, Holder D. Organotopic organization of the porcine mid-cervical vagus nerve. Front Neurosci 2023; 17:963503. [PMID: 37205051 PMCID: PMC10185768 DOI: 10.3389/fnins.2023.963503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Despite detailed characterization of fascicular organization of somatic nerves, the functional anatomy of fascicles evident in human and large mammal cervical vagus nerve is unknown. The vagus nerve is a prime target for intervention in the field of electroceuticals due to its extensive distribution to the heart, larynx, lungs, and abdominal viscera. However, current practice of the approved vagus nerve stimulation (VNS) technique is to stimulate the entire nerve. This produces indiscriminate stimulation of non-targeted effectors and undesired side effects. Selective neuromodulation is now a possibility with a spatially-selective vagal nerve cuff. However, this requires the knowledge of the fascicular organization at the level of cuff placement to inform selectivity of only the desired target organ or function. Methods and results We imaged function over milliseconds with fast neural electrical impedance tomography and selective stimulation, and found consistent spatially separated regions within the nerve correlating with the three fascicular groups of interest, suggesting organotopy. This was independently verified with structural imaging by tracing anatomical connections from the end organ with microCT and the development of an anatomical map of the vagus nerve. This confirmed organotopic organization. Discussion Here we show, for the first time, localized fascicles in the porcine cervical vagus nerve which map to cardiac, pulmonary and recurrent laryngeal function (N = 4). These findings pave the way for improved outcomes in VNS as unwanted side effects could be reduced by targeted selective stimulation of identified organ-specific fiber-containing fascicles and the extension of this technique clinically beyond the currently approved disorders to treat heart failure, chronic inflammatory disorders, and more.
Collapse
Affiliation(s)
- Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Francesco Iacoviello
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | | | - Justin Perkins
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Paul R. Shearing
- Electrochemical Innovations Lab, Department of Chemical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
8
|
Farina D, Vujaklija I, Brånemark R, Bull AMJ, Dietl H, Graimann B, Hargrove LJ, Hoffmann KP, Huang HH, Ingvarsson T, Janusson HB, Kristjánsson K, Kuiken T, Micera S, Stieglitz T, Sturma A, Tyler D, Weir RFF, Aszmann OC. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng 2023; 7:473-485. [PMID: 34059810 DOI: 10.1038/s41551-021-00732-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Rickard Brånemark
- Center for Extreme Bionics, Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Hans Dietl
- Ottobock Products SE & Co. KGaA, Vienna, Austria
| | | | - Levi J Hargrove
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Klaus-Peter Hoffmann
- Department of Medical Engineering & Neuroprosthetics, Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany
| | - He Helen Huang
- NCSU/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thorvaldur Ingvarsson
- Department of Research and Development, Össur Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hilmar Bragi Janusson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, BrainLinks-BrainTools Center and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Agnes Sturma
- Department of Bioengineering, Imperial College London, London, UK
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Dustin Tyler
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Veterans Affairs Medical Centre, Cleveland, OH, USA
| | - Richard F Ff Weir
- Biomechatronics Development Laboratory, Bioengineering Department, University of Colorado Denver and VA Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Wang J, Zhao H, Shi K, Wang M. Treatment of insomnia based on the mechanism of pathophysiology by acupuncture combined with herbal medicine: A review. Medicine (Baltimore) 2023; 102:e33213. [PMID: 36930068 PMCID: PMC10019201 DOI: 10.1097/md.0000000000033213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Insomnia is a sleep disorder which severely affects patients mood, quality of life and social functioning, serves as a trigger or risk factor to a variety of diseases such as depression, cardiovascular and cerebrovascular diseases, obesity and diabetes, and even increases the risk of suicide, and has become an increasingly widespread concern worldwide. Considerable research on insomnia has been conducted in modern medicine in recent years and encouraging results have been achieved in the fields of genetics and neurobiology. Unfortunately, however, the pathogenesis of insomnia remains elusive to modern medicine, and pharmacological treatment of insomnia has been regarded as conventional. However, in the course of treatment, pharmacological treatment itself is increasingly being questioned due to potential dependence and drug resistance and is now being replaced by cognitive behavior therapy as the first-line treatment. As an important component of complementary and alternative medicine, traditional Chinese medicine, especially non-pharmacological treatment methods such as acupuncture, is gaining increasing attention worldwide. In this article, we discuss the combination of traditional Chinese medicine, acupuncture, and medicine to treat insomnia based on neurobiology in the context of modern medicine.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pain, Datong Hospital of Traditional Chinese Medicine, Shanxi Province, Datong, China
| | - Haishen Zhao
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| | - Kejun Shi
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| | - Manya Wang
- Department of Rehabilitation, Luchaogang Community Health Service Center, Pudong New District, Shanghai, China
| |
Collapse
|
10
|
Zhao Q, Yu CD, Wang R, Xu QJ, Dai Pra R, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 2022; 603:878-884. [PMID: 35296859 PMCID: PMC8967724 DOI: 10.1038/s41586-022-04515-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Collapse
Affiliation(s)
- Qiancheng Zhao
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Chuyue D. Yu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rui Wang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Qian J. Xu
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT USA
| | - Rafael Dai Pra
- grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - Rui B. Chang
- grid.47100.320000000419368710Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
11
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|