1
|
Whitson HM, Rosado-Mendez IM, Hall TJ. Clutter-Generating Phantom Material. Part II: Utilization in the Comparison of Conventional and Regularized Ultrasound Attenuation Estimation. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:777-787. [PMID: 39934056 PMCID: PMC12008997 DOI: 10.1016/j.ultrasmedbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
A particular challenge in clinical ultrasound imaging is acoustic clutter, which arises from the heterogeneity of the speed of sound and reverberations between layered tissue types. Although clutter is common when imaging through complex tissue such as the abdominal wall, few studies have investigated its effects on quantitative ultrasound (QUS) parameter estimation. The ultrasonic attenuation coefficient (AC) has shown promise as a biomarker for multiple applications. Recently, multiple regularized methods of AC estimation have been developed; however, their performance must be evaluated in clinically relevant scenarios such as in the presence of clutter. In a companion paper to this work, a material that produces clutter similar to that seen in clinical imaging was developed and characterized. Here, we utilize this clutter-generating phantom material to compare the bias and variance of AC estimates resulting from a conventional estimation method known as the spectral difference method (SDM) and a regularized method known as Analytical Global Regularized Backscatter Quantitative Ultrasound (ALGEBRA), which can either be implemented in 1D or 2D. A B-mode, target-based contrast-to-noise ratio was used to quantify the amount of clutter in data collected from a phantom with known AC. Estimation reliability was determined using the normalized root mean square error (NRMSE) and the percent bias. On average, 1D-ALGEBRA had a 22.86% smaller bias and a 32.19% smaller NRMSE than the SDM, while 2D-ALGEBRA had a 17.59% smaller bias and a 25.66% smaller NRMSE than the SDM. An analysis of variance model indicated that ALGEBRA is more robust to the presence of clutter than the SDM. Further statistical tests showed that the reduction in variance resulting from ALGEBRA was the main contributor to the reduction in NRMSE. This work demonstrates the utility of this clutter-generating phantom material in objective testing of QUS parameter estimation, as well as performance improvements obtained in phantoms with regularized methods from QUS parameter estimation in the presence of acoustic clutter.
Collapse
Affiliation(s)
- Hayley M Whitson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Manuel TJ, Bancel T, Tiennot T, Didier M, Santin M, Daniel M, Attali D, Tanter M, Lehéricy S, Pyatigorskaya N, Aubry JF. Ultra-short time-echo based ray tracing for transcranial focused ultrasound aberration correction in human calvaria. Phys Med Biol 2025; 70:075006. [PMID: 38776944 DOI: 10.1088/1361-6560/ad4f44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Magnetic resonance guided transcranial focused ultrasound holds great promises for treating neurological disorders. This technique relies on skull aberration correction which requires computed tomography (CT) scans of the skull of the patients. Recently, ultra-short time-echo (UTE) magnetic resonance (MR) sequences have unleashed the MRI potential to reveal internal bone structures. In this study, we measure the efficacy of transcranial aberration correction using UTE images.Approach.We compare the efficacy of transcranial aberration correction using UTE scans to CT based correction on four skulls and two targets using a clinical device (Exablate Neuro, Insightec, Israel). We also evaluate the performance of a custom ray tracing algorithm using both UTE and CT estimates of acoustic properties and compare these against the performance of the manufacturer's proprietary aberration correction software.Main results.UTE estimated skull maps in Hounsfield units (HU) had a mean absolute error of 242 ± 20 HU (n= 4). The UTE skull maps were sufficiently accurate to improve pressure at the target (no correction: 0.44 ± 0.10, UTE correction: 0.79 ± 0.05, manufacturer CT: 0.80 ± 0.05), pressure confinement ratios (no correction: 0.45 ± 0.10, UTE correction: 0.80 ± 0.05, manufacturer CT: 0.81 ± 0.05), and targeting error (no correction: 1.06 ± 0.42 mm, UTE correction 0.30 ± 0.23 mm, manufacturer CT: 0.32 ± 0.22) (n= 8 for all values). When using CT, our ray tracing algorithm performed slightly better than UTE based correction with pressure at the target (UTE: 0.79 ± 0.05, CT: 0.84 ± 0.04), pressure confinement ratios (UTE: 0.80 ± 0.05, CT: 0.84 ± 0.04), and targeting error (UTE: 0.30 ± 0.23 mm, CT: 0.17 ± 0.15).Significance.These 3D transcranial measurements suggest that UTE sequences could replace CT scans in the case of MR guided focused ultrasound with minimal reduction in performance which will avoid ionizing radiation exposure to the patients and reduce procedure time and cost.
Collapse
Affiliation(s)
- Thomas J Manuel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Bancel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Tiennot
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Mélanie Didier
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Mathieu Santin
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Maxime Daniel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Université Paris Cité, 75014 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Stéphane Lehéricy
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Nadya Pyatigorskaya
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| |
Collapse
|
3
|
Ren J, Li J, Chen S, Liu Y, Ta D. Unveiling the potential of ultrasound in brain imaging: Innovations, challenges, and prospects. ULTRASONICS 2025; 145:107465. [PMID: 39305556 DOI: 10.1016/j.ultras.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 11/12/2024]
Abstract
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jian Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shili Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Martin D, Xu R, Dressler M, O'Reilly MA. Ex vivovalidation of non-invasive phase correction for transspine focused ultrasound: model performance and target feasibility. Phys Med Biol 2024; 69:235001. [PMID: 39509818 DOI: 10.1088/1361-6560/ad8fed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Objective.To evaluate the feasibility of transspine focused ultrasound using simulation-based phase corrections from a CT-derived ray acoustics model.Approach.Bilateral transspine focusing was performed inex vivohuman vertebrae with a spine-specific ultrasound array. Ray acoustics-derived phase correction was compared to geometric focusing and a hydrophone-corrected gold standard. Planar hydrophone scans were recorded in the spinal canal and three metrics were calculated: target pressure, coronal and sagittal focal shift, and coronal and sagittal Sørensen-Dice similarity to the free-field.Post hocanalysis was performedin silicoto assess the impact of windows between vertebrae on focal shift.Main results.Hydrophone correction reduced mean sagittal plane shift from 1.74 ± 0.82 mm to 1.40 ± 0.82 mm and mean coronal plane shift from 1.07 ± 0.63 mm to 0.54 ± 0.49 mm. Ray acoustics correction reduced mean sagittal plane and coronal plane shift to 1.63 ± 0.83 mm and 0.83 ± 0.60 mm, respectively. Hydrophone correction increased mean sagittal similarity from 0.48 ± 0.22 to 0.68 ± 0.19 and mean coronal similarity from 0.48 ± 0.23 to 0.70 ± 0.19. Ray acoustics correction increased mean sagittal and coronal similarity to 0.53 ± 0.25 and 0.55 ± 0.26, respectively. Target pressure was relatively unchanged across beamforming methods.In silicoanalysis found that, for some targets, unoccluded paths may have increased focal shift.Significance. Gold standard phase correction significantly reduced coronal shift and significantly increased sagittal and coronal Sørensen-Dice similarity (p< 0.05). Ray acoustics-derived phase correction reduced sagittal and coronal shift and increased sagittal and coronal similarity but did not achieve statistical significance. Across beamforming methods, mean focal shift was comparable to MRI resolution, suggesting that transspine focusing is possible with minimal correction in favourable targets. Future work will explore the mitigation of acoustic windows with anti-focus control points.
Collapse
Affiliation(s)
- David Martin
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Rui Xu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Max Dressler
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Meaghan A O'Reilly
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
5
|
Lu N, Yeats EM, Sukovich JR, Hall TL, Pandey AS, Xu Z. Treatment envelope of transcranial histotripsy: challenges and strategies to maximize the treatment location profile. Phys Med Biol 2024; 69:225006. [PMID: 39481233 PMCID: PMC11551913 DOI: 10.1088/1361-6560/ad8d9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
A 750 kHz, 360-element ultrasound array has been built for transcranial histotripsy applications. This study aims to evaluate its performance to determine whether this array is adequate for treating a wide range of brain locations through a human skull. Treatment location profiles in 2 excised human skulls were experimentally characterized based on passive cavitation mapping. Full-wave acoustic simulations were performed in 8 human skulls to analyze the ultrasound propagation at shallow targets in skulls with different properties. Results showed that histotripsy successfully generated cavitation from deep to shallow targets within 5 mm from the skull surface in the skull with high SDR and small thickness, whereas in the skull with low SDR and large thickness, the treatment envelope was limited up to 16 mm from the skull surface. Simulation results demonstrated that the treatment envelope was highly dependent on the skull acoustic properties. Pre-focal pressure hotspots were observed in both simulation and experiments when targeting near the skull. For each skull, the acoustic pressure loss increases significantly for shallow targets compared to central targets due to high attenuation, large incident angles, and pre-focal pressure hotspots. Strategies including array design optimization, pose optimization, and amplitude correction, are proposed to broaden the treatment envelope. This study identifies the capabilities and limitations of the 360-element transcranial histotripsy array and suggests strategies for designing the next-generation transcranial histotripsy array to expand the treatment location profile for a future clinical trial.
Collapse
Affiliation(s)
- Ning Lu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, United States of America
| | - Ellen M Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
6
|
Dagommer M, Daneshzand M, Nummemnaa A, Guerin B. Robust deep learning estimation of cortical bone porosity from MR T1-weighted images for individualized transcranial focused ultrasound planning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310644. [PMID: 39072036 PMCID: PMC11275664 DOI: 10.1101/2024.07.18.24310644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach that has been demonstrated in animals but is difficult to translate to humans because of acoustic attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull porosity estimates which has traditionally been done using CT. We propose a deep learning (DL) estimation of skull porosity from T1-weighted MRI images which removes the need for radiation-inducing CT scans. Approach We evaluate the impact of different DL approaches, including network architecture, input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We also propose back-propagation in the mask (BIM), a method whereby only voxels inside the skull mask contribute to training. We evaluate the robustness of the best model to input image noise and MRI acquisition parameters and propagate porosity estimation errors in thousands of beam propagation scenarios. Main results Our best performing model is a cGAN with a ResNet-9 generator with 3D 64×64×64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% improvement). Acoustic dose distributions in the thalamus were more accurate with our approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting in near-optimal treatment planning and dose estimation at all frequencies compared to CT (reference). Significance Our DL approach porosity estimates with ~7% error, is robust to input image noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal treatment planning and dose estimates for both central (thalamus) and lateral brain targets (amygdala) in the 200-1000 kHz frequency range.
Collapse
Affiliation(s)
- Matthieu Dagommer
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), Paris France
| | - Mohammad Daneshzand
- Harvard Medical School, Boston MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
| | - Aapo Nummemnaa
- Harvard Medical School, Boston MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
| | - Bastien Guerin
- Harvard Medical School, Boston MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
| |
Collapse
|
7
|
Shin M, Seo M, Yoo SS, Yoon K. tFUSFormer: Physics-Guided Super-Resolution Transformer for Simulation of Transcranial Focused Ultrasound Propagation in Brain Stimulation. IEEE J Biomed Health Inform 2024; 28:4024-4035. [PMID: 38625763 DOI: 10.1109/jbhi.2024.3389708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Transcranial focused ultrasound (tFUS) has emerged as a new mode of non-invasive brain stimulation (NIBS), with its exquisite spatial precision and capacity to reach the deep regions of the brain. The placement of the acoustic focus onto the desired part of the brain is critical for successful tFUS procedures; however, acoustic wave propagation is severely affected by the skull, distorting the focal location/shape and the pressure level. High-resolution (HR) numerical simulation allows for monitoring of acoustic pressure within the skull but with a considerable computational burden. To address this challenge, we employed a 4× super-resolution (SR) Swin Transformer method to improve the precision of estimating tFUS acoustic pressure field, targeting operator-defined brain areas. The training datasets were obtained through numerical simulations at both ultra-low (2.0 [Formula: see text]) and high (0.5 [Formula: see text]) resolutions, conducted on in vivo CT images of 12 human skulls. Our multivariable datasets, which incorporate physical properties of the acoustic pressure field, wave velocity, and skull CT images, were utilized to train three-dimensional SR models. We found that our method yielded 87.99 ± 4.28% accuracy in terms of focal volume conformity under foreseen skull data, and accuracy of 82.32 ± 5.83% for unforeseen skulls, respectively. Moreover, a significant improvement of 99.4% in computational efficiency compared to the traditional 0.5 [Formula: see text] HR numerical simulation was shown. The presented technique, when adopted in guiding the placement of the FUS transducer to engage specific brain targets, holds great potential in enhancing the safety and effectiveness of tFUS therapy.
Collapse
|
8
|
Daneshzand M, Guerin B, Kotlarz P, Chou T, Dougherty DD, Edlow BL, Nummenmaa A. Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus. Brain Stimul 2024; 17:958-969. [PMID: 39094682 PMCID: PMC11367617 DOI: 10.1016/j.brs.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) neuromodulation has shown promise in animals but is challenging to translate to humans because of the thicker skull that heavily scatters ultrasound waves. OBJECTIVE We develop and disseminate a model-based navigation (MBN) tool for acoustic dose delivery in the presence of skull aberrations that is easy to use by non-specialists. METHODS We pre-compute acoustic beams for thousands of virtual transducer locations on the scalp of the subject under study. We use the hybrid angular spectrum solver mSOUND, which runs in ∼4 s per solve per CPU yielding pre-computation times under 1 h for scalp meshes with up to 4000 faces and a parallelization factor of 5. We combine this pre-computed set of beam solutions with optical tracking, thus allowing real-time display of the tFUS beam as the operator freely navigates the transducer around the subject' scalp. We assess the impact of MBN versus line-of-sight targeting (LOST) positioning in simulations of 13 subjects. RESULTS Our navigation tool has a display refresh rate of ∼10 Hz. In our simulations, MBN increased the acoustic dose in the thalamus and amygdala by 8-67 % compared to LOST and avoided complete target misses that affected 10-20 % of LOST cases. MBN also yielded a lower variability of the deposited dose across subjects than LOST. CONCLUSIONS MBN may yield greater and more consistent (less variable) ultrasound dose deposition than transducer placement with line-of-sight targeting, and thus could become a helpful tool to improve the efficacy of tFUS neuromodulation.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Darin D Dougherty
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Kong D, Liu G, Cheng B, Qi X, Zhu J, He Q, Xing H, Gong Q. A novel transcranial MR Guided focused ultrasound method based on the ultrashort echo time skull acoustic model and phase retrieval techniques. Sci Rep 2024; 14:11876. [PMID: 38789537 PMCID: PMC11636931 DOI: 10.1038/s41598-024-62500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial ultrasound stimulation (TUS) has been clinically applied as a neuromodulation tool. Particularly, the phase array ultrasound can be applied in TUS to non-invasively focus on the cortex or deep brain. However, the vital phase distortion of the ultrasound induced by the skull limits its clinical application. In the current study, we aimed to develop a hybrid method that combines the ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences with the prDeep technique to achieve focusing ventral intermediate thalamic nucleus (VIM). The time-reversal (TR) approach of the UTE numerical acoustic model of the skull combined with the prDeep algorithm was used to reduce the number of iterations. The skull acoustic model simulation therapy process was establish to valid this method's prediction and focus performance, and the classical TR method were considered as the gold standard (GS). Our approach could restore 75% of the GS intensity in 25 iteration steps, with a superior the noise immunity. Our findings demonstrate that the phase aberration caused by the skull can be estimated using phase retrieval techniques to achieve a fast and accurate transcranial focus. The method has excellent adaptability and anti-noise capacity for satisfying complex and changeable scenarios.
Collapse
Affiliation(s)
- Dechen Kong
- College Of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gaojie Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bochao Cheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Xu Qi
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayu Zhu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Qiang He
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Haoyang Xing
- College Of Physics, Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Xiamen West China Hospital, Sichuan University, Xiamen, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Xiamen West China Hospital, Sichuan University, Xiamen, China
| |
Collapse
|
10
|
Del Campo Fonseca A, Ahmed D. Ultrasound robotics for precision therapy. Adv Drug Deliv Rev 2024; 205:115164. [PMID: 38145721 DOI: 10.1016/j.addr.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
In recent years, the application of microrobots in precision therapy has gained significant attention. The small size and maneuverability of these micromachines enable them to potentially access regions that are difficult to reach using traditional methods; thus, reducing off-target toxicities and maximizing treatment effectiveness. Specifically, acoustic actuation has emerged as a promising method to exert control. By harnessing the power of acoustic energy, these small machines potentially navigate the body, assemble at the desired sites, and deliver therapies with enhanced precision and effectiveness. Amidst the enthusiasm surrounding these miniature agents, their translation to clinical environments has proven difficult. The primary objectives of this review are threefold: firstly, to offer an overview of the fundamental acoustic principles employed in the field of microrobots; secondly, to assess their current applications in medical therapies, encompassing tissue targeting, drug delivery or even cell infiltration; and lastly, to delve into the continuous efforts aimed at integrating acoustic microrobots into in vivo applications.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| |
Collapse
|
11
|
Riis T, Feldman D, Mickey B, Kubanek J. Controlled noninvasive modulation of deep brain regions in humans. COMMUNICATIONS ENGINEERING 2024; 3:13. [PMCID: PMC10956068 DOI: 10.1038/s44172-023-00146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/29/2023] [Indexed: 10/06/2024]
Abstract
Transcranial focused ultrasound provides noninvasive and reversible approaches for precise and personalized manipulations of brain circuits, with the potential to transform our understanding of brain function and treatments of brain dysfunction. However, effective applications in humans have been limited by the human head, which attenuates and distorts ultrasound severely and unpredictably. This has led to uncertain ultrasound intensities delivered into the brain. Here, we address this lingering barrier using a direct measurement approach that can be repeatedly applied to the human brain. The approach uses an ultrasonic scan of the head to measure and compensate for the attenuation of the ultrasound by all obstacles within the ultrasound path. No other imaging modality is required and the method is parameter-free and personalized to each subject. The approach accurately restores operators’ intended intensities inside ex-vivo human skulls. Moreover, the approach is critical for effective modulation of deep brain regions in humans. When applied, the approach modulates fMRI Blood Oxygen Level Dependent (BOLD) activity in disease-relevant deep brain regions. This tool unlocks the potential of emerging approaches based on low-intensity ultrasound for controlled manipulations of neural circuits in humans. Transcranial focused ultrasound has had limited applications in humans due to the unpredictable distortions of ultrasound by the human head. Thomas Riis and colleagues report an approach which enables direct correction for the attenuation of ultrasound by the skull and hair, thus enabling controlled ultrasound therapies in humans.
Collapse
Affiliation(s)
- Thomas Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| | - Daniel Feldman
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Brian Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
12
|
Xu P, Wu N, Shen G. A rapid element pressure field simulation method for transcranial phase correction in focused ultrasound therapy. Phys Med Biol 2023; 68:235015. [PMID: 37934058 DOI: 10.1088/1361-6560/ad0a59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Transcranial focused ultrasound ablation has emerged as a promising technique for treating neurological disorders. The clinical system exclusively employed the ray tracing method to compute phase aberrations induced by the human skull, taking into account computational time constraints. However, this method compromises slightly on accuracy compared to simulation-based methods. This study evaluates a fast simulation method that simulates the time-harmonic pressure field within the region of interest for effective phase correction. Experimental validation was carried out using a 512-element, 670 kHz hemispherical transducer for fourex vivoskulls. The ray tracing method achieved a restoration ratio of 64.81% ± 4.33% of acoustic intensity normalized to hydrophone measurements. In comparison, the rapid simulation method demonstrated improved results with a restoration ratio of 73.10% ± 7.46%, albeit slightly lower than the full-wave simulation which achieved a restoration ratio of 75.87% ± 5.40%. The rapid simulation methods exhibited computational times that were less than five minutes for parallel computation with 8 threads. The incident angle was calculated, and a maximum difference of 6.8 degrees was found when the fixed position of the skull was changed. Meanwhile, the restoration ratio of acoustic intensity was validated to be above 70% for different target positions away from the geometrical focus of the transducer. The favorable balance between time consumption and correction accuracy makes this method valuable for clinical treatment applications.
Collapse
Affiliation(s)
- Peng Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Nan Wu
- Shanghai Shende Green Medical Era Healthcare Technology Co., Ltd., Shanghai, People's Republic of China
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
14
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
15
|
Comparison between MR and CT imaging used to correct for skull-induced phase aberrations during transcranial focused ultrasound. Sci Rep 2022; 12:13407. [PMID: 35927449 PMCID: PMC9352781 DOI: 10.1038/s41598-022-17319-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Transcranial focused ultrasound with the InSightec Exablate system uses thermal ablation for the treatment of movement and mood disorders and blood brain barrier disruption for tumor therapy. The system uses computed tomography (CT) images to calculate phase corrections that account for aberrations caused by the human skull. This work investigates whether magnetic resonance (MR) images can be used as an alternative to CT images to calculate phase corrections. Phase corrections were calculated using the gold standard hydrophone method and the standard of care InSightec ray tracing method. MR binary image mask, MR-simulated-CT (MRsimCT), and CT images of three ex vivo human skulls were supplied as inputs to the InSightec ray tracing method. The degassed ex vivo human skulls were sonicated with a 670 kHz hemispherical phased array transducer (InSightec Exablate 4000). 3D raster scans of the beam profiles were acquired using a hydrophone mounted on a 3-axis positioner system. Focal spots were evaluated using six metrics: pressure at the target, peak pressure, intensity at the target, peak intensity, positioning error, and focal spot volume. Targets at the geometric focus and 5 mm lateral to the geometric focus were investigated. There was no statistical difference between any of the metrics at either target using either MRsimCT or CT for phase aberration correction. As opposed to the MRsimCT, the use of CT images for aberration correction requires registration to the treatment day MR images; CT misregistration within a range of ± 2 degrees of rotation error along three dimensions was shown to reduce focal spot intensity by up to 9.4%. MRsimCT images used for phase aberration correction for the skull produce similar results as CT-based correction, while avoiding both CT to MR registration errors and unnecessary patient exposure to ionizing radiation.
Collapse
|
16
|
Lu N, Hall TL, Sukovich JR, Choi SW, Snell J, McDannold N, Xu Z. Two-step aberration correction: application to transcranial histotripsy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac72ed. [PMID: 35609619 PMCID: PMC9234948 DOI: 10.1088/1361-6560/ac72ed] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Objective: Phase aberration correction is essential in transcranial histotripsy to compensate for focal distortion caused by the heterogeneity of the intact skull bone. This paper improves the 2-step aberration correction (AC) method that has been previously presented and develops an AC workflow that fits in the clinical environment, in which the computed tomography (CT)-based analytical approach was first implemented, followed by a cavitation-based approach using the shockwaves from the acoustic cavitation emission (ACE).Approach:A 700 kHz, 360-element hemispherical transducer array capable of transmit-and-receive on all channels was used to transcranially generate histotripsy-induced cavitation and acquire ACE shockwaves. For CT-AC, two ray-tracing models were investigated: a forward ray-tracing model (transducer-to-focus) in the open-source software Kranion, and an in-house backward ray-tracing model (focus-to-transducer) accounting for refraction and the sound speed variation in skulls. Co-registration was achieved by aligning the skull CT data to the skull surface map reconstructed using the acoustic pulse-echo method. For ACE-AC, the ACE signals from the collapses of generated bubbles were aligned by cross-correlation to estimate the corresponding time delays.Main results:The performance of the 2-step method was tested with 3 excised human calvariums placed at 2 different locations in the transducer array. Results showed that the 2-step AC achieved 90 ± 7% peak focal pressure compared to the gold standard hydrophone correction. It also reduced the focal shift from 0.84 to 0.30 mm and the focal volume from 10.6 to 2.0 mm3on average compared to the no AC cases.Significance:The 2-step AC yielded better refocusing compared to either CT-AC or ACE-AC alone and can be implemented in real-time for transcranial histotripsy brain therapy.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - Sang Won Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville, United States of America
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
17
|
Park TY, Kim HJ, Park SH, Chang WS, Kim H, Yoon K. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106777. [PMID: 35397411 DOI: 10.1016/j.cmpb.2022.106777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Focused ultrasound (FUS) has been receiving growing attention as a noninvasive brain stimulation tool because of its superior spatial specificity and depth penetrability. However, the large mismatch of acoustic properties between the skull and water can disrupt and shift the acoustic focus in the brain. In this paper, we present a numerical method to find the optimal location of a single-element FUS transducer, which creates focus on the target region. METHODS The score function, representing the superposition of acoustic waves according to the relative phase difference and transmissibility, was defined based on time-reversal invariance of acoustic waves and depending on the spatial location of the transducer. The optimal location of the transducer was then determined using a differential evolution algorithm. To assess the proposed method, we conducted a forward simulation and compared the resulting focal location to the desired target point. We also performed experimental validation by measuring the acoustic pressure field through an ex vivo human skull in a water tank. RESULTS The numerical results indicated that the score function had a positive proportional relationship with the acoustic pressure at the target. Moreover, for the optimized transducer location, both the numerical and experimental results showed that the normalized acoustic pressure at the target was higher than 0.9. CONCLUSIONS In this study, we developed an optimization method to place a single-element transducer that effectively transmits acoustic energy to the targeted region in the brain. Our numerical and experimental results demonstrate that the proposed method can provide an optimal transducer location for safe and efficient FUS treatment.
Collapse
Affiliation(s)
- Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyo-Jin Kim
- Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - So Hui Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul 04527, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul 04527, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Smith CS, O'Driscoll C, Ebbini ES. Spatio-Spectral Ultrasound Characterization of Reflection and Transmission Through Bone With Temperature Dependence. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1727-1737. [PMID: 35349438 PMCID: PMC9050954 DOI: 10.1109/tuffc.2022.3163225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial focused ultrasound (tFUS) is a promising approach for the treatment of neurological disorders. It has proven useful in several clinical applications, with promising outcomes reported in the recent literature. Furthermore, it is currently being investigated in a range of neuromodulation (NM) and ablative applications, including epilepsy. In this application, tFUS access through the temporal window is the key to optimizing the treatment safety and efficacy. Traditional approaches have utilized transducers with low operating frequencies for tFUS applications. Modern array transducers and driving systems allow for more intelligent use of the temporal window by exploiting the spatio-spectral transmission bandwidth to a specified target or targets within the brain. To demonstrate the feasibility of this approach, we have investigated the ultrasound reflection and transmission characteristics for different access points within the temporal window of human skull samples ex vivo. Different transmit-receive (Rx) configurations are used for characterization of the spatio-spectral variability in reflection and transmission through the temporal window. In this article, we show results from a dual-piston transducer set up in the frequency range of 2-7 MHz. Broadband pulses as well as synthesized orthogonal frequency division multiplexed (OFDM) waveforms were used. The latter was used to improve the magnitude and phase measurements in 100-kHz subbands within the 2-7 MHz spectral window. A temperature-controlled water bath was used to characterize the change in reflection and transmission characteristics with temperature in the 25°C-43°C range. The measured values of the complex reflection and transmission coefficients exhibited significant variations with space, frequency, and temperature. On the other hand, the measured transmission phase varied more with location and frequency, with smaller sensitivity to temperature. A measurement-based hybrid angular spectrum (HAS) simulation through the human temporal bone was used to demonstrate the dependence of focusing gain on the skull profile and spatial distribution of change of speed of sound (SOS) at different skull temperatures.
Collapse
|
19
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, Zhu J, Guo J, Zhu T, Yang M, Sun L. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101934. [PMID: 34546652 PMCID: PMC8564444 DOI: 10.1002/advs.202101934] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Indexed: 05/02/2023]
Abstract
Ultrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Zhihai Qiu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Quanxiang Xian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Shashwati Kala
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jianing Jing
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Kin Fung Wong
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jiejun Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Jinghui Guo
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Ting Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Minyi Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| | - Lei Sun
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR999077P. R. China
| |
Collapse
|
21
|
Modeling Focused-Ultrasound Response for Non-Invasive Treatment Using Machine Learning. Bioengineering (Basel) 2021; 8:bioengineering8060074. [PMID: 34206007 PMCID: PMC8226898 DOI: 10.3390/bioengineering8060074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions between body tissues and a focused ultrasound beam can be evaluated using various numerical models. Among these, the Rayleigh-Sommerfeld and angular spectrum methods are considered to be the most effective in terms of accuracy. However, they are computationally expensive, which is one of the underlying issues of most computational models. Typically, evaluations using these models require a significant amount of time (hours to days) if realistic scenarios such as tissue inhomogeneity or non-linearity are considered. This study aims to address this issue by developing a rapid estimation model for ultrasound therapy using a machine learning algorithm. Several machine learning models were trained on a very-large dataset (19,227 simulations), and the performance of these models were evaluated with metrics such as Root Mean Squared Error (RMSE), R-squared (R2), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The resulted random forest provides superior accuracy with an R2 value of 0.997, an RMSE of 0.0123, an AIC of -82.56, and a BIC of -81.65 on an external test dataset. The results indicate the efficacy of the random forest-based model for the focused ultrasound response, and practical adoption of this approach will improve the therapeutic planning process by minimizing simulation time.
Collapse
|