1
|
Zhang X, van Greevenbroek MMJ, Scheijen JLJM, Eussen SJPM, Kelly J, Stehouwer CDA, Schalkwijk CG, Wouters K. Fasting plasma methylglyoxal concentrations are associated with higher numbers of circulating intermediate and non-classical monocytes but with lower activation of intermediate monocytes: the Maastricht Study. J Endocrinol Invest 2025; 48:1257-1268. [PMID: 39847265 PMCID: PMC12049376 DOI: 10.1007/s40618-025-02536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study. METHODS 696 participants of The Maastricht Study (age 60.3 ± 8.4 years, 51.9% women) underwent an oral glucose tolerance test (OGTT). Fasting and post-OGTT plasma MGO concentrations were measured using mass spectrometry. Numbers and activation of circulating immune cells at fasting state were quantified using flow cytometry. Activation scores were calculated by averaging individual marker z-scores for neutrophils (CD11b, CD11c, CD16) and classical, intermediate, and non-classical monocytes (CD11b, CD11c, CX3XR1, HLA-DR). Associations were analysed using multiple linear regression adjusted for potential confounders. Stratified analyses were performed for glucose metabolism status for associations between plasma MGO levels and immune cell counts. RESULTS Higher fasting plasma MGO concentrations were significantly associated with higher numbers of intermediate (β = 0.09 [95%CI 0.02; 0.17]) and non-classical monocytes (0.08 [0.002; 0.15]), but with lower activation scores for the intermediate monocytes (-0.14 [-0.22; -0.06]). Stratified analyses showed that positive associations between fasting plasma MGO levels and numbers of intermediate and non-classical monocytes appear only in participants with type 2 diabetes. Post-OGTT plasma MGO concentrations were not consistently associated with immune cells counts or activation. CONCLUSION Higher fasting plasma MGO concentrations are associated with higher intermediate and non-classical monocyte counts but with lower activation of intermediate monocytes.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, 6229HA, the Netherlands
- CAPHRI School for Care and Public Health Research Unit, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jaycey Kelly
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| |
Collapse
|
2
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
3
|
Augusto SN, Suresh A, Tang WHW. Ceramides as Biomarkers of Cardiovascular Diseases and Heart Failure. Curr Heart Fail Rep 2024; 22:2. [PMID: 39560878 DOI: 10.1007/s11897-024-00689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW Ceramides are lipid species that play several physiological roles in the body, including stress response, inflammation, and apoptosis, and their involvement in lipid metabolism and energy production makes them crucial in the pathophysiology of heart failure (HF). RECENT FINDINGS Several species of ceramides and ceramide signatures have recently been investigated as possible biomarkers of cardiovascular disease (CVD), and risk scores have demonstrated prognostic value in stratifying patients by risk and possibly predicting adverse cardiac events. With growing interest in targeting metabolic dysfunction, understanding the role of ceramides in CVD also opens the possibility of novel therapeutics that target ceramide metabolism to improve cardiac function and cardiac outcomes in patients. Understanding the role of ceramides in CVD opens the possibility of novel diagnostics and theragnostic targeting ceramide metabolism to improve cardiac function and cardiac outcomes in patients with heart failure.
Collapse
Affiliation(s)
- Silvio N Augusto
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195
| | - Abhilash Suresh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr 2024; 11:1474597. [PMID: 39628466 PMCID: PMC11612904 DOI: 10.3389/fnut.2024.1474597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification. Among dietary components that affect this process, polyphenols may play an outsized role. Polyphenols are a widely distributed group of plant nutrients consumed by humans. Certain foods possess distinctive and relatively higher levels of these compounds. One such food is Tartary buckwheat (fagopyrum tataricum), an ancient seed historically prized for its health benefits. It is suggested that the specific composition of polyphenols found in foods like Tartary buckwheat may lead to a unique impact on immunometabolic physiological pathways that could be interrogated through epigenetic analyses. The objective of this study was to investigate the epigenetic effects on peripheral immune cells in healthy individuals of a standardized polyphenol concentrate based on naturally occurring nutrients in Tartary buckwheat. This pilot clinical trial tested the effects of consuming 90 days of this concentrate in 50 healthy male (40%) and female (60%) participants aged 18-85 years using epigenetic age clocks and deconvolution methods. Analysis revealed significant intervention-related changes in multiple epigenetic age clocks and immune markers as well as population-wide alterations in gene ontology (GO) pathways related to longevity and immunity. This study provides previously unidentified insights into the immune, longevity and epigenetic effects of consumption of polyphenol-rich plants and generates additional support for health interventions built around historically consumed plants like Tartary buckwheat while offering compelling opportunities for additional research. Clinical trial registration ClinicalTrials.gov, Identifier: NCT05234203.
Collapse
Affiliation(s)
| | | | - Arti Chandra
- Big Bold Health PBC, Bainbridge Island, WA, United States
| | | | - Ryan Smith
- TruDiagnostic Inc., Lexington, KY, United States
| | | | | |
Collapse
|
5
|
AlSaeed H, Haider MJA, Alzaid F, Al-Mulla F, Ahmad R, Al-Rashed F. PPARdelta: A key modulator in the pathogenesis of diabetes mellitus and Mycobacterium tuberculosis co-morbidity. iScience 2024; 27:110046. [PMID: 38989454 PMCID: PMC11233913 DOI: 10.1016/j.isci.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
The interplay between lipid metabolism and immune response in macrophages plays a pivotal role in various infectious diseases, notably tuberculosis (TB). Herein, we illuminate the modulatory effect of heat-killed Mycobacterium tuberculosis (HKMT) on macrophage lipid metabolism and its implications on the inflammatory cascade. Our findings demonstrate that HKMT potently activates the lipid scavenger receptor, CD36, instigating lipid accumulation. While CD36 inhibition mitigated lipid increase, it unexpectedly exacerbated the inflammatory response. Intriguingly, this paradoxical effect was linked to an upregulation of PPARδ. Functional analyses employing PPARδ modulation revealed its central role in regulating both lipid dynamics and inflammation, suggesting it as a potential therapeutic target. Moreover, primary monocytic cells from diabetic individuals, a demographic at amplified risk of TB, exhibited heightened PPARδ expression and inflammation, further underscoring its pathological relevance. Targeting PPARδ in these cells effectively dampened the inflammatory response, offering a promising therapeutic avenue against TB.
Collapse
Affiliation(s)
- Halemah AlSaeed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Mohammed J A Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO BOX 5969, Safat 13060, State of Kuwait
| | - Fawaz Alzaid
- Bioenergetics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015 Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| |
Collapse
|
6
|
Tian L, Zhao C, Yan Y, Jia Q, Cui S, Chen H, Li X, Jiang H, Yao Y, He K, Zhao X. Ceramide-1-phosphate alleviates high-altitude pulmonary edema by stabilizing circadian ARNTL-mediated mitochondrial dynamics. J Adv Res 2024; 60:75-92. [PMID: 37479181 PMCID: PMC11156611 DOI: 10.1016/j.jare.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear. OBJECTIVES Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects. We hypothesized that CERK-derived C1P could protect against HAPE by stabilizing circadian rhythms and maintaining mitochondrial dynamics. METHODS To test our hypothesis, we used CERK-knockout mice and established HAPE mouse models using a FLYDWC50-1C hypobaric hypoxic cabin. We utilized a range of methods, including lipidomics, transcriptomics, immunofluorescence, Western blotting, and transmission electron microscopy, to identify the mechanisms of regulation. RESULTS Our findings demonstrated that CERK-derived C1P played a protective role against HAPE. Inhibition of CERK exacerbated HAPE induced by the hypobaric hypoxic environment. Specifically, we identified a novel mechanism in which CERK inhibition induced aryl hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic degradation, inducing the circadian rhythm and triggering mitochondrial damage by controlling the expression of proteins required for mitochondrial fission and fusion. The decreased ARNTL caused by CERK inhibition impaired mitochondrial dynamics, induced oxidative stress damage, and resulted in defects in mitophagy, particularly under hypoxia. Exogenous C1P prevented ARNTL degradation, alleviated mitochondrial damage, neutralized oxidative stress induced by CERK inhibition, and ultimately relieved HAPE. CONCLUSIONS This study provides evidence for the protective effect of C1P against HAPE, specifically, through stabilizing circadian rhythms and maintaining mitochondrial dynamics. Exogenous C1P therapy may be a promising strategy for treating HAPE. Our findings also highlight the importance of the circadian rhythm and mitochondrial dynamics in the pathogenesis of HAPE, suggesting that targeting these pathways may be a potential therapeutic approach for this condition.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin 300071, China; Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China
| | - Chenghui Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Biomedical Engineering, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaolu Li
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Yongming Yao
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Shin KO, Kim B, Choi Y, Bae YJ, Park JH, Park SH, Hwang JT, Choi EH, Uchida Y, Park K. Barrier Abnormalities in Type 1 Diabetes Mellitus: The Roles of Inflammation and Ceramide Metabolism. J Invest Dermatol 2024; 144:802-810.e5. [PMID: 37952608 DOI: 10.1016/j.jid.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Xerosis is a common sign of both type 1 and type 2 diabetes mellitus (DM), and patients with DM and mouse models for DM show a compromised epidermal permeability barrier. Barrier defects then allow the entry of foreign substances into the skin, triggering inflammation, infection, and worsening skin symptoms. Characterizing how barrier abnormalities develop in DM could suggest treatments for xerosis and other skin disease traits. Because the proper ratio, as well as proper bulk amounts, of heterogeneous ceramide species are keys to forming a competent barrier, we investigated how ceramide metabolism is affected in type 1 DM using a mouse model (induced by streptozotocin). Chronic inflammation, evident in the skin of mice with DM, leads to (i) decreased de novo ceramide production through serine racemase activation-mediated attenuation of serine palmitoyl transferase activity by D-serine; (ii) changes in ceramide synthase activities and expression that modify the ratio of ceramide molecular species; and (iii) increased ceramide-1-phosphate, a proinflammatory lipid mediator, that stimulates inflammatory cytokine expression (TNFα and IFN-γ). Together, chronic inflammation affects ceramide metabolism, which attenuates epidermal permeability barrier formation, and ceramide-1-phosphate could amplify this inflammation. Alleviation of chronic inflammation is a credible approach for normalizing barrier function and ameliorating diverse skin abnormalities in DM.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Bokyung Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea; LaSS Lipid Institute, LaSS Inc, Chuncheon, Republic of Korea
| | - Yerim Choi
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jin Bae
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Soo-Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute, Jeonju, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yoshikazu Uchida
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea; The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
8
|
Al-Rashed F, Arefanian H, Madhoun AA, Bahman F, Sindhu S, AlSaeed H, Jacob T, Thomas R, Al-Roub A, Alzaid F, Malik MDZ, Nizam R, Thanaraj TA, Al-Mulla F, Hannun YA, Ahmad R. Neutral Sphingomyelinase 2 Inhibition Limits Hepatic Steatosis and Inflammation. Cells 2024; 13:463. [PMID: 38474427 PMCID: PMC10931069 DOI: 10.3390/cells13050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Halemah AlSaeed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Fawaz Alzaid
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France;
| | - MD Zubbair Malik
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| |
Collapse
|
9
|
Chaudhary R, Suhan T, Tarhuni MW, Abdel-Latif A. Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure. Curr Cardiol Rep 2024; 26:113-120. [PMID: 38340272 DOI: 10.1007/s11886-024-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW The primary aim of this review is to provide an in-depth examination of the role bioactive lipids-namely lysophosphatidic acid (LPA) and ceramides-play in inflammation-mediated cardiac remodeling during heart failure. With the global prevalence of heart failure on the rise, it is critical to understand the underlying molecular mechanisms contributing to its pathogenesis. Traditional studies have emphasized factors such as oxidative stress and neurohormonal activation, but emerging research has shed light on bioactive lipids as central mediators in heart failure pathology. By elucidating these intricacies, this review aims to: Bridge the gap between basic research and clinical practice by highlighting clinically relevant pathways contributing to the pathogenesis and prognosis of heart failure. Provide a foundation for the development of targeted therapies that could mitigate the effects of LPA and ceramides on heart failure. Serve as a comprehensive resource for clinicians and researchers interested in the molecular biology of heart failure, aiding in better diagnostic and therapeutic decisions. RECENT FINDINGS Recent findings have shed light on the central role of bioactive lipids, specifically lysophosphatidic acid (LPA) and ceramides, in heart failure pathology. Traditional studies have emphasized factors such as hypoxia-mediated cardiomyocyte loss and neurohormonal activation in the development of heart failure. Emerging research has elucidated the intricacies of bioactive lipid-mediated inflammation in cardiac remodeling and the development of heart failure. Studies have shown that LPA and ceramides contribute to the pathogenesis of heart failure by promoting inflammation, fibrosis, and apoptosis in cardiac cells. Additionally, recent studies have identified potential targeted therapies that could mitigate the effects of bioactive lipids on heart failure, including LPA receptor antagonists and ceramide synthase inhibitors. These recent findings provide a promising avenue for the development of targeted therapies that could improve the diagnosis and treatment of heart failure. In this review, we highlight the pivotal role of inflammation induced by bioactive lipid signaling and its influence on the pathogenesis of heart failure. By critically assessing the existing literature, we provide a comprehensive resource for clinicians and researchers interested in the molecular mechanisms of heart failure. Our review aims to bridge the gap between basic research and clinical practice by providing actionable insights and a foundation for the development of targeted therapies that could mitigate the effects of bioactive lipids on heart failure. We hope that this review will aid in better diagnostic and therapeutic decisions, further advancing our collective understanding and management of heart failure.
Collapse
Affiliation(s)
- Rajesh Chaudhary
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Tahra Suhan
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Mahmud W Tarhuni
- Department of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Ahmed Abdel-Latif
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
10
|
Li D, Shi W, Hu C, Wen C, Huang L, Wang Q. Lipidomics Analysis Deepen Understanding the Molecular Mechanisms in a Gouty Model Induced by Combination of MSU Crystals Injection and High-Fat Diet Feeding and the Intervention Mechanisms of Allopurinol. J Inflamm Res 2024; 17:1003-1018. [PMID: 38370465 PMCID: PMC10874778 DOI: 10.2147/jir.s443358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Background Gouty arthritis (GA) is a common inflammatory disease caused by deposition of monosodium urate (MSU) crystals in diarthrodial joints. GA attacks commonly involved in joint with red, swollen, heat and pain, and often happened in unilateral foot-first metatarsophalangeal. Accumulated studies have proved that lipids play critical roles in biological processes and lipids biomarkers can substitute for the diagnosis of various diseases. Methods Herein, shotgun lipidomics was used to quantitatively analyze serum lipidomes of a gouty model which was induced by injecting MSU crystals and feeding high-fat diet with/without treatment with allopurinol. Meanwhile, ELISA kit was used to detect mouse serum levels of inflammatory cytokines (eg, tumor necrosis factor-α, interleukin 1 beta) and HE staining was used to observe the infiltration of inflammatory cells in the foot pad. Results A total of 9 types of serum lipids were detected in lipidomics by shotguns, and the result of NMDS' analysis demonstrated significant differences in lipids profiles between the control and model group. It is worth noting that lipid abnormality in GA (such as Ceramide (Cer), sphingomyelin (SM), 4-hydroxyalkenals (HNE), phosphatidylinositol (PI), ethanolamine glycerophospholipid (PE), etc.) is related with phospholipid and energy metabolism, and allopurinol treatment could correct the aberrant metabolism of lipid to some extent. Conclusion Our results indicated that various aberrant lipid metabolisms were present in the established gouty model, and allopurinol treatment could relief this aberrant metabolism of lipids to some degree.
Collapse
Affiliation(s)
- Dianming Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
| | - Weiman Shi
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou City, People’s Republic of China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou City, People’s Republic of China
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou City, People’s Republic of China
| | - Qiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou City, People’s Republic of China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Hangzhou City, People’s Republic of China
| |
Collapse
|
11
|
Fernández Requena B, Nadeem S, Reddy VP, Naidoo V, Glasgow JN, Steyn AJC, Barbas C, Gonzalez-Riano C. LiLA: lipid lung-based ATLAS built through a comprehensive workflow designed for an accurate lipid annotation. Commun Biol 2024; 7:45. [PMID: 38182666 PMCID: PMC10770321 DOI: 10.1038/s42003-023-05680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Accurate lipid annotation is crucial for understanding the role of lipids in health and disease and identifying therapeutic targets. However, annotating the wide variety of lipid species in biological samples remains challenging in untargeted lipidomic studies. In this work, we present a lipid annotation workflow based on LC-MS and MS/MS strategies, the combination of four bioinformatic tools, and a decision tree to support the accurate annotation and semi-quantification of the lipid species present in lung tissue from control mice. The proposed workflow allowed us to generate a lipid lung-based ATLAS (LiLA), which was then employed to unveil the lipidomic signatures of the Mycobacterium tuberculosis infection at two different time points for a deeper understanding of the disease progression. This workflow, combined with manual inspection strategies of MS/MS data, can enhance the annotation process for lipidomic studies and guide the generation of sample-specific lipidome maps. LiLA serves as a freely available data resource that can be employed in future studies to address lipidomic alterations in mice lung tissue.
Collapse
Affiliation(s)
- Belén Fernández Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Africa Health Research Institute, Durban, South Africa
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, España.
| |
Collapse
|
12
|
Al-Roub A, Akhter N, Al-Rashed F, Wilson A, Alzaid F, Al-Mulla F, Sindhu S, Ahmad R. TNFα induces matrix metalloproteinase-9 expression in monocytic cells through ACSL1/JNK/ERK/NF-kB signaling pathways. Sci Rep 2023; 13:14351. [PMID: 37658104 PMCID: PMC10474281 DOI: 10.1038/s41598-023-41514-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Studies have established the association between increased plasma levels of matrix metalloproteinase (MMP)-9 and adipose tissue inflammation. Tumor necrosis factor α (TNFα) was elevated in obesity and is involved in the induction of MMP-9 in monocytic cells. However, the underlying molecular mechanism was incompletely understood. As per our recent report, TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we further investigated the role of ACSL1 in TNFα-mediated MMP-9 secretion in monocytic cells. THP-1 cells and primary monocytes were used to study MMP-9 expression. mRNA and protein levels of MMP-9 were determined by qRT-PCR and ELISA, respectively. Signaling pathways were studied using Western blotting, inhibitors, and NF-kB/AP1 reporter cells. We found that THP-1 cells and primary human monocytes displayed increased MMP-9 mRNA expression and protein secretion after incubation with TNFα. ACSL1 inhibition using triacsin C significantly reduced the expression of MMP-9 in the THP-1 cells. However, the inhibition of β-oxidation and ceramide biosynthesis did not affect the TNFα-induced MMP-9 production. Using small interfering RNA-mediated ACSL1 knockdown, we further confirmed that TNFα-induced MMP-9 expression/secretion was significantly reduced in ACSL1-deficient cells. TNFα-mediated MMP-9 expression was also significantly reduced by the inhibition of ERK1/ERK2, JNK, and NF-kB. We further observed that TNFα induced phosphorylation of SAPK/JNK (p54/46), ERK1/2 (p44/42 MAPK), and NF-kB p65. ACSL1 inhibition reduced the TNFα-mediated phosphorylation of SAPK/JNK, c-Jun, ERK1/2, and NF-kB. In addition, increased NF-κB/AP-1 activity was inhibited in triacsin C treated cells. Altogether, our findings suggest that ACSL1/JNK/ERK/NF-kB axis plays an important role in the regulation of MMP-9 induced by TNFα in monocytic THP-1 cells.
Collapse
Affiliation(s)
- Areej Al-Roub
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nadeem Akhter
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ajit Wilson
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fawaz Alzaid
- Bioenergetic Department, Dasman Diabetes Institute, 15462, Dasman, Kuwait
- Enfants Malades (INEM), INSERM U1151/CNRS UMRS8253, IMMEDIAB, Université de Paris Cité, 75015, Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, 15462, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
13
|
Ortiz Wilczyñski JM, Mena HA, Ledesma MM, Olexen CM, Podaza E, Schattner M, Negrotto S, Errasti AE, Carrera Silva EA. The synthetic phospholipid C8-C1P determines pro-angiogenic and pro-reparative features in human macrophages restraining the proinflammatory M1-like phenotype. Front Immunol 2023; 14:1162671. [PMID: 37398671 PMCID: PMC10311553 DOI: 10.3389/fimmu.2023.1162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Monocytes (Mo) are highly plastic myeloid cells that differentiate into macrophages after extravasation, playing a pivotal role in the resolution of inflammation and regeneration of injured tissues. Wound-infiltrated monocytes/macrophages are more pro-inflammatory at early time points, while showing anti-inflammatory/pro-reparative phenotypes at later phases, with highly dynamic switching depending on the wound environment. Chronic wounds are often arrested in the inflammatory phase with hampered inflammatory/repair phenotype transition. Promoting the tissue repair program switching represents a promising strategy to revert chronic inflammatory wounds, one of the major public health loads. We found that the synthetic lipid C8-C1P primes human CD14+ monocytes, restraining the inflammatory activation markers (HLA-DR, CD44, and CD80) and IL-6 when challenged with LPS, and preventing apoptosis by inducing BCL-2. We also observed increased pseudo-tubule formation of human endothelial-colony-forming cells (ECFCs) when stimulated with the C1P-macrophages secretome. Moreover, C8-C1P-primed monocytes skew differentiation toward pro-resolutive-like macrophages, even in the presence of inflammatory PAMPs and DAMPs by increasing anti-inflammatory and pro-angiogenic gene expression patterns. All these results indicate that C8-C1P could restrain M1 skewing and promote the program of tissue repair and pro-angiogenic macrophage.
Collapse
Affiliation(s)
- Juan Manuel Ortiz Wilczyñski
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Hebe Agustina Mena
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Martin Manuel Ledesma
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Cinthia Mariel Olexen
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Enrique Podaza
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mirta Schattner
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Soledad Negrotto
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera Silva
- Institute of Experimental Medicine, National Scientific and Technological Research Council - National Academy of Medicine (IMEX-CONICET-ANM), Buenos Aires, Argentina
| |
Collapse
|
14
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Lipidomic profiling reveals metabolic signatures in psoriatic skin lesions. Clin Immunol 2023; 246:109212. [PMID: 36563946 DOI: 10.1016/j.clim.2022.109212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Psoriasis is a chronic immune-mediated inflammatory disease. Lipids play an important role in regulating the inflammatory response. However, the alteration of lipids involved in psoriasis particular in skin lesions remain unclear. Here, we performed the lipidomics to investigate lipid profiling in the skin lesions of the imiquimod-induced psoriasis-like dermatitis and psoriasis patients. The findings showed that ceramides phosphate (CerP) and ceramides were enriched in psoriatic lesions compared with controls from both psoriasis patients and psoriasis-like mouse model. Psoriasis patients were classified into two subtypes, the CC1 and CC2, by consensus clustering of these lipid signatures. The CC1 was characterized by the higher levels of CerP, uric acid, and more severe psoriasis, compared with CC2 subtype. Interestingly, ceramide-1-phosphate (C1P), dramatically enriched in CC1 subtype, facilitated imiquimod-induced psoriasis-like inflammatory responses. Mechanistically, C1P induced the expression of inflammatory factors and activated DNA replication and cell cycle signaling pathways in the primary keratinocytes. Inhibiting the production of C1P with ceramide kinase inhibitor effectively alleviated the imiquimod-induced psoriasis-like inflammation. Taken together, we described the landscape of lipids alteration and established lipids classification based on pattern of abundance of lipids in psoriatic skin lesions. Suppression of C1P pathway is a novel potential strategy for psoriasis treatment.
Collapse
|
16
|
Haider MJA, Albaqsumi Z, Al-Mulla F, Ahmad R, Al-Rashed F. SOCS3 Regulates Dectin-2-Induced Inflammation in PBMCs of Diabetic Patients. Cells 2022; 11:cells11172670. [PMID: 36078084 PMCID: PMC9454960 DOI: 10.3390/cells11172670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
The C-type lectin receptors (CLRs) Dectin-1 and Dectin-2 are involved in several innate immune responses and are expressed mainly in dendritic cells, monocytes, and macrophages. Dectin-1 activation exacerbates obesity, inflammation, and insulin resistance/type 2 diabetes (T2D). However, the role of Dectin-2 is not clear in T2D. This study aims to evaluate the expression and function of Dectin-2 in peripheral blood mononuclear cells (PBMCs) isolated from diabetic patients and non-diabetic controls. Flow-cytometry and qRT-PCR were performed to evaluate the expression of Dectin-2 in different leukocyte subpopulations isolated from T2D patients (n = 10) and matched non-diabetic controls (n = 11). The functional activity of Dectin-2 was identified in PBMCs. CRP, IL-1β, and TNF-α concentrations were determined by ELISA. siRNA transfection and Western blotting were performed to assess p-Syk and p-NF-kB expression. siRNA transfection was performed to knock down the gene of interest. Our results show that Dectin-2 expression was the highest in monocytes compared with other leukocyte subpopulations. The expression of Dectin-2 was significantly increased in the monocytes of T2D patients compared with non-diabetic controls. Dectin-2 expression positively correlated with markers of glucose homeostasis, including HOMA-IR and HbA1c. The expression of inflammatory markers was elevated in the PBMCs of T2D patients. Interestingly, SOCS3, a negative regulator of inflammation, was expressed significantly lowlier in the PBMCs of T2D patients. Moreover, SOCS3 expression was negatively correlated with Dectin-2 expression level. The further analysis of inflammatory signaling pathways showed a persistent activation of the Dectin-2-Syk-NFkB pathway that was instigated by the diminished expression of SOCS3. Dectin-2 activation failed to induce SOCS3 expression and suppress subsequent inflammatory responses in the PBMCs of diabetic patients. siRNA-mediated knockdown of SOCS3 in PBMCs displayed a similar inflammatory phenotype to diabetic PBMCs when exposed to Dectin-2 ligands. Altogether, our findings suggest that elevated Dectin-2 and its relationship with SOCS3 could be involved in the abnormal immune response observed in T2D patients.
Collapse
Affiliation(s)
- Mohammed J. A. Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait
| | - Zahraa Albaqsumi
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Kuwait City 15462, Kuwait
- Correspondence: (R.A.); (F.A.-R.); Tel.: +965-2224-2999 (ext. 3584) (R.A.); +965-2224-2999 (ext. 4335) (F.A.-R.)
| |
Collapse
|
17
|
Si-Wu Water Extracts Protect against Colonic Mucus Barrier Damage by Regulating Muc2 Mucin Expression in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11162499. [PMID: 36010498 PMCID: PMC9407452 DOI: 10.3390/foods11162499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) could cause gut barrier damage. The herbs in si-wu (SW) include dang gui (Angelica sinensis (Oliv.) Diels), shu di huang (the processed root of Rehmannia glutinosa Libosch.), chuan xiong (rhizome of Ligusticum chuanxiong Hort.), and bai shao (the root of Paeonia lactiflora f. pilosella (Nakai) Kitag.). Si-wu water extracts (SWE) have been used to treat blood deficiency. Components of one herb from SW have been reported to have anti-inflammatory and anti-obesity activities. However, there have been no reports about the effects of SWE on gut barrier damage. Therefore, the aim of the study was to explore the effect of SWE on gut barrier damage. In this study, we found that SWE effectively controlled body weight, liver weight, and feed efficiency, as well as decreased the serum TC level in HFD-fed mice. Moreover, SWE and rosiglitazone (Ros, positive control) increased the colonic alkaline phosphatase (ALP) level, down-regulated serum pro-inflammatory cytokine levels, and reduced intestinal permeability. In addition, SWE increased goblet cell numbers and mucus layer thickness to strengthen the mucus barrier. After supplementation with SWE and rosiglitazone, the protein expression of CHOP and GRP78 displayed a decrease, which improved the endoplasmic reticulum (ER) stress condition. Meanwhile, the increase in Cosmc and C1GALT1 improved the O-glycosylation process for correct protein folding. These results collectively demonstrated that SWE improved the mucus barrier, focusing on Muc2 mucin expression, in a prolonged high-fat diet, and provides evidence for the potential of SWE in the treatment of intestinal disease-associated mucus barrier damage.
Collapse
|
18
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
19
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
20
|
Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022; 11:foods11030398. [PMID: 35159548 PMCID: PMC8834222 DOI: 10.3390/foods11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have demonstrated a positive relationship between dietary fat intake and the onset of several metabolic diseases. This association is particularly evident in a diet rich in saturated fatty acids, typical of animal foods, such as dairy products. However, these foods are the main source of fatty acids with a proven nutraceutical effect, such as the ω-3 fatty acid α-linolenic acid (ALA) and the conjugated linoleic acid (CLA), which have demonstrated important roles in the prevention of various diseases. In the present study, the effect of a supplementation with cheese enriched with ω-3 fatty acids and CLA on the metabolism and lipid profiles of C57bl/6 mice was evaluated. In particular, the analyses were conducted on different tissues, such as liver, muscle, adipose tissue and brain, known for their susceptibility to the effects of dietary fats. Supplementing cheese enriched in CLA and ω-3 fats reduced the level of saturated fat and increased the content of CLA and ALA in all tissues considered, except for the brain. Furthermore, the consumption of this cheese resulted in a tissue-specific response in the expression levels of genes involved in lipid and mitochondrial metabolism. As regards genes involved in the inflammatory response, the consumption of enriched cheese resulted in a reduction in the expression of inflammatory genes in all tissues analyzed. Considering the effects that chronic inflammation associated with a high-calorie and high-fat diet (meta-inflammation) or aging (inflammaging) has on the onset of chronic degenerative diseases, these data could be of great interest as they indicate the feasibility of modulating inflammation (thus avoiding/delaying these pathologies) with a nutritional and non-pharmacological intervention.
Collapse
|
21
|
Shalaby YM, Al Aidaros A, Valappil A, Ali BR, Akawi N. Role of Ceramides in the Molecular Pathogenesis and Potential Therapeutic Strategies of Cardiometabolic Diseases: What we Know so Far. Front Cell Dev Biol 2022; 9:816301. [PMID: 35127726 PMCID: PMC8808480 DOI: 10.3389/fcell.2021.816301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Ceramides represent a class of biologically active lipids that are involved in orchestrating vital signal transduction pathways responsible for regulating cellular differentiation and proliferation. However, accumulating clinical evidence have shown that ceramides are playing a detrimental role in the pathogenesis of several diseases including cardiovascular disease, type II diabetes and obesity, collectively referred to as cardiometabolic disease. Therefore, it has become necessary to study in depth the role of ceramides in the pathophysiology of such diseases, aiming to tailor more efficient treatment regimens. Furthermore, understanding the contribution of ceramides to the pathological molecular mechanisms of those interrelated conditions may improve not only the therapeutic but also the diagnostic and preventive approaches of the preceding hazardous events. Hence, the purpose of this article is to review currently available evidence on the role of ceramides as a common factor in the pathological mechanisms of cardiometabolic diseases as well as the mechanism of action of the latest ceramides-targeted therapies.
Collapse
Affiliation(s)
- Youssef M. Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Anas Al Aidaros
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Valappil
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Al-Azzawi ZAM, Arfaie S, Gan-Or Z. GBA1 and The Immune System: A Potential Role in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2022; 12:S53-S64. [PMID: 36057834 PMCID: PMC9535551 DOI: 10.3233/jpd-223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is clear that the immune system and inflammation have a role in Parkinson's disease (PD), including sporadic PD and some genetic forms such as LRRK2-associated PD. One of the most important genes associated with PD is GBA1, as variants in this gene are found in 5-20% of PD patients in different populations worldwide. Biallelic variants in GBA1 may cause Gaucher disease, a lysosomal storage disorder with involvement of the immune system, and other lines of evidence link GBA1 to the immune system and inflammation. In this review, we discuss these different pieces of evidence and whether the interplay between GBA1 and the immune system may have a role in PD.
Collapse
Affiliation(s)
- Zaid A M Al-Azzawi
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Saman Arfaie
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro - Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Vetrano IG, Dei Cas M, Nazzi V, Eoli M, Innocenti N, Saletti V, Potenza A, Carrozzini T, Pollaci G, Gorla G, Paroni R, Ghidoni R, Gatti L. The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 23:ijms23010061. [PMID: 35008487 PMCID: PMC8744637 DOI: 10.3390/ijms23010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve sheath tumors (PNSTs) include schwannomas, neurofibromas (NFs), and plexiform neurofibromas (PNFs), among others. While they are benign tumors, according to their biological behavior, some have the potential for malignant degeneration, mainly PNFs. The specific factors contributing to the more aggressive behavior of some PNSTs compared to others are not precisely known. Considering that lipid homeostasis plays a crucial role in fibrotic/inflammatory processes and in several cancers, we hypothesized that the lipid asset was also unbalanced in this group of nerve tumors. Through untargeted lipidomics, NFs presented a significant increase in ceramide, phosphatidylcholine, and Vitamin A ester. PNFs displayed a marked decrease in 34 out of 50 lipid class analyzed. An increased level of ether- and oxidized-triacylglycerols was observed; phosphatidylcholines were reduced. After sphingolipidomic analysis, we observed six sphingolipid classes. Ceramide and dihydroceramides were statistically increased in NFs. All the glycosylated species appeared reduced in NFs, but increased in PNFs. Our findings suggested that different subtypes of PNSTs presented a specific modulation in the lipidic profile. The untargeted and targeted lipidomic approaches, which were not applied until now, contribute to better clarifying bioactive lipid roles in PNS natural history to highlight disease molecular features and pathogenesis.
Collapse
Affiliation(s)
- Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
- Correspondence:
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Vittoria Nazzi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Niccolò Innocenti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Antonella Potenza
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Tatiana Carrozzini
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Giuliana Pollaci
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Gemma Gorla
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Riccardo Ghidoni
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri, 20138 Milan, Italy;
| | - Laura Gatti
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| |
Collapse
|
24
|
Al-Roub A, Al Madhoun A, Akhter N, Thomas R, Miranda L, Jacob T, Al-Ozairi E, Al-Mulla F, Sindhu S, Ahmad R. IL-1β and TNFα Cooperativity in Regulating IL-6 Expression in Adipocytes Depends on CREB Binding and H3K14 Acetylation. Cells 2021; 10:3228. [PMID: 34831450 PMCID: PMC8619559 DOI: 10.3390/cells10113228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1β and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1β and TNFα influences the production of IL-6. Our data show that IL-1β and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1β/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1β, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1β treatments mediated C/EBPβ binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1β and TNFα. In conclusion, our results show that there is an additive interaction between IL-1β and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1β, TNFα, and IL-6 in settings such as obesity.
Collapse
Affiliation(s)
- Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
| | - Ashraf Al Madhoun
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (L.M.); (F.A.-M.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
| | - Lavina Miranda
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (L.M.); (F.A.-M.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
| | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (L.M.); (F.A.-M.)
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (R.T.); (T.J.); (S.S.)
| |
Collapse
|
25
|
Haider M, Al-Rashed F, Albaqsumi Z, Alobaid K, Alqabandi R, Al-Mulla F, Ahmad R. Candida albicans Induces Foaming and Inflammation in Macrophages through FABP4: Its Implication for Atherosclerosis. Biomedicines 2021; 9:biomedicines9111567. [PMID: 34829801 PMCID: PMC8615257 DOI: 10.3390/biomedicines9111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is a chronic degenerative disorder characterized by lipid-dense plaques and low-grade inflammation affecting arterial walls. Foamy macrophages are important in the formation of atherosclerotic plaques and the induction of low-grade inflammation. The presence of lipid-laden macrophages has occurred in infections caused by opportunistic pathogens. Candida albicans is the major cause of candidiasis in immunocompromised patients, including those with diabetes mellitus. However, the role played by C. albicans in macrophage foaming and the associated inflammation is poorly understood. We investigated whether C. albicans induces foaming along with inflammation in macrophages and, if so, by which mechanism(s). We incubated THP-1 macrophages with heat-killed C. albicans (HKCA). HKCA-induced lipid accumulation in macrophages along with increased expression of inflammatory markers, including CD11b and CD11c or expression and secretion of IL-1β. HKCA also increased the expression of PPARγ, CD36, and FABP4 in macrophages. Mechanistically, we found that the foamy and inflammatory macrophage phenotype induced by HKCA requires FABP4 because disruption of FABP4 in macrophages either by chemical inhibitor BMS309404 or small interfering RNA (siRNA) abrogated foam cell formation and expression of inflammatory markers CD11b, CD11c, and IL-1β. Furthermore, HKCA-treated macrophages displayed high expression and secretion of MMP-9. Inhibition of FABP4 resulted in suppression of HCKA-induced MMP-9 production. Overall, our results demonstrate that C. albicans induces foam cell formation, inflammation, and MMP-9 expression in macrophages via the upregulation of FABP4, which may constitute a novel therapeutic target for treating C. albicans-induced atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City 15462, Kuwait;
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Zahraa Albaqsumi
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Khaled Alobaid
- Mycology Reference Laboratory, Medical Laboratory Department, Mubarak Al-Kabeer Hospital, Kuwait City 15462, Kuwait;
| | - Rawan Alqabandi
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (F.A.-R.); (Z.A.); (R.A.)
- Correspondence: ; Tel.: +965-2224-2999 (ext. 4311)
| |
Collapse
|
26
|
Kochumon S, Al-Sayyar A, Jacob T, Hasan A, Al-Mulla F, Sindhu S, Ahmad R. TNF-α Increases IP-10 Expression in MCF-7 Breast Cancer Cells via Activation of the JNK/c-Jun Pathways. Biomolecules 2021; 11:biom11091355. [PMID: 34572567 PMCID: PMC8464892 DOI: 10.3390/biom11091355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
IP-10 (also called CXCL10) plays a significant role in leukocyte homing to inflamed tissues, and increased IP-10 levels are associated with the pathologies of various inflammatory disorders, including type 2 diabetes, atherosclerosis, and cancer. TNF-α is a potent activator of immune cells and induces inflammatory cytokine expression in these cells. However, it is unclear whether TNF-α is able to induce IP-10 expression in MCF-7 breast cancer cells. We therefore determined IP-10 expression in TNF-α-treated MCF-7 cells and investigated the mechanism involved. Our data show that TNF-α induced/upregulated the IP-10 expression at both mRNA and protein levels in MCF-7 cells. Inhibition of JNK (SP600125) significantly suppressed the TNF-α-induced IP-10 in MCF-7 cells, while the inhibition of p38 MAPK (SB203580), MEK1/2 (U0126), and ERK1/2 (PD98059) had no significant effect. Furthermore, TNF-α-induced IP-10 expression was abolished in MCF-7 cells deficient in JNK. Similar results were obtained using MCF-7 cells deficient in c-Jun. Moreover, the JNK kinase inhibitor markedly reduced the TNF-α-induced JNK and c-Jun phosphorylation. The kinase activity of JNK induced by TNF-α stimulation of MCF-7 cells was significantly inhibited by SP600125. Altogether, our novel findings provide the evidence that TNF-α induces IP-10 expression in MCF-7 breast cancer cells via activation of the JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amnah Al-Sayyar
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Amal Hasan
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (A.A.-S.); (T.J.); (A.H.); (S.S.)
- Correspondence:
| |
Collapse
|
27
|
Al-Roub A, Akhter N, Al-Sayyar A, Wilson A, Thomas R, Kochumon S, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Short Chain Fatty Acid Acetate Increases TNFα-Induced MCP-1 Production in Monocytic Cells via ACSL1/MAPK/NF-κB Axis. Int J Mol Sci 2021; 22:ijms22147683. [PMID: 34299302 PMCID: PMC8304091 DOI: 10.3390/ijms22147683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.
Collapse
Affiliation(s)
- Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Amnah Al-Sayyar
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Ajit Wilson
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.-R.); (N.A.); (A.A.-S.); (A.W.); (R.T.); (S.K.); (F.A.-R.)
- Correspondence: ; Tel.: +965-2224-2999 (ext. 4311)
| |
Collapse
|