1
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. Mol Psychiatry 2025; 30:1801-1816. [PMID: 39433903 PMCID: PMC12015112 DOI: 10.1038/s41380-024-02788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 h prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 h later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Michael A, Onisiforou A, Georgiou P, Koumas M, Powels C, Mammadov E, Georgiou AN, Zanos P. (2R,6R)-hydroxynorketamine prevents opioid abstinence-related negative affect and stress-induced reinstatement in mice. Br J Pharmacol 2025. [PMID: 40155780 DOI: 10.1111/bph.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Opioid use disorder (OUD) is a pressing public health concern marked by frequent relapse during periods of abstinence, perpetuated by negative affective states. Classical antidepressants or the currently prescribed opioid pharmacotherapies have limited efficacy to reverse the negative affect or prevent relapse. EXPERIMENTAL APPROACH Using mouse models, we investigated the effects of ketamine's metabolite (2R,6R)-hydroxynorketamine (HNK) on reversing conditioning to sub-effective doses of morphine in stress-susceptible mice, preventing conditioned-place aversion and alleviating acute somatic abstinence symptoms in opioid-dependent mice. Additionally, we evaluated its effects on anhedonia, anxiety-like behaviours and cognitive impairment during protracted opioid abstinence, while mechanistic studies examined cortical EEG oscillations and synaptic plasticity markers. KEY RESULTS (2R,6R)-HNK reversed conditioning to sub-effective doses of morphine in stress-susceptible mice and prevented conditioned-place aversion and acute somatic abstinence symptoms in opioid-dependent mice. In addition, (2R,6R)-HNK reversed anhedonia, anxiety-like behaviours and cognitive impairment emerging during protracted opioid abstinence plausibly via a restoration of impaired cortical high-frequency EEG oscillations, through a GluN2A-NMDA receptor-dependent mechanism. Notably, (2R,6R)-HNK facilitated the extinction of opioid conditioning, prevented stress-induced reinstatement of opioid-seeking behaviours and reduced the propensity for enhanced morphine self-consumption in mice previously exposed to opioids. CONCLUSIONS AND IMPLICATIONS These findings emphasize the therapeutic potential of (2R,6R)-HNK, which is currently in Phase II clinical trials, in addressing stress-related opioid responses. Reducing the time and cost required for development of new medications for the treatment of OUDs via drug repurposing is critical due to the opioid crisis we currently face.
Collapse
Affiliation(s)
- Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chris Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elmar Mammadov
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Andrea N Georgiou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Center for Applied Neuroscience (CAN), University of Cyprus, Nicosia, Cyprus
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Floris G, Zanda MT, Dabrowski KR, Daws SE. Neuroinflammatory history results in overlapping transcriptional signatures with heroin exposure in the nucleus accumbens and alters responsiveness to heroin in male rats. Transl Psychiatry 2024; 14:500. [PMID: 39702361 DOI: 10.1038/s41398-024-03203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward. By integrating RNA sequencing with bioinformatic and statistical analyses, we observed significant transcriptional overlaps between neuroinflammation and experimenter-administered heroin exposure in the NAc. Furthermore, we identified a subset of NAc genes synergistically regulated by LPS and heroin, suggesting that LPS history may exacerbate some heroin-induced molecular neuroadaptations. We extended our findings to examine the impact of neuroinflammatory history on responsiveness to heroin in a locomotor sensitization assay and observed LPS-induced exacerbation of heroin sensitization, indicating that neuroinflammation may increase sensitivity to opioids' behavioral effects. Lastly, we performed comparative analysis of the NAc transcriptional profiles of LPS-heroin rats with those obtained from voluntary heroin intake in a rat model of heroin self-administration (SA) and published human OUD datasets. We observed significant convergence of the three datasets and identified transcriptional patterns in the preclinical models that recapitulated human OUD neuropathology, highlighting the utility of preclinical models to further investigate molecular mechanisms of OUD pathology. Overall, our study elucidates transcriptional interconnections between neuroinflammation and heroin exposure, and also provides evidence of the behavioral ramifications of such interactions. By bridging the gap between neuroinflammation and heroin exposure at the transcriptional level, our work provides valuable insights for future research aimed at mitigating the influence of inflammatory pathways in OUD.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Huang S, Riley AL. Drug discrimination learning: Interoceptive stimulus control of behavior and its implications for regulated and dysregulated drug intake. Pharmacol Biochem Behav 2024; 244:173848. [PMID: 39137873 DOI: 10.1016/j.pbb.2024.173848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Drug discrimination research has generated rich evidence for the capacity of interoceptive drug stimuli to control behavior by serving as discriminative cues. Owing to its neuropharmacological specificity, drug discrimination learning has been widely used to characterize the stimulus effects and neuropharmacological underpinning of drugs. Apart from such utility, discriminative drug stimuli may help regulate drug use by disambiguating conditioned associations and post-intake outcomes. First, this review summarizes the evidence supporting interoceptive regulation of drug intake from the literature of exteroceptive discriminative control of drug-related behavior, effects of drug priming, and self-titration of drug intake. Second, an overview of interoceptive control of reward-seeking and the animal model of discriminated goal-tracking is provided to illustrate interoceptive stimulus control of the initiation and patterning of drug intake. Third, we highlight the importance of interoceptive control of aversion-avoidance in the termination of drug-use episodes and describe the animal model of discriminated taste avoidance that supports such a position. In bridging these discriminative functions of drug stimuli, we propose that interoceptive drug stimuli help regulate intake by disambiguating whether intake will be rewarding, nonrewarding, or aversive. The reflection and discussion on current theoretical formulations of interoceptive control of drug intake may further scientific advances to improve animal models to study the mechanisms by which interoceptive stimuli regulate drug intake, as well as how alterations of interoceptive processes may contribute to the transition to dysregulated drug use.
Collapse
Affiliation(s)
- Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
5
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596205. [PMID: 38854027 PMCID: PMC11160682 DOI: 10.1101/2024.05.28.596205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in more >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 hours prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 hours later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Biology, Temple University, Philadelphia, PA USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| |
Collapse
|
6
|
Knauss ZT, Hearn CJ, Hendryx NC, Aboalrob FS, Mueller-Figueroa Y, Damron DS, Lewis SJ, Mueller D. Fentanyl-induced reward seeking is sex and dose dependent and is prevented by D-cysteine ethylester. Front Pharmacol 2023; 14:1241578. [PMID: 37795030 PMCID: PMC10546209 DOI: 10.3389/fphar.2023.1241578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology. Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors. Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females. Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD.
Collapse
Affiliation(s)
- Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Caden J. Hearn
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Nathan C. Hendryx
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Fanan S. Aboalrob
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Derek S. Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy, and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
7
|
Zanda MT, Saikali L, Morris P, Daws SE. MicroRNA-mediated translational pathways are regulated in the orbitofrontal cortex and peripheral blood samples during acute abstinence from heroin self-administration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11668. [PMID: 38389822 PMCID: PMC10880771 DOI: 10.3389/adar.2023.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Opioid misuse in the United States contributes to >70% of annual overdose deaths. To develop additional therapeutics that may prevent opioid misuse, further studies on the neurobiological consequences of opioid exposure are needed. Here we sought to characterize molecular neuroadaptations involving microRNA (miRNA) pathways in the brain and blood of adult male rats that self-administered the opioid heroin. miRNAs are ∼18-24 nucleotide RNAs that regulate protein expression by preventing mRNA translation into proteins. Manipulation of miRNAs and their downstream pathways can critically regulate drug seeking behavior. We performed small-RNA sequencing of miRNAs and proteomics profiling on tissue from the orbitofrontal cortex (OFC), a brain region associated with heroin seeking, following 2 days of forced abstinence from self-administration of 0.03 mg/kg/infusion heroin or sucrose. Heroin self-administration resulted in a robust shift of the OFC miRNA profile, regulating 77 miRNAs, while sucrose self-administration only regulated 9 miRNAs that did not overlap with the heroin-induced profile. Conversely, proteomics revealed dual regulation of seven proteins by both heroin and sucrose in the OFC. Pathway analysis determined that heroin-associated miRNA pathways are predicted to target genes associated with the term "prion disease," a term that was also enriched in the heroin-induced protein expression dataset. Lastly, we confirmed that a subset of heroin-induced miRNA expression changes in the OFC are regulated in peripheral serum and correlate with heroin infusions. These findings demonstrate that peripheral blood samples may have biomarker utility for assessment of drug-induced miRNA pathway alterations that occur in the brain following chronic drug exposure.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Leila Saikali
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- College of Liberal Arts, Temple University, Philadelphia, PA, United States
| | - Paige Morris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Stephanie E. Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Zanda MT, Floris G, Daws SE. Orbitofrontal cortex microRNAs support long-lasting heroin seeking behavior in male rats. Transl Psychiatry 2023; 13:117. [PMID: 37031193 PMCID: PMC10082780 DOI: 10.1038/s41398-023-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Recovery from opioid use disorder (OUD) and maintenance of abstinence from opioid use is hampered by perseverant drug cravings that may persist for months after cessation of drug use. Drug cravings can intensify during the abstinence period, a phenomenon referred to as the 'incubation of craving' that has been well-described in preclinical studies. We previously reported that animals that self-administered heroin at a dosage of 0.075 mg/kg/infusion (HH) paired with discrete drug cues displayed robust incubation of heroin craving behavior after 21 days (D) of forced abstinence, an effect that was not observed with a lower dosage (0.03 mg/kg/infusion; HL). Here, we sought to elucidate molecular mechanisms underlying long-term heroin seeking behavior by profiling microRNA (miRNA) pathways in the orbitofrontal cortex (OFC), a brain region that modulates incubation of heroin seeking. miRNAs are small noncoding RNAs with long half-lives that have emerged as critical regulators of drug seeking behavior but their expression in the OFC has not been examined in any drug exposure paradigm. We employed next generation sequencing to detect OFC miRNAs differentially expressed after 21D of forced abstinence between HH and HL animals, and proteomics analysis to elucidate miRNA-dependent translational neuroadaptations. We identified 55 OFC miRNAs associated with incubation of heroin craving, including miR-485-5p, which was significantly downregulated following 21D forced abstinence in HH but not HL animals. We bidirectionally manipulated miR-485-5p in the OFC to demonstrate that miR-485-5p can regulate long-lasting heroin seeking behavior after extended forced abstinence. Proteomics analysis identified 45 proteins selectively regulated in the OFC of HH but not HL animals that underwent 21D forced abstinence, of which 7 were putative miR-485-5p target genes. Thus, the miR-485-5p pathway is dysregulated in animals with a phenotype of persistent heroin craving behavior and OFC miR-485-5p pathways may function to support long-lasting heroin seeking.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
10
|
Triller G, Vlachou EP, Hashemi H, van Straaten M, Zeelen JP, Kelemen Y, Baehr C, Marker CL, Ruf S, Svirina A, Chandra M, Urban K, Gkeka A, Kruse S, Baumann A, Miller AK, Bartel M, Pravetoni M, Stebbins CE, Papavasiliou FN, Verdi JP. A trypanosome-derived immunotherapeutics platform elicits potent high-affinity antibodies, negating the effects of the synthetic opioid fentanyl. Cell Rep 2023; 42:112049. [PMID: 36719797 PMCID: PMC10387133 DOI: 10.1016/j.celrep.2023.112049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Poorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST). VAST elicits antigen-specific memory B cells and antibodies in a murine model after deploying the poorly immunogenic molecule fentanyl as a proof of concept. We also develop a single-cell RNA sequencing (RNA-seq)-based computational method that synergizes with VAST to specifically identify memory B cell-encoded antibodies. All computationally selected antibodies bind to fentanyl with picomolar affinity. Moreover, these antibodies protect mice from fentanyl effects after passive immunization, demonstrating the ability of these two coupled technologies to elicit therapeutic antibodies to challenging immunogens.
Collapse
Affiliation(s)
- Gianna Triller
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Evi P Vlachou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | - Hamidreza Hashemi
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Johan P Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Iuvo Bioscience, Rush, NY 14543, USA
| | - Sandra Ruf
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anna Svirina
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monica Chandra
- Panosome GmbH, 69123 Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Katharina Urban
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anastasia Gkeka
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | | | - Andreas Baumann
- Cancer Drug Development Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marc Bartel
- Forensic Toxicology, Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, 69115 Heidelberg, Germany
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, University of Washington School of Medicine, Center for Medication Development for Substance Use Disorders, Seattle, WA 98195, USA
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Joseph P Verdi
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Hepione Therapeutics, Inc., New York, NY 10014, USA.
| |
Collapse
|
11
|
Strigo IA, Murphy E, Mitchell JM, Spadoni AD. Learning from addiction: Craving of prescription opioids in chronic pain sufferers. Neurosci Biobehav Rev 2022; 142:104904. [PMID: 36202255 PMCID: PMC10917419 DOI: 10.1016/j.neubiorev.2022.104904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/19/2023]
Abstract
Prescription opioids are a primary driver of opioid-related deaths. Although craving is a substantial component of OUD, the degree to which craving leads to misuse among chronic pain patients on long-term prescription opioids is unknown. A clear understanding of the factors that lead to misuse in this vulnerable population is needed for the development of safe and effective practices for opioid taper. This narrative review summarizes the relevant literature on the role of craving in addiction and chronic pain through epidemiological and behavioral studies. The first part of this review examines the role of craving in predicting opioid use/misuse in individuals with chronic pain with and without OUD. The second part covers methods on how craving is evaluated experimentally using both subjective and objective measures and provides related findings. The overall goal of this review is to facilitate the development of a population-specific description of craving in those who use opioids to control chronic pain and to describe how it may be mechanistically linked to patterns of opioid (mis)use.
Collapse
Affiliation(s)
- Irina A Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Healthcare Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Psychiatry, University of California San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, USA.
| | - Emily Murphy
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Healthcare Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Jennifer M Mitchell
- Department of Psychiatry, University of California San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, USA; Department of Neurology, University of California San Francisco, 401 Parnassus Ave, San Francisco, CA 94143, USA
| | - Andrea D Spadoni
- San Diego Veterans Affairs Healthcare Center, 3350 La Jolla Village Drive, San Diego, CA 92121, USA; Department of Psychiatry, University of California San Diego, San Diego, CA 92300, USA
| |
Collapse
|
12
|
Gillespie A, Mayberry HL, Wimmer ME, Sillivan SE. microRNA expression levels in the nucleus accumbens correlate with morphine-taking but not morphine-seeking behaviour in male rats. Eur J Neurosci 2022; 55:1742-1755. [PMID: 35320877 PMCID: PMC9314918 DOI: 10.1111/ejn.15650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
A powerful motivation to seek opioids remains after drug cessation and intensifies during extended periods of abstinence. Unfortunately, biomarkers associated with continued drug seeking have not been described. Moreover, previous studies have focused on the effects of early abstinence with little exploration into the long-term drug-induced mechanisms that occur after extended abstinence. Here we demonstrated that 30 days (D) of forced abstinence results in a time-dependent increase in morphine seeking in a rat model of morphine self-administration (SA). We measured expression of known drug-responsive microRNAs (miRNAs) in the nucleus accumbens, an area critical for reward-related plasticity, during early or late abstinence in animals that underwent either a cue-induced relapse test or no relapse test. miRNAs are small noncoding RNAs that represent suitable biomarker candidates due to their long-lasting nature. mir-32-5p levels during early abstinence negatively correlated with active lever pressing in both cue-exposed and cue-naïve animals. mir-1298-5p positively correlated with drug SA history after a relapse test during late abstinence. When animals underwent acute abstinence with no relapse test, mir-1298-5p correlated with drug infusions and active lever pressing during SA. In late abstinence with no relapse test, mir-137-3p negatively correlated with drug infusions. Regulation of mir-32-5p target genes and significant correlation of target gene mRNA with mir-32-5p was observed after abstinence. These results indicate that lasting regulation of miRNA expression is associated with drug intake following morphine SA. In addition, we conclude that the miRNA profile undergoes regulation from early to late abstinence and miRNA expression may indicate past drug history.
Collapse
Affiliation(s)
- Aria Gillespie
- Center for Substance Abuse ResearchTemple UniversityPhiladelphiaPennsylvaniaUSA,Department of Neural SciencesTemple UniversityPhiladelphiaPAUSA
| | - Hannah L. Mayberry
- Department of Psychology and Neuroscience Program, College of Liberal ArtsTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Mathieu E. Wimmer
- Department of Psychology and Neuroscience Program, College of Liberal ArtsTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Stephanie E. Sillivan
- Center for Substance Abuse ResearchTemple UniversityPhiladelphiaPennsylvaniaUSA,Department of Neural SciencesTemple UniversityPhiladelphiaPAUSA
| |
Collapse
|
13
|
Floris G, Gillespie A, Zanda MT, Dabrowski KR, Sillivan SE. Heroin Regulates Orbitofrontal Circular RNAs. Int J Mol Sci 2022; 23:1453. [PMID: 35163373 PMCID: PMC8836038 DOI: 10.3390/ijms23031453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
The number of drug overdose deaths involving opioids continues to rise in the United States. Many patients with opioid use disorder (OUD) that seek treatment still experience relapse. Perseverant opioid seeking behaviors represent a major challenge to treating OUD and additional therapeutic development will require insight into opioid-induced neurobiological adaptations. In this study, we explored the regulation of a novel class of RNAs, circular RNAs (circRNAs), by the addictive opioid heroin in the rat orbitofrontal cortex (OFC), a brain region that mediates behavioral responses to rewarding stimuli. Microarray analysis identified 76 OFC circRNAs significantly regulated in male rats after heroin self-administration. We evaluated the specificity of these findings by measuring heroin-associated circRNA expression in female rats after heroin self-administration and in rats that self-administered sucrose. We identify circGrin2b, circUbe2cp, circAnks1a, circAdcy5 and circSlc24A2 as heroin-responsive circRNAs in the OFC. Linear mRNA levels of heroin-associated circRNAs were unchanged except for Grin2b and Adcy5. An integrated bioinformatics analysis of regulated circRNAs identified microRNAs predicted to bind heroin-associated circRNAs and downstream targets of circRNA: microRNA sponging. Thus, heroin regulates the expression of OFC RNA splice variants that circularize and may impact cellular processes that contribute to the neurobiological adaptations that arise from chronic heroin exposure.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aria Gillespie
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Konrad R. Dabrowski
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Biological Sciences, Temple University, Philadelphia, PA 19122, USA
| | - Stephanie E. Sillivan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (G.F.); (A.G.); (M.T.Z.); (K.R.D.)
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|