1
|
Dibakoane SR, Mhlongo G, Moonsamy G, Wokadala OC, Mnisi CM, Mlambo V. Phenomenological and mechanistic insights into potential dietary nucleotide - probiotic synergies in layer chickens: A review. Poult Sci 2025; 104:105049. [PMID: 40106904 PMCID: PMC11964621 DOI: 10.1016/j.psj.2025.105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025] Open
Abstract
Despite their growing popularity as alternatives to antibiotic growth promoters (AGPs), the individual effects of nucleotides and probiotics on poultry gut functionality remain poorly understood. In addition, inconsistent outcomes are quite common in studies where these two additives have been used separately to modify gut function and related parameters in birds. These inconsistencies, which have limited the potential of probiotics and nucleotides as AGP replacements, stem from various factors and need to be addressed. Combining probiotics and nucleotides could potentially enhance their effectiveness and lead to more consistent outcomes in layer chickens. Since their mechanisms of action complement each other, some level of synergy is expected when used together. Both additives have been shown to support gut health, boost immune function, and improve performance in chickens when used individually. However, no studies have investigated the possible synergistic effects of nucleotides and probiotics in poultry. This review makes the case for combined use of probiotics and nucleotides in layer chickens by providing phenomenological and mechanistic insights into hypothetical synergistic effects. This paper highlights the need for AGP alternatives and reviews studies on the effects and mechanisms of probiotics and nucleotides in layer chickens when used individually. We then propose potential mechanisms for their synergistic effects on gut health, performance, and egg quality based on logical deductions from observed biological responses. These proposed mechanisms are hypothetical and require experimental validation. Finally, the review explores how this synergy could lead to more consistent outcomes and enhance the feasibility of AGP-free egg production.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Godfrey Mhlongo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR); Future production: Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa; Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng 2735, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa.
| |
Collapse
|
2
|
Ferenczi S, Juhász B, Végi B, Drobnyák Á, Horváth K, Kuti D, Bata-Vidács I, Plank P, Molnár Z, Szőke Z, Kovács KJ. Gut-testis axis in roosters: Lactiplantibacillus plantarum supplementation improves reproductive performance. Poult Sci 2025; 104:105141. [PMID: 40315587 PMCID: PMC12098141 DOI: 10.1016/j.psj.2025.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025] Open
Abstract
Probiotics are widely used in poultry farming and industry, as they offer numerous health and performance benefits for birds. Probiotic Lactobacilli maintain gut microbiota balance, aid nutrient utilization, boost the immune system, increase stress resistance and serve as antibiotic alternatives. However, their impact on male reproductive function is not yet fully understood. This study investigated the effect of a novel probiotic strain, Lactiplantibacillus plantarum SNI3 (LbSNI3), on the reproductive performance of roosters. Twenty adult roosters were used. LbSNI3 was administered orally (dose: 2 × 107 CFU/animal/day) for 7 weeks to half of the animals. Control birds (10) received sterile tap water vehicle. Ejaculate volume, sperm concentration, sperm motility, number of IPVL penetration holes and testosterone plasma concentration have been measured weekly. Testis weight, dimensions and histology have been determined at the end of the experiment. mRNA levels of select genes, involved in spermatogenesis and sperm motility, oxidative and steroid synthesis have been measured in the testis samples by qRT-PCR. Total antioxidant capacity, superoxide dismutase (SOD) enzyme activity and malondialdehyde (MDA) levels were also analyzed. LbSNI3 administration increased the ejaculate volume, sperm concentration and the number of penetration holes, resulting in a significant improvement in the reproductivity index. In contrast, testosterone levels were not statistically different in control versus LbSNI3-treated groups. At the end of the experiment, testis size, the area, and the lumen of seminiferous tubuli were increased in LbSNI3-treated roosters. The testicular expression of Gpx1, Sepw1, Dio2, Birc5 and Rec8 genes was elevated following oral administration of LbSNI3. Total antioxidant activity, SOD activity significantly increased, while MDA concentration decreased, indicating enhanced antioxidant capacity in the testis. LbSNI3 produces a bacterial metabolite, γ-glutamyl-glutamate, which enters the glutathione cycle and strengthens the testicular defense mechanisms against oxidative stress. In conclusion, oral administration of probiotic LbSNI3 enhances antioxidant defense mechanisms in the testis, leading to increased reproductive index in adult roosters. This effect may be mediated through the gut-testis axis and could be utilized to improve productivity in the livestock industry.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary; Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Barbara Végi
- Institute for Gene Conservation Science and Small Animal Research, National Centre for Biodiversity and Gene Conservation, Gödöllő, Hungary
| | - Árpád Drobnyák
- Institute for Gene Conservation Science and Small Animal Research, National Centre for Biodiversity and Gene Conservation, Gödöllő, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | | | - Patrik Plank
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Zsófia Molnár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary.
| |
Collapse
|
3
|
Seyoum MM, Assumpcao ALFV, Caputi V, Ashwell CM, Honaker CF, Daniels KM, Lyte M, Siegel PB, Taylor RL, Lyte JM. Multigenerational selection for high or low antibody response to sheep red blood cells modulates the chicken cecal microbiome and its relationship to the immune and serotonergic systems. Poult Sci 2025; 104:104943. [PMID: 40020409 PMCID: PMC11910675 DOI: 10.1016/j.psj.2025.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025] Open
Abstract
The chicken cecal microbiome has an important role in regulating immune function, health, resilience to foodborne pathogen carriage, and myriad other factors important in poultry production. However, in chickens, the effects of long-term immune modulation through selective breeding on gut microbiome composition and function remain understudied. The present study aimed to investigate how the multigenerational selection of chickens for high (HAS) or low (LAS) antibody response to sheep red blood cells (SRBC) influences cecal microbiome diversity, community composition, and functional capacity across different ages. Data from both lines and sexes were obtained in generation 49 at 293 days of age and in generation 50 at 28 and 56 days of age. The LAS chickens exhibited greater microbial diversity and abundance, particularly at 56 days (p < 0.05), than HAS. Microbial community composition also varied between the two lines, with age and line influencing microbiome structure across developmental stages and sexes (p < 0.05). Functional profiling revealed that metabolic activity of the LAS microbiome was different compared to the HAS microbiome, with pathways enriched in L-tryptophan biosynthesis, as well as carbon metabolism and degradation processes, suggesting that selection on the humoral immune system fostered alterations in microbial functional capacity. Correlation and co-occurrence analyses with serotonin, 5-hydroxyindoleacetic acid, IgA, and IgY revealed associations between microbial taxa and the neuroendocrine-immune axis, particularly in LAS (p < 0.05), including bacterial taxa known to be involved in serotonergic signaling, such as Clostridia, and immunoglobulin concentrations, including Oscillospiraceae. Overall, these results show that long-term selection for differential antibody responses has lasting impacts on cecal microbiome diversity, community structure, and functional potential. This study provides insights into the evolutionary relationship between the cecal microbiome and its relation to the chicken neuroendocrine-immune axis. Together, the findings of this study suggest specific bacterial taxa adapted to the chicken may be leveraged to affect host humoral immune and serotonergic systems to potentially bolster gut health and increase foodborne pathogen resistance.
Collapse
Affiliation(s)
| | | | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Christopher M Ashwell
- Divison of Animal and Nutritional Sciences, West Virginia University, Morgantown WV 26506, USA
| | | | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lowa, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, lowa, USA
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert L Taylor
- Divison of Animal and Nutritional Sciences, West Virginia University, Morgantown WV 26506, USA
| | - Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
4
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Chen S, Liu J, Luo S, Xing L, Li W, Gong L. The Effects of Bacillus amyloliquefaciens SC06 on Behavior and Brain Function in Broilers Infected by Clostridium perfringens. Animals (Basel) 2024; 14:1547. [PMID: 38891594 PMCID: PMC11171150 DOI: 10.3390/ani14111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Poultry studies conducted on Clostridium perfringens (CP) mainly focus on the effects of intestinal health and productive performance. Notably, the probiotic Bacillus amyloliquefaciens SC06 (BaSC06) is known to play a role in preventing bacterial infection. However, whether CP could induce the changes in brain function and behaviors and whether BaSC06 could play roles in these parameters is yet to be reported. The aim of this study was to evaluate the effects of BaSC06 on stress-related behaviors and gene expression, as well as the brain morphology and mRNA sequence of the hypothalamus in broiler chickens. A total of 288 one-day-old chicks were randomly divided into four groups: (1) a control group with no treatment administered or infection; (2) birds treated with the BaSC06 group; (3) a CP group; and (4) a BaSC06 plus CP (Ba_CP) group. The results showed that stress and fear-related behaviors were significantly induced by a CP infection and decreased due to the treatment of BaSC06. CP infection caused pathological damage to the pia and cortex of the brain, while BaSC06 showed a protective effect. CP significantly inhibited hypothalamic GABA and promoted HTR1A gene expression, while BaSC06 promoted GABA and decreased HTR1A gene expression. The different genes were nearly found between the comparisons of control vs. Ba group and Ba vs. CP group, while there were a great number of different genes between the comparisons of control vs. Ba_CP as well as CP vs. Ba_CP. Several different gene expression pathways were found that were related to disease, energy metabolism, and nervous system development. Our results will help to promote poultry welfare and health, as well as provide insights into probiotics to replace antibiotics and reduce resistance in the chicken industry.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Shuyan Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| | - Weifen Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528250, China; (S.C.); (J.L.); (S.L.); (L.X.)
| |
Collapse
|
6
|
Awe T, Fasawe A, Sawe C, Ogunware A, Jamiu AT, Allen M. The modulatory role of gut microbiota on host behavior: exploring the interaction between the brain-gut axis and the neuroendocrine system. AIMS Neurosci 2024; 11:49-62. [PMID: 38617041 PMCID: PMC11007408 DOI: 10.3934/neuroscience.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
The brain-gut axis refers to the communication between the central nervous system and the gastrointestinal tract, with the gut microbiome playing a crucial role. While our understanding of the interaction between the gut microbiome and the host's physiology is still in its nascent stage, evidence suggests that the gut microbiota can indeed modulate host behavior. Understanding the specific mechanisms by which the gut microbiota community modulates the host's behavior remains the focus of present and future neuro-gastroenterology studies. This paper reviews several pieces of evidence from the literature on the impact of gut microbiota on host behavior across animal taxa. We explore the different pathways through which this modulation occurs, with the aim of deepening our understanding of the fascinating relationship between the gut microbiome and the central nervous system.
Collapse
Affiliation(s)
- Temitope Awe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Caleb Sawe
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Adedayo Ogunware
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Michael Allen
- Department of Physiology, College of Medicine, Lagos State University, Lagos, Nigeria
| |
Collapse
|
7
|
Zhu Q, Gao Z, Peng J, Liu C, Wang X, Li S, Zhang H. Lycopene Alleviates Chronic Stress-Induced Hippocampal Microglial Pyroptosis by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20034-20046. [PMID: 38054647 DOI: 10.1021/acs.jafc.3c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lycopene (LYC) exerts a strong neuroprotective and antipyroptotic effects. This study explored the effects and mechanisms of LYC on chronic stress-induced hippocampal microglial damage and depression-like behaviors. The caspase-1 inhibitor VX-765 attenuated chronic restrain stress (CRS)-induced hippocampal microglial pyroptosis and depression-like behaviors. Moreover, the alleviation of CRS-induced hippocampal microglial pyroptosis and depression-like behaviors by LYC was associated with the cathepsin B/NLRP3 pathway. In vitro, the caspase-1 inhibitor Z-YVAD-FMK alleviated pyroptosis in highly aggressively proliferating immortalized (HAPI) cells. Additionally, the alleviation of corticosterone-induced HAPI cell damage and pyroptosis by LYC was associated with the cathepsin B/NLRP3 pathway. Furthermore, the cathepsin B agonist pazopanib promoted HAPI cell pyroptosis, whereas LYC inhibited pazopanib-induced pyroptosis via the cathepsin B/NLRP3 pathway. Similarly, Z-YVAD-FMK inhibited pazopanib-induced HAPI cell pyroptosis. These results suggest that LYC alleviates chronic stress-induced hippocampal microglial pyroptosis via the cathepsin B/NLRP3 pathway inhibition. This study provides a new strategy for treating chronic stress encephalopathy.
Collapse
Affiliation(s)
- Qiuxiang Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhicheng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Jinghui Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Xiaoyue Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Haiyang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
8
|
Huang C, Hao E, Yue Q, Liu M, Wang D, Chen Y, Shi L, Zeng D, Zhao G, Chen H. Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens. Poult Sci 2023; 102:102686. [PMID: 37327743 PMCID: PMC10404692 DOI: 10.1016/j.psj.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023] Open
Abstract
Feather pecking (FP) is a multifactorial abnormal behavior in laying hens where they display harmful pecks in conspecifics. FP has been associated with the altered functioning of the microbiome-gut-brain axis affecting host emotions and social behavior. The altered levels of serotonin (5-HT), a key monoaminergic neurotransmitter at both terminals of the gut-brain axis, affect the development of abnormal behavior, such as FP in laying hens. However, the underlying mechanism involving reciprocal interactions along the microbiota-gut-brain axis, particularly about the metabolism of 5-HT, remains unclear in FP phenotypes. This study examined the microbiota diversity, intestinal microbial metabolites, inflammatory responses, and 5-HT metabolism in divergently selected high (HFP; n = 8) and low (LFP; n = 8) FP hens to investigate the possible interconnections between FP behavior and the examined parameters. The 16S rRNA analysis revealed that compared to LFP birds, the gut microbiota of HFP birds exhibited a decrease in the abundance of phylum Firmicutes and genera Lactobacillus, while an increase in the abundance of phylum Proteobacteria and genera Escherichia Shigella and Desulfovibrio. Furthermore, the intestinal differential metabolites associated with FP phenotypes were mainly enriched in the tryptophan metabolic pathway. HFP birds had higher tryptophan metabolites and possibly a more responsive immune system compared to the LFP birds. This was indirectly supported by altered TNF-α levels in the serum and expression of inflammatory factor in the gut and brain. Moreover, HFP birds had lower serum levels of tryptophan and 5-HT compared to LFP birds, which was consistent with the downregulation of 5-HT metabolism-related genes in the brain of HFP birds. The correlation analysis revealed that genera Lactobacillus and Desulfovibrio were associated with differences in intestinal metabolites, 5-HT metabolism, and inflammatory response between the LFP and HFP birds. In conclusion, differences in the cecal microbiota profile, immune response and 5-HT metabolism drive FP phenotypes, which could be associated with the gut abundance of genera Lactobacillus and Desulfovibrio.
Collapse
Affiliation(s)
- Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Meng Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dan Zeng
- Hua Yu Agricultural Technology Co., Ltd., Handan, Hebei 057150, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
9
|
Huang C, Yue Q, Sun L, Di K, Yang D, Hao E, Wang D, Chen Y, Shi L, Zhou R, Zhao G, Chen H. Restorative effects of Lactobacillus rhamnosus LR-32 on the gut microbiota, barrier integrity, and 5-HT metabolism in reducing feather-pecking behavior in laying hens with antibiotic-induced dysbiosis. Front Microbiol 2023; 14:1173804. [PMID: 37180262 PMCID: PMC10169825 DOI: 10.3389/fmicb.2023.1173804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The development of abnormal feather-pecking (FP) behavior, where laying hens display harmful pecks in conspecifics, is multifactorial and has been linked to the microbiota-gut-brain axis. Antibiotics affect the gut microbial composition, leading to gut-brain axis imbalance and behavior and physiology changes in many species. However, it is not clear whether intestinal dysbacteriosis can induce the development of damaging behavior, such as FP. The restorative effects of Lactobacillus rhamnosus LR-32 against intestinal dysbacteriosis-induced alternations need to be determined either. The current investigation aimed to induce intestinal dysbacteriosis in laying hens by supplementing their diet with the antibiotic lincomycin hydrochloride. The study revealed that antibiotic exposure resulted in decreased egg production performance and an increased tendency toward severe feather-pecking (SFP) behavior in laying hens. Moreover, intestinal and blood-brain barrier functions were impaired, and 5-HT metabolism was inhibited. However, treatment with Lactobacillus rhamnosus LR-32 following antibiotic exposure significantly alleviated the decline in egg production performance and reduced SFP behavior. Lactobacillus rhamnosus LR-32 supplementation restored the profile of the gut microbial community, and showed a strong positive effect by increasing the expression of tight junction proteins in the ileum and hypothalamus and promoting the expression of genes related to central 5-HT metabolism. The correlation analysis revealed that probiotic-enhanced bacteria were positively correlated, and probiotic-reduced bacteria were negatively correlated with tight junction-related gene expression, and 5-HT metabolism, and butyric acid levels. Overall, our findings indicate that dietary supplementation with Lactobacillus rhamnosus LR-32 can reduce antibiotic-induced FP in laying hens and is a promising treatment to improve the welfare of domestic birds.
Collapse
Affiliation(s)
- Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Keqian Di
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei, China
| | - Duanli Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Beldowska A, Barszcz M, Dunislawska A. State of the art in research on the gut-liver and gut-brain axis in poultry. J Anim Sci Biotechnol 2023; 14:37. [PMID: 37038205 PMCID: PMC10088153 DOI: 10.1186/s40104-023-00853-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the intestines and their microbiota, the liver, and the neuronal system is called the gut-liver-brain axis. This relationship has been studied and observed for a relatively short time but is considered in the development of research focused on, e.g., liver diseases and intestinal dysbiosis. The role of the gut microbiota in this relationship is crucial, as it acts on poultry's performance and feed utilization, affecting meat and egg quality. The correct composition of the intestinal microbiota makes it possible to determine the essential metabolic pathways and biological processes of the individual components of the microbiota, allowing further speculation of the role of microbial populations on internal organs such as the liver and brain in the organism. The gut microbiota forms a complex, dense axis with the autonomic and enteric nervous systems. The symbiotic relationship between the liver and gut microbiota is based on immune, metabolic and neuroendocrine regulation, and stabilization. On the other hand, the gut-brain axis is a bidirectional interaction and information transfer system between the gastrointestinal tract and the central nervous system. The following paper will discuss the current state of knowledge of the gut-liver-brain axis of poultry, including factors that may affect this complex relationship.
Collapse
Affiliation(s)
- Aleksandra Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland.
| |
Collapse
|
11
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
12
|
Carvalho CL, Andretta I, Galli GM, Martins GB, Camargo NDOT, Stefanello TB, Melchior R, da Silva MK. Dietary supplementation with β-mannanase and probiotics as a strategy to improve laying hen's welfare. Front Vet Sci 2022; 9:985947. [PMID: 36204293 PMCID: PMC9530350 DOI: 10.3389/fvets.2022.985947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 12/05/2022] Open
Abstract
A trend toward animal welfare improvement is observed in animal production, in addition to restrictions imposed on the use of antimicrobials. This study's objective was to evaluate whether β-mannanase and probiotic supplementation can change hen's behavior. Light weight laying hens (36 weeks old) were housed in cages randomly allocated to one of four different treatments: control group, fed non-supplemented diets; diets supplemented with 300 g/ton of β-mannanase; diets supplemented with 50 g/ton of probiotic; or diets containing both 300 g/ton of β-mannanase and 50 g/ton of probiotic. The behavior of 24 birds was recorded for a week using video cameras. The frequency and time of main behaviors (eating, walking, standing, sitting, drinking, and exploring) were analyzed in three periods per day (from 09:00 to 09:15; from 01:00 to 01:15, and from 04:00 to 04:15), as well as the time of other behaviors (leg-stretching and wings, scratching, wing-flapping, aggressive and non-aggressive pecks). Frequency and lesion scores were also analyzed using a visual score of three body regions: neck, tail, and cloaca; as well as comb injuries. β-mannanase was able to increase the frequency of feeding behavior by 49% (P < 0.05) and hens also spend 20% (P < 0.05) more time in this behavior compared to the control treatment. The use of probiotics also enhanced by 39% (P < 0.05) the frequency and 19% the time (P < 0.05) and the supplementation with combined additives was able to increase by 29% (P < 0.05) the frequency and 25% (P < 0.05) the time in feeding behavior. β-mannanase and probiotics also increased the frequency and time spent exploring behavior (P < 0.05) and promoted a higher frequency in standing behavior (P < 0.05) and decreased the time spent on sitting behaviors (P < 0.05). The combined additives showed less frequency and time in sitting behaviors (P < 0.05), while increased wing-flapping behavior (P < 0.05). All the treatments were able to reduce pecking (P < 0.05). Therefore, the addition of β-mannanase and probiotics to laying hen diets is an effective strategy to improve bird welfare.
Collapse
Affiliation(s)
- Camila Lopes Carvalho
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
| | - Ines Andretta
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
- *Correspondence: Ines Andretta
| | - Gabriela Miotto Galli
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
| | - Gabriel Bueno Martins
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
| | | | - Thais Bastos Stefanello
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
| | - Raquel Melchior
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do sul, Porto Alegre, Brazil
| | | |
Collapse
|
13
|
Mindus C, van Staaveren N, Fuchs D, Gostner JM, Kjaer JB, Kunze W, Mian MF, Shoveller AK, Forsythe P, Harlander-Matauschek A. Regulatory T Cell Modulation by Lactobacillus rhamnosus Improves Feather Damage in Chickens. Front Vet Sci 2022; 9:855261. [PMID: 35478602 PMCID: PMC9036099 DOI: 10.3389/fvets.2022.855261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
It is currently unclear whether potential probiotics such as lactic acid bacteria could affect behavioral problems in birds. To this end, we assessed whether a supplementation of Lactobacillus rhamnosus JB-1 can reduce stress-induced severe feather pecking (SFP), feather damage and fearfulness in adult birds kept for egg laying. In parallel, we assessed SFP genotypic and phenotypic-related immune responses and aromatic amino acid status linked to neurotransmitter production. Social stress aggravated plumage damage, while L. rhamnosus treatment improved the birds' feather cover in non-stressed birds, but did not impact fearfulness. Our data demonstrate the significant impact of L. rhamnosus supplementation on the immune system. L. rhamnosus supplementation induced immunosuppressive regulatory T cells and cytotoxic T cells in both the cecal tonsils and the spleen. Birds exhibiting the SFP phenotype possessed lower levels of cecal tonsils regulatory T cells, splenic T helper cells and a lower TRP:(PHE+TYR). Together, these results suggest that bacteria may have beneficial effects on the avian immune response and may be useful therapeutic adjuncts to counteract SFP and plumage damage, thus increasing animal health and welfare.
Collapse
Affiliation(s)
- Claire Mindus
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Dietmar Fuchs
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M. Gostner
- Biocenter, Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Joergen B. Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Wolfgang Kunze
- Brain-Body Institute, St. Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - M. Firoz Mian
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Paul Forsythe
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexandra Harlander-Matauschek
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
- *Correspondence: Alexandra Harlander-Matauschek
| |
Collapse
|
14
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
15
|
Mindus C, van Staaveren N, Fuchs D, Gostner JM, Kjaer JB, Kunze W, Mian MF, Shoveller AK, Forsythe P, Harlander-Matauschek A. L. rhamnosus improves the immune response and tryptophan catabolism in laying hen pullets. Sci Rep 2021; 11:19538. [PMID: 34599202 PMCID: PMC8486881 DOI: 10.1038/s41598-021-98459-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
In mammals, early-life probiotic supplementation is a promising tool for preventing unfavourable, gut microbiome-related behavioural, immunological, and aromatic amino acid alterations later in life. In laying hens, feather-pecking behaviour is proposed to be a consequence of gut-brain axis dysregulation. Lactobacillus rhamnosus decreases stress-induced severe feather pecking in adult hens, but whether its effect in pullets is more robust is unknown. Consequently, we investigated whether early-life, oral supplementation with a single Lactobacillus rhamnosus strain can prevent stress-induced feather-pecking behaviour in chickens. To this end, we monitored both the short- and long-term effects of the probiotic supplement on behaviour and related physiological parameters. We hypothesized that L. rhamnosus would reduce pecking behaviour by modulating the biological pathways associated with this detrimental behaviour, namely aromatic amino acid turnover linked to neurotransmitter production and stress-related immune responses. We report that stress decreased the proportion of cytotoxic T cells in the tonsils (P = 0.047). Counteracting this T cell depression, birds receiving the L. rhamnosus supplementation significantly increased all T lymphocyte subset proportions (P < 0.05). Both phenotypic and genotypic feather peckers had lower plasma tryptophan concentrations compared to their non-pecking counterparts. The probiotic supplement caused a short-term increase in plasma tryptophan (P < 0.001) and the TRP:(PHE + TYR) ratio (P < 0.001). The administration of stressors did not significantly increase feather pecking in pullets, an observation consistent with the age-dependent onset of pecking behaviour. Despite minimal changes to behaviour, our data demonstrate the impact of L. rhamnosus supplementation on the immune system and the turnover of the serotonin precursor tryptophan. Our findings indicate that L. rhamnosus exerts a transient, beneficial effect on the immune response and tryptophan catabolism in pullets.
Collapse
Affiliation(s)
- Claire Mindus
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Nienke van Staaveren
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Dietmar Fuchs
- grid.5361.10000 0000 8853 2677Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M. Gostner
- grid.5361.10000 0000 8853 2677Institute of Medical Biochemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Joergen B. Kjaer
- grid.417834.dInstitute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Wolfgang Kunze
- grid.25073.330000 0004 1936 8227Brain-Body Institute, St. Joseph’s Healthcare, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - M. Firoz Mian
- grid.25073.330000 0004 1936 8227Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Anna K. Shoveller
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Paul Forsythe
- grid.25073.330000 0004 1936 8227Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON L8N 4A6 Canada
| | - Alexandra Harlander-Matauschek
- grid.34429.380000 0004 1936 8198Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|