1
|
Samoudi A, Abolhasani-Zadeh F, Afgar A, Jalilian E, Zeinalynezhad H, Langroudi L. Treatment of cancer-associated fibroblast-like cells with celecoxib enhances the anti-cancer T helper 1/Treg responses in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6099-6112. [PMID: 39652176 DOI: 10.1007/s00210-024-03641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/15/2024] [Indexed: 04/11/2025]
Abstract
Tumor inflammation, as one of the hallmarks of cancer, has been the target for anti-cancer treatments. Celecoxib is a selective inhibitor of the enzyme cycloxygenase-2 (COX-2) and inhibits the production of PGE2, which is an important mediator of tumor inflammation produced by cancer cells and cells of the tumor microenvironment. In this study, we aimed at inhibiting COX-2 using celecoxib, expressed in cancer-associated fibroblast (CAF)-like cells isolated from breast cancer and evaluated the alterations in their cytokine profile and gene expression. CAF-like cells were isolated by explant culture from 13 breast cancer tissues. Simultaneously, peripheral blood mononuclear cells (PBMCs) were isolated from patients' blood. CAF-like cells were treated with 10 µM of celecoxib and expression of genes COX-2, smooth muscle actin-alpha (α-SMA), and production of prostaglandin E2 (PGE2), Interleukin 10 (IL10), and transforming growth factor beta1 (TGF-β1) was evaluated. Next, PBMCs were co-cultured with celecoxib-treated CAF-like cells and the expression of genes T-bet, Foxp3, GATA-3; production of cytokines IFN-ɣ, IL-10, IL-4, TGF-β1, and the mediator PGE2 were assessed by real-time-PCR and ELISA, respectively. Isolated CAF-like cells showed expression of fibroblast activation protein (FAP). Treatment with celecoxib was able to efficiently reduce the production of PGE2 and the expression of α-SMA in isolated CAF-like cells. Furthermore, PBMCs in co-culture with these cells showed enhanced Th1 phenotype including T-bet and IFNγ expression and decreased the phenotypical markers of regulatory T cells such as FoxP3 and IL-10 and TGF-β1 production. Our study shows the important role of COX-2 in CAFs by promoting immune suppression. Our results suggested that high expression of COX-2 in CAFs may serve as a new therapeutic, targeting CAFs in enhancing immune responses in breast cancer treatment.
Collapse
Affiliation(s)
- Arash Samoudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | | | - Ali Afgar
- Research center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Jalilian
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran
| | - Hamid Zeinalynezhad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Langroudi
- Department of Medical Immunology, School of Medicine, Kerman University of Medical Sciences, Pajoohesh Sq, Kerman, 7616914111, Iran.
| |
Collapse
|
2
|
DU N, Wan H, Guo H, Zhang X, Wu X. [Myeloid-derived suppressor cells as important factors and potential targets for breast cancer progression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:785-795. [PMID: 39686697 PMCID: PMC11736353 DOI: 10.3724/zdxbyxb-2024-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Recurrence and metastasis remain the leading cause of death in breast cancer patients due to the lack of effective treatment. A microenvironment suitable for cancer cell growth, referred to as pre-metastatic niche (PMN), is formed in distant organs before metastasis occurs. Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells with immunosuppressive effects. They can expand in large numbers in breast cancer patients and participate in the formation of PMN. MDSCs can remodel the extracellular matrix of pulmonary vascular endothelial cells and recruit cancer stem cells to promote the lung metastasis of breast cancer. Furthermore, MDSCs facilitate immune evasion of breast cancer cells to impact the efficacy of immunotherapy. It is proposed that MDSCs represent a potential therapeutic target for the inhibition of recurrence and metastasis in breast cancer. Therapeutic strategies targeting MDSCs have shown promising efficacy in preclinical studies and clinical trials. This review presents a summary of the principal factors involved in the recruitment and activation of MDSCs during the formation of PMN, and outlines MDSCs functions such as immunosuppression and the current targeted therapies against MDSCs, aiming to provide new ideas for the treatment of distant metastases in breast cancer.
Collapse
Affiliation(s)
- Nannan DU
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| | - Hua Wan
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Hailing Guo
- Department of Orthopaedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xukuan Zhang
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xueqing Wu
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| |
Collapse
|
3
|
Flausino LE, Ferreira IN, Tuan WJ, Estevez-Diz MDP, Chammas R. Association of COX-inhibitors with cancer patients' survival under chemotherapy and radiotherapy regimens: a real-world data retrospective cohort analysis. Front Oncol 2024; 14:1433497. [PMID: 39346725 PMCID: PMC11427433 DOI: 10.3389/fonc.2024.1433497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction We conducted an extensive, sex-oriented real-world data analysis to explore the impact and safety of non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (coxibs) on cancer treatment outcomes. This is particularly relevant given the role of the COX-2/PGE2 pathway in tumor cell resistance to chemotherapy and radiotherapy. Methods The study applied a retrospective cohort design utilizing the TriNetX research database consisting of patients receiving cancer treatment in 2008-2022. The treated cohorts included patients who were prescribed with coxibs, aspirin or ibuprofen, while individuals in the control cohort did not receive these medicines during their cancer treatment. A 1:1 propensity score matching technique was used to balance the baseline characteristics in the treated and control cohorts. Then, Cox proportional hazards regression and logistic regression were applied to assess the mortality and morbidity risks among patient cohorts in a 5-year follow-up period. Results Use of coxibs (HR, 0.825; 95% CI 0.792-0.859 in females and HR, 0.884; 95% CI 0.848-0.921 in males) and ibuprofen (HR, 0.924; 95% CI 0.903-0.945 in females and HR, 0.940; 95% CI 0.917-0.963 in males) were associated with improved survival. Female cancer patients receiving aspirin presented increased mortality (HR, 1.078; 95% CI 1.060-1.097), while male cancer patients also had improved survival when receiving aspirin (HR, 0.966; 95% CI 0.951-0.980). Cancer subtype specific analysis suggests coxibs and ibuprofen correlated with survival, though ibuprofen and aspirin increased emergency department visits' risk. Secondary analyses, despite limited by small cohort sizes, suggest that COX inhibition post-cancer diagnosis may benefit patients with specific cancer subtypes. Discussion Selective COX-2 inhibition significantly reduced mortality and emergency department visit rates. Further clinical trials are needed to determine the optimal conditions for indication of coxibs as anti-inflammatory adjuvants in cancer treatment.
Collapse
Affiliation(s)
- Lucas E. Flausino
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isabella N. Ferreira
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wen-Jan Tuan
- Department of Family and Community Medicine, and Public Health Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Maria Del Pilar Estevez-Diz
- Division of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
6
|
Akhter N, Batool S, Khan SG, Rasool N, Anjum F, Rasul A, Adem Ş, Mahmood S, Rehman AU, Nisa MU, Razzaq Z, Christensen JB, Abourehab MAS, Shah SAA, Imran S. Bio-Oriented Synthesis and Molecular Docking Studies of 1,2,4-Triazole Based Derivatives as Potential Anti-Cancer Agents against HepG2 Cell Line. Pharmaceuticals (Basel) 2023; 16:211. [PMID: 37259360 PMCID: PMC9964635 DOI: 10.3390/ph16020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 08/22/2023] Open
Abstract
Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Naheed Akhter
- Department of Biochemistry, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sidra Batool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Sadaf Mahmood
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Aziz ur Rehman
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Mehr un Nisa
- Department of Chemistry, University of Lahore, Lahore 40100, Pakistan
| | - Zainib Razzaq
- Department of Chemistry, Drug Design and Medicinal Chemistry Laboratory, Faculty of Physical Science, Government College University, Faisalabad 38000, Pakistan
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Shah Alam 40450, Selangor D.E., Malaysia
| |
Collapse
|
7
|
Ya G, Ren W, Qin R, He J, Zhao S. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol 2022; 12:975261. [PMID: 36237333 PMCID: PMC9552826 DOI: 10.3389/fonc.2022.975261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a complex process, which depends on the interaction between tumor cells and host organs. Driven by the primary tumor, the host organ will establish an environment suitable for the growth of tumor cells before their arrival, which is called the pre-metastasis niche. The formation of pre-metastasis niche requires the participation of a variety of cells, in which myeloid-derived suppressor cells play a very important role. They reach the host organ before the tumor cells, and promote the establishment of the pre-metastasis niche by influencing immunosuppression, vascular leakage, extracellular matrix remodeling, angiogenesis and so on. In this article, we introduced the formation of the pre-metastasis niche and discussed the important role of myeloid-derived suppressor cells. In addition, this paper also emphasized the targeting of myeloid-derived suppressor cells as a therapeutic strategy to inhibit the formation of pre-metastasis niche, which provided a research idea for curbing tumor metastasis.
Collapse
Affiliation(s)
- Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Weihong Ren,
| | - Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Chen JS, Hsieh YC, Chou CH, Wu YH, Yang MH, Chu SH, Chao YS, Chen CN. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice. Int J Mol Sci 2022; 23:10677. [PMID: 36142591 PMCID: PMC9504159 DOI: 10.3390/ijms231810677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Combined inhibition of vascular endothelial growth factor receptor (VEGFR) and the programmed cell death protein 1 (PD-1) pathways has shown efficacy in multiple cancers; however, the clinical outcomes show limited benefits and the unmet clinical needs still remain and require improvement in efficacy. Using murine colon carcinoma (CT26) allograft models, we examined the efficacy and elucidated novel tumor microenvironment (TME) remodeling mechanisms underlying the combination of chidamide (a benzamide-based class l histone deacetylase inhibitor; brand name in Taiwan, Kepida®) with VEGF receptor tyrosine kinase inhibitor (TKIs; cabozantinib/regorafenib, etc.) and immune checkpoint inhibitors (ICIs; anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies). The TME was assessed using flow cytometry and RNA-sequencing to determine the novel mechanisms and their correlation with therapeutic effects in mice with significant treatment response. Compared with ICI alone or cabozantinib/regorafenib + ICI, combination of chidamide + cabozantinib/regorafenib + ICI increased the tumor response and survival benefits. In particular, treatment of CT26-bearing mice with chidamide + regorafenib + anti-PD-1 antibody showed a better objective response rate (ORR) and overall survival (OS). Similar results were observed in anti-PD-1 treatment-resistant mice. After treatment with this optimal combination, in the TME, RNA-sequencing revealed that downregulated mRNAs were correlated with leukocyte migration, cell chemotaxis, and macrophage gene sets, and flow cytometry analysis showed that the cell numbers of myeloid-derived polymorphonuclear suppressor cells and tumor-associated macrophages were decreased. Accordingly, chidamide + regorafenib + anti-PD-1 antibody combination therapy could trigger a novel TME remodeling mechanism by attenuating immunosuppressive cells, and restoring T-cell activation to enhance ORR and OS. Our studies also showed that the addition of Chidamide to the regorafenib + anti-PD-1 Ab combination could induce a durable tumor-specific response by attenuating immune suppression in the TME. In addition, this result suggests that TME remodeling, mediated by epigenetic immunomodulator combined with TKI and ICI, would be more advantageous for achieving a high objective response rate, when compared to TKI plus ICI or ICI alone, and maintaining long-lasting antitumor activity.
Collapse
Affiliation(s)
- Jia-Shiong Chen
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | | | - Cheng-Han Chou
- Department of Biology, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Yi-Hong Wu
- Department of Biology, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Mu-Hsuan Yang
- Department of Chemistry, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Sz-Hao Chu
- Department of Chemistry, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Ye-Su Chao
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| | - Chia-Nan Chen
- New Drug Research and Development Center, Great Novel Therapeutics Biotech & Medicals Corporation (GNTbm), Taipei 100, Taiwan
| |
Collapse
|
9
|
Sun Y, Hong JH, Ning Z, Pan D, Fu X, Lu X, Tan J. Therapeutic potential of tucidinostat, a subtype-selective HDAC inhibitor, in cancer treatment. Front Pharmacol 2022; 13:932914. [PMID: 36120308 PMCID: PMC9481063 DOI: 10.3389/fphar.2022.932914] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) is one of the most characterized epigenetic modifiers, modulating chromatin structure and gene expression, which plays an important role in cell cycle, differentiation and apoptosis. Dysregulation of HDAC promotes cancer progression, thus inhibitors targeting HDACs have evidently shown therapeutic efficacy in multiple cancers. Tucidinostat (formerly known as chidamide), a novel subtype-selective HDAC inhibitor, inhibits Class I HDAC1, HDAC2, HDAC3, as well as Class IIb HDAC10. Tucidinostat is approved in relapsed or refractory (R/R) peripheral T-cell lymphoma (PTCL), advanced breast cancer and R/R adult T-cell leukemia-lymphoma (ATLL). Compared with other HDAC inhibitors, tucidinostat shows notable antitumor activity, remarkable synergistic effect with immunotherapy, and manageable toxicity. Here, we comprehensively summarize recent advances in tucidinostat as both monotherapy and a regimen of combination therapy in both hematological and solid malignancies in clinic. Further studies will endeavor to identify more combination strategies with tucidinostat and to identify specific clinical biomarkers to predict the therapeutic effect.
Collapse
Affiliation(s)
- Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Zhiqiang Ning
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, China
- *Correspondence: Jing Tan, ; Xianping Lu,
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Tan, ; Xianping Lu,
| |
Collapse
|
10
|
Al-Warhi T, Aldhahrani A, Althobaiti F, Fayad E, Abu Ali OA, Albogami S, Abu Almaaty AH, Khedr AIM, Bukhari SNA, Zaki I. Design, Synthesis and Cytotoxic Activity Evaluation of Newly Synthesized Amides-Based TMP Moiety as Potential Anticancer Agents over HepG2 Cells. Molecules 2022; 27:3960. [PMID: 35745081 PMCID: PMC9227250 DOI: 10.3390/molecules27123960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 μM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University Faculty, Taif University, Taif 21995, Saudi Arabia;
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (E.F.); (S.A.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (E.F.); (S.A.)
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099 Taif 21944, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (E.F.); (S.A.)
| | - Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Amgad I. M. Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
11
|
Feng X, Han H, Guo Y, Feng X, Guo S, Zhou W. LncRNA ENST869 Targeting Nestin Transcriptional Region to Affect the Pharmacological Effects of Chidamide in Breast Cancer Cells. Front Oncol 2022; 12:874343. [PMID: 35444938 PMCID: PMC9014306 DOI: 10.3389/fonc.2022.874343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is one of the leading threats to the health of women. It has the highest incidence and mortality in women worldwide. Although progress has been made in the development and application of anti-breast cancer drugs such as Chidamide and others, the occurrence of drug resistance limits the effective application of chemotherapies. The purpose of this study is to explore the role of LncRNA in the pharmacological effect of Chidamide in breast cancer therapy. The human breast cancer MCF-7 or MDA-MB-231 cells were used as the research cell models. The RNA library screening and high-throughput sequencing comparative analysis was conducted. The binding of LncRNA and its downstream target genes in RNA and protein levels was tested. The results showed that the expression of LncRNA ENST869 in cells treated with Chidamide increased significantly, as demonstrated by real-time PCR and cell viability assay. RNAplex analysis showed that LncRNA ENST869 and Nestin mRNA may interact. RNA interference and Western blot analysis indicated that LncRNA ENST869 could target and regulate the expression of Nestin. Luciferase assay and RNA-protein pulldown showed that LncRNA ENST869 affected Nestin transcription. There might be a highly active binding region of LncRNA ENST869 in regulating Nestin transcriptional activity within the site of 250 bp upstream of the transcription starting point of Nestin. In addition, LncRNA ENST869 did not directly interact with Nestin protein to affect its activity. In conclusion, our results demonstrated that LncRNA ENST869 could affect the function of Nestin in breast cancer cells treated with Chidamide. Nestin is a key player in influencing the pharmacological activity of Chidamide and an essential factor in drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Xiuyan Feng
- Medical Administration Division, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, China
| | - Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| |
Collapse
|