1
|
Yu J, Jin C, Su C, Moon D, Sun M, Zhang H, Jiang X, Zhang F, Tserentsoodol N, Bowie ML, Pirozzi CJ, George DJ, Wild R, Gao X, Ashley DM, He Y, Huang J. Resilience and vulnerabilities of tumor cells under purine shortage stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644180. [PMID: 40166329 PMCID: PMC11957128 DOI: 10.1101/2025.03.19.644180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purine metabolism is a promising therapeutic target in cancer; however how cancer cells respond to purine shortage,particularly their adaptation and vulnerabilities, remains unclear. Using the recently developed purine shortage-inducing prodrug DRP-104 and genetic approaches, we investigated these responses in prostate, lung and glioma cancer models. We demonstrate that when de novo purine biosynthesis is compromised, cancer cells employ microtubules to assemble purinosomes, multi-protein complexes of de novo purine biosynthesis enzymes that enhance purine biosynthesis efficiency. While this process enables tumor cells to adapt to purine shortage stress, it also renders them more susceptible to the microtubule-stabilizing chemotherapeutic drug Docetaxel. Furthermore, we show that although cancer cells primarily rely on de novo purine biosynthesis, they also exploit Methylthioadenosine Phosphorylase (MTAP)-mediated purine salvage as a crucial alternative source of purine supply, especially under purine shortage stress. In support of this finding, combining DRP-104 with an MTAP inhibitor significantly enhances tumor suppression in prostate cancer (PCa) models in vivo. Finally, despite the resilience of the purine supply machinery, purine shortage-stressed tumor cells exhibit increased DNA damage and activation of the cGAS-STING pathway, which may contribute to impaired immunoevasion and provide a molecular basis of the previously observed DRP-104-induced anti-tumor immunity. Together, these findings reveal purinosome assembly and purine salvage as key mechanisms of cancer cell adaptation and resilience to purine shortage while identifying microtubules, MTAP, and immunoevasion deficits as therapeutic vulnerabilities.
Collapse
|
2
|
Gao Y, Zhang M, Wang G, Lai W, Liao S, Chen Y, Ning Q, Tang S. Metabolic cross-talk between glioblastoma and glioblastoma-associated microglia/macrophages: From basic insights to therapeutic strategies. Crit Rev Oncol Hematol 2025; 208:104649. [PMID: 39922398 DOI: 10.1016/j.critrevonc.2025.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Glioblastoma (GBM), a highly malignant "cold" tumor of the central nervous system, is characterized by its ability to remodel the GBM immune microenvironment (GME), leading to significant resistance to immunotherapy. GBM-associated microglia/macrophages (GAMs) are essential components of the GME. Targeting GAMs has emerged as a promising strategy against GBM. However, their highly immunosuppressive nature contributes to GBM progression and drug resistance, significantly impeding anti-GBM immunotherapy. Accumulating evidence suggests that metabolic reprogramming accompanies GBM progression and GAM polarization, which are in turn driven by specific metabolic abnormalities and altered cellular signaling pathways. Importantly, metabolic crosstalk between GBM and GAMs further promotes tumor progression. Clarifying and disrupting this metabolic crosstalk is expected to enhance the antitumor phenotype of GAMs and inhibit GBM malignant progression. This review explores metabolism-based interregulation between GBM and GAMs and summarizes recent therapeutic strategies targeting this crosstalk, offering new insights into GBM immunotherapy.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Guihua Wang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Weiwei Lai
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yao Chen
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Shengsong Tang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Ali N, Eaton BR, Fangusaro JR, Castellino RC, Velázquez Vega JE, Chern JJ, Schniederjan M, Patil P. Pediatric metastatic extracranial high-grade glioma: A case report and literature review. Neurooncol Pract 2025; 12:160-167. [PMID: 39917758 PMCID: PMC11798610 DOI: 10.1093/nop/npae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
We report a case of a 10-year-old male with a right frontal diffuse pediatric-type high-grade glioma (HGG), H3-wild-type (WT), and IDH-WT, diagnosed at the age of 9 years, who underwent gross total resection, 60 Gy focal proton radiation in 30 fractions to the resection cavity with concurrent temozolomide followed by maintenance chemotherapy with temozolomide and lomustine. One month after completion of maintenance chemotherapy, he developed subcutaneous swelling in the right temporal region and was treated with antibiotics for presumed lymphadenitis. Two months later, he developed a recurrent painless right parietal soft tissue mass that failed to respond to antibiotic therapy. This prompted evaluation by MRI which revealed new enhancing masses in the cerebellum and extracranial soft tissue mass in the right temporal region. He underwent gross total resection of both masses. Pathologic analysis confirmed both masses as recurrent HGG. Molecular markers, however, differed between the 2 sites of recurrence. He proceeded to complete hypofractionated proton therapy at sites of recurrence. Three months later, he was found to have tumor dissemination into the spine and brain for which he received proton therapy to the whole spine and brain. Due to the presence of CDK4 amplification at diagnosis and both sites of tumor recurrence, he then received palliative treatment with the CDK4/6 inhibitor, abemaciclib, for the final 5 months of his life. Since extracranial HGG is a rare presentation, with few cases reported in the pediatric population, we report this case and review previously published literature.
Collapse
Affiliation(s)
- Naba Ali
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA (N.A., B.R.E.)
| | - Bree R Eaton
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | - Jason R Fangusaro
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | - Robert C Castellino
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | - José E Velázquez Vega
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | - Joshua J Chern
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | - Matthew Schniederjan
- Aflac Cancer Center and the Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA (J.R.F., R.C.C., J.E.V., J.J.C., M.S.)
| | | |
Collapse
|
4
|
Talukder R, Bakaloudi DR, Makrakis D, Diamantopoulos LN, Enright T, Leary JB, Raychaudhuri R, Tripathi N, Agarwal N, Jindal T, Brown JR, Zakharia Y, Rey-Cárdenas M, Castellano D, Nguyen CB, Alva A, Zakopoulou R, Bamias A, Barrera RM, Marmolejo D, Drakaki A, Pinato DJ, Korolewicz J, Buznego LA, Duran I, Carballeira CC, McKay RR, Stewart TF, Gupta S, Barata P, Yu EY, Koshkin VS, Khaki AR, Grivas P. Clinical Outcomes With Immune Checkpoint Inhibitors in Patients With FGFR2/3, MTAP or ERBB2 Genomic Alterations in Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2025; 23:102284. [PMID: 39798390 DOI: 10.1016/j.clgc.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND FGFR2/3, MTAP and ERBB2 genomic alterations have treatment targets in advanced urothelial carcinoma (aUC). These alterations may affect tumor microenvironment and outcomes with immune checkpoint inhibitors (ICIs) in aUC. PATIENTS AND METHODS We identified patients with available genomic data in our multi-institution cohort of patients with aUC treated with ICI. Outcomes (observed response rate [ORR], progression-free and overall survival [PFS, OS]) with ICI were compared between patients with and without FGFR 2/3, MTAP, ERBB2 alterations. We compared ORR using logistic regression and PFS/OS using Cox proportional hazards. RESULTS Out of 1,514 patients, 276 (18%), 174 (11%) and 208 (14%) patients had known FGFR2/3, MTAP and ERBB2 alteration status, respectively. and were treated with ICI in 1L or 2 + L. In patients with (vs. without) FGFR2/3 alteration, ORR with ICI was 21% vs. 32% (OR 0.54; [95%CI 0.32-0.91]), PFS was significantly shorter in patients with FGFR2/3 alterations (HR = 1.36 [95%CI 1.03-1.80]; P=0.03); OS was not significantly different (HR = 1.22 [95%CI 0.86-1.47]). In patients with (vs. without) MTAP alteration, ORR with ICI was 25% versus 40% (OR 0.52 [95%CI 0.20-1.38]); PFS and OS were nonsignificantly different. In patients with (vs. without) ERBB2 alteration, ORR with ICI was similar (37% vs. 35%; OR 1.06; 95%CI 0.57-1.97); PFS and OS were significantly longer in patients with ERBB2 alteration [HR 0.63 (95%CI 0.41-0.95); P=0.03; HR 0.66, [95% CI 0.44-0.97]), respectively. CONCLUSION Our results support further evaluation of FGFR2/3, MTAP and ERBB2 alterations as putative biomarkers in patients with aUC treated with ICI.
Collapse
MESH Headings
- Humans
- Male
- Female
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Aged
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Middle Aged
- Receptor, ErbB-2/genetics
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/mortality
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Aged, 80 and over
- Treatment Outcome
- Urologic Neoplasms/drug therapy
- Urologic Neoplasms/genetics
- Receptor, ErbB-3
Collapse
Affiliation(s)
- Rafee Talukder
- Department of Medicine, University of Washington, Seattle, WA; Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | | | - Dimitrios Makrakis
- Department of Medicine, Jacobi Medical Center-Albert Einstein College of Medicine, Bronx, NY
| | | | - Thomas Enright
- Department of Medicine, University of Washington, Seattle, WA
| | - Jacob B Leary
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Nishita Tripathi
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Tanya Jindal
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA
| | - Jason R Brown
- Division of Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Yousef Zakharia
- Division of Oncology, Department of Medicine, University of Iowa, Iowa City, IA
| | | | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Charles B Nguyen
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ajjai Alva
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Roubini Zakopoulou
- 2nd Propaedeutic Dept of Internal Medicine, School of Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Dept of Internal Medicine, School of Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Rafael Morales Barrera
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Marmolejo
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexandra Drakaki
- Division of Hematology/Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, UK; Division of Oncology, Department of Translational Medicine (DIMET), University of Piemonte Orientale, Novara, Italy
| | - James Korolewicz
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Lucia Alonso Buznego
- Department of Oncology, University Hospital Marqués of Valdecilla, IDIVAL Santander, Cantabria, Spain
| | - Ignacio Duran
- Department of Oncology, University Hospital Marqués of Valdecilla, IDIVAL Santander, Cantabria, Spain
| | - Clara Castro Carballeira
- Department of Oncology, University Hospital Marqués of Valdecilla, IDIVAL Santander, Cantabria, Spain
| | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Tyler F Stewart
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Pedro Barata
- Division of Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Evan Y Yu
- Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Vadim S Koshkin
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA
| | - Ali Raza Khaki
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Petros Grivas
- Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA.
| |
Collapse
|
5
|
Sabahi M, Fathi Jouzdani A, Sadeghian Z, Dabbagh Ohadi MA, Sultan H, Salehipour A, Maniakhina L, Rezaei N, Adada B, Mansouri A, Borghei-Razavi H. CAR-engineered NK cells versus CAR T cells in treatment of glioblastoma; strength and flaws. J Neurooncol 2025; 171:495-530. [PMID: 39538038 DOI: 10.1007/s11060-024-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that carries a grim prognosis. Because of the dearth of treatment options available for treatment of GBM, Chimeric Antigen Receptor (CAR)-engineered T cell and Natural Killer (NK) therapy could provide alternative strategies to address the challenges in GBM treatment. In these approaches, CAR T and NK cells are engineered for cancer-specific immunotherapy by recognizing surface antigens independently of major histocompatibility complex (MHC) molecules. However, the efficacy of CAR T cells is hindered by GBM's downregulation of its targeted antigens. CAR NK cells face similar challenges, but, in contrast, they offer advantages as off-the-shelf allogeneic products, devoid of graft-versus-host disease (GVHD) risk as well as anti-cancer activity beyond CAR specificity, potentially reducing the risk of relapse or resistance. Despite CAR T cell therapies being extensively studied in clinical settings, the use of CAR-modified NK cells in GBM treatment remains largely in the preclinical stage. This review aims to discuss recent advancements in NK cell and CAR T cell therapies for GBM, including methods for introducing CARs into both NK cells and T cells, addressing manufacturing challenges, and providing evidence supporting the efficacy of these approaches from preclinical and early-phase clinical studies. The comprehensive evaluation of CAR-engineered NK cells and CAR T cells seeks to identify the optimal therapeutic approach for GBM, contributing to the development of effective immunotherapies for this devastating disease.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ali Fathi Jouzdani
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Sadeghian
- Department of Pathology & Laboratory Medicine, Cleveland Clinic Florida, Weston, FL, USA
| | | | - Hadi Sultan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lana Maniakhina
- Department of Neurosurgery, Geisinger and Geisinger Commonwealth School of Medicine, Wilkes-Barre, PA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
6
|
Gounder M, Johnson M, Heist RS, Shapiro GI, Postel-Vinay S, Wilson FH, Garralda E, Wulf G, Almon C, Nabhan S, Aguado-Fraile E, He P, Romagnoli M, Hossain M, Narayanaswamy R, Sadou-Dubourgnoux A, Cooper M, Askoxylakis V, Burris HA, Tabernero J. MAT2A inhibitor AG-270/S095033 in patients with advanced malignancies: a phase I trial. Nat Commun 2025; 16:423. [PMID: 39762248 PMCID: PMC11704051 DOI: 10.1038/s41467-024-55316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Homozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.gov Identifier: NCT03435250). Eligible patients had tumors with homozygous deletion of CDKN2A/MTAP and/or loss of MTAP protein by immunohistochemistry. Patients received AG-270/S095033 once daily (QD) or twice daily (BID) in 28-day cycles. The primary objective was to assess the maximum tolerated dose (MTD) of AG-270/S095033. Secondary objectives included safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. Forty patients were treated with AG-270/S095033. Plasma concentrations of AG-270/S095033 increased with dose. Maximal reductions in plasma SAM concentrations ranged from 54% to 70%. Analysis of paired tumor biopsies showed decreases in levels of symmetrically di-methylated arginine (SDMA) residues. Reversible increases in liver function tests, thrombocytopenia, anemia and fatigue were common treatment-related toxicities. Two partial responses were observed; five additional patients achieved radiographically confirmed stable disease for ≥16 weeks. AG-270/S095033 has a manageable safety profile. Our data provide preliminary evidence of clinical activity and proof-of-mechanism for MAT2A inhibition.
Collapse
Affiliation(s)
- Mrinal Gounder
- Memorial Sloan Kettering Cancer Center; Weill Cornell Medical College, New York, NY, USA
| | | | | | | | - Sophie Postel-Vinay
- Institut Gustave Roussy and U981 INSERM, Villejuif, France
- University College of London, England, UK
| | | | | | - Gerburg Wulf
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | - Mohammad Hossain
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier, Boston, USA
| | | | | | - Michael Cooper
- Agios Pharmaceuticals Inc., Cambridge, MA, USA
- Servier, Boston, USA
| | | | | | | |
Collapse
|
7
|
Brummer C, Singer K, Henrich F, Peter K, Strobl C, Neueder B, Bruss C, Renner K, Pukrop T, Herr W, Aigner M, Kreutz M. The Tumor Metabolite 5'-Deoxy-5'Methylthioadenosine (MTA) Inhibits Maturation and T Cell-Stimulating Capacity of Dendritic Cells. Cells 2024; 13:2114. [PMID: 39768204 PMCID: PMC11727219 DOI: 10.3390/cells13242114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells. However, the impact of MTA on other intra-tumoral immune cells has not yet been fully elucidated. To study the effects of MTA on dendritic cells (DCs), human monocytes were maturated into DCs with (MTA-DC) or without MTA (co-DC) and analyzed for activation, differentiation, and T cell-stimulating capacity. MTA altered the cytokine secretion profile of monocytes and impaired their maturation into dendritic cells. MTA-DCs produced less IL-12 and showed a more immature-like phenotype characterized by decreased expression of the co-stimulatory molecules CD80, CD83, and CD86 and increased expression of the monocyte markers CD14 and CD16. Consequently, MTA reduced the capability of DCs to stimulate T cells. Mechanistically, the MTA-induced effects on monocytes and DCs were mediated by a mechanism beyond adenosine receptor signaling. These results provide new insights into how altered polyamine metabolism impairs the maturation of monocyte-derived DCs and impacts the crosstalk between T and dendritic cells.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Frederik Henrich
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Katrin Peter
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Carolin Strobl
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Bernadette Neueder
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Kathrin Renner
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Comprehensive Cancer Center Eastern Bavaria (CCCO), 93053 Regensburg, Germany
- Center of Translational Oncology (CTO), 93053 Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Michael Aigner
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Wu J, Wang N. Current progress of anti‑PD‑1/PDL1 immunotherapy for glioblastoma (Review). Mol Med Rep 2024; 30:221. [PMID: 39364736 PMCID: PMC11462401 DOI: 10.3892/mmr.2024.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/11/2023] [Indexed: 10/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common central nervous system malignancy in adults. GBM may be classified as grade IV diffuse astrocytoma according to the 2021 World Health Organization revised classification of central nervous system tumors, which means it is the most aggressive, invasive, undifferentiated type of tumor. Immune checkpoint blockade (ICB), particularly anti‑programmed cell death protein‑1 (PD‑1)/PD‑1 ligand‑1 immunotherapy, has been confirmed to be successful across several tumor types. However, in GBM, this treatment is still uncommon and the efficacy is unpredictable, and <10% of patients show long‑term responses. Recently, numerous studies have been conducted to explore what factors may indicate or affect the ICB response rate in GBM, including molecular alterations, immune expression signatures and immune infiltration. The present review aimed to summarize the current progress to improve the understanding of immunotherapy for GBM.
Collapse
Affiliation(s)
- Jianheng Wu
- Department of Neurosurgery, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| | - Nannan Wang
- Department of Gastroenterology, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| |
Collapse
|
9
|
Chen S, Hou J, Jaffery R, Guerrero A, Fu R, Shi L, Zheng N, Bohat R, Egan NA, Yu C, Sharif S, Lu Y, He W, Wang S, Gjuka D, Stone EM, Shah PA, Rodon Ahnert J, Chen T, Liu X, Bedford MT, Xu H, Peng W. MTA-cooperative PRMT5 inhibitors enhance T cell-mediated antitumor activity in MTAP-loss tumors. J Immunother Cancer 2024; 12:e009600. [PMID: 39313308 PMCID: PMC11418539 DOI: 10.1136/jitc-2024-009600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Hyperactivated protein arginine methyltransferases (PRMTs) are implicated in human cancers. Inhibiting tumor intrinsic PRMT5 was reported to potentiate antitumor immune responses, highlighting the possibility of combining PRMT5 inhibitors (PRMT5i) with cancer immunotherapy. However, global suppression of PRMT5 activity impairs the effector functions of immune cells. Here, we sought to identify strategies to specifically inhibit PRMT5 activity in tumor tissues and develop effective PRMT5i-based immuno-oncology (IO) combinations for cancer treatment, particularly for methylthioadenosine phosphorylase (MTAP)-loss cancer. METHODS Isogeneic tumor lines with and without MTAP loss were generated by CRISPR/Cas9 knockout. The effects of two PRMT5 inhibitors (GSK3326595 and MRTX1719) were evaluated in these isogenic tumor lines and T cells in vitro and in vivo. Transcriptomic and proteomic changes in tumors and T cells were characterized in response to PRMT5i treatment. Furthermore, the efficacy of MRTX1719 in combination with immune checkpoint blockade was assessed in two syngeneic murine models with MTAP-loss tumor. RESULTS GSK3326595 significantly suppresses PRMT5 activity in tumors and T cells regardless of the MTAP status. However, MRTX1719, a methylthioadenosine-cooperative PRMT5 inhibitor, exhibits tumor-specific PRMT5 inhibition in MTAP-loss tumors with limited immunosuppressive effects. Mechanistically, transcriptomic and proteomic profiling analysis reveals that MRTX1719 successfully reduces the activation of the PI3K pathway, a well-documented immune-resistant pathway. It highlights the potential of MRTX1719 to overcome immune resistance in MTAP-loss tumors. In addition, MRTX1719 sensitizes MTAP-loss tumor cells to the killing of tumor-reactive T cells. Combining MRTX1719 and anti-PD-1 leads to superior antitumor activity in mice bearing MTAP-loss tumors. CONCLUSION Collectively, our results provide a strong rationale and mechanistic insights for the clinical development of MRTX1719-based IO combinations in MTAP-loss tumors.
Collapse
Affiliation(s)
- Si Chen
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jiakai Hou
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Roshni Jaffery
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ashley Guerrero
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Rongjie Fu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leilei Shi
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ritu Bohat
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nicholas A Egan
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chengtai Yu
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sana Sharif
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Yue Lu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei He
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuyue Wang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donjeta Gjuka
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Everett M Stone
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Pooja Anil Shah
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taiping Chen
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinli Liu
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Mark T Bedford
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Xu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Lin T, Tang X, Yang W, Yang H, Zhou Z, Chen Z, Zeng Y, Hong W, Ye M, Cai L, Liu D, Li M, Wen L. TP53 and EGFR amplification are negative predictors of overall survival in patients diagnosed with non-small cell lung cancer with brain metastases. Heliyon 2024; 10:e36532. [PMID: 39258211 PMCID: PMC11385771 DOI: 10.1016/j.heliyon.2024.e36532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/03/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
Background The discovery of driver genes such as EGFR, KRAS, and ALK, has dramatically shifted treatment patterns in patients harboring these oncogenes. However, dissemination into the central nervous system (CNS) is a severe complication. In addition, the particular anatomical structure of the CNS has made it difficult to obtain tissue specimens from brain metastases (BM) to generate a gene map, as such, potential predictive markers for survival in patients with non-small cell lung cancer (NSCLC) and BM (NSCLC-BM) remain unclear. Methods Data from 28 patients diagnosed with NSCLC-BM between June 2019 and May 2021 at Guangdong Sanjiu Brain Hospital (Guangzhou, China), were reviewed. Targeted next-generation sequencing (NGS) of a 168 cancer-related gene panel was available for surgically resected brain tissues from all patients. In addition, molecular characteristics and overall survival (OS) were analyzed to determine potential predictive markers. Results Among patients with NSCLC-BM, NGS revealed that TP53 was the most frequent mutation (61 %), with a detection rate of 39 %, closely by EGFR amplification. Additionally, CDKN2A, MYC, LRP1B, and RNF43 were frequently observed (18 %). The median OS was significantly shorter in the TP53 mutation group than in the wildtype group (14 versus undefined months, p = 0.014). Similar results were also found in the genetic alteration of EGFR amplification, suggesting that EGFR amplification was associated with worse OS (14 vs. 24 months, p = 0.039). Interestingly, NGS revealed that gene alternations such as TP53, EGFR amplification, and CDKN2A, tended to coexist and such a co-alteration panel indicated worse clinical outcomes (median OS, 5 months). In addition, the detection rate of negative survival genes, including TP53 or EGFR amplification, was much higher in tumor tissues than in plasma samples, indicating the limited predictive value of matched PLA samples. Conclusions Gene signatures, such as TP53 or EGFR amplification, were associated with worse survival in patients diagnosed with NSCLC-BM. These valuable findings may shed light on new strategies for the prognostic assessment of specific patient groups.
Collapse
Affiliation(s)
- Tao Lin
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xusheng Tang
- Department of Radiation Oncology, Shanghai GoBroad Cancer Hospital, Shanghai, China
| | - Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, China
| | - Hainan Yang
- Department of Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong New District, Shanghai, 200137, China
| | - Zhaoming Zhou
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhijie Chen
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yongqin Zeng
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Weiping Hong
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Minting Ye
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Da Liu
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Minying Li
- Department of Radiation Oncology, Zhongshan People's Hospital, Zhongshan, China
| | - Lei Wen
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, 253 Gongye Dadao, Guangdong, 510280, Guangzhou, China
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
11
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Valera PS, Plou J, García I, Astobiza I, Viera C, M. Aransay A, Martin JE, Sasselli IR, Carracedo A, Liz-Marzán LM. SERS analysis of cancer cell-secreted purines reveals a unique paracrine crosstalk in MTAP-deficient tumors. Proc Natl Acad Sci U S A 2023; 120:e2311674120. [PMID: 38109528 PMCID: PMC10756296 DOI: 10.1073/pnas.2311674120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The tumor microenvironment (TME) is a dynamic pseudoorgan that shapes the development and progression of cancers. It is a complex ecosystem shaped by interactions between tumor and stromal cells. Although the traditional focus has been on the paracrine communication mediated by protein messengers, recent attention has turned to the metabolic secretome in tumors. Metabolic enzymes, together with exchanged substrates and products, have emerged as potential biomarkers and therapeutic targets. However, traditional techniques for profiling secreted metabolites in complex cellular contexts are limited. Surface-enhanced Raman scattering (SERS) has emerged as a promising alternative due to its nontargeted nature and simplicity of operation. Although SERS has demonstrated its potential for detecting metabolites in biological settings, its application in deciphering metabolic interactions within multicellular systems like the TME remains underexplored. In this study, we introduce a SERS-based strategy to investigate the secreted purine metabolites of tumor cells lacking methylthioadenosine phosphorylase (MTAP), a common genetic event associated with poor prognosis in various cancers. Our SERS analysis reveals that MTAP-deficient cancer cells selectively produce methylthioadenosine (MTA), which is taken up and metabolized by fibroblasts. Fibroblasts exposed to MTA exhibit: i) molecular reprogramming compatible with cancer aggressiveness, ii) a significant production of purine derivatives that could be readily recycled by cancer cells, and iii) the capacity to secrete purine derivatives that induce macrophage polarization. Our study supports the potential of SERS for cancer metabolism research and reveals an unprecedented paracrine crosstalk that explains TME reprogramming in MTAP-deleted cancers.
Collapse
Affiliation(s)
- Pablo S. Valera
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Departamento de Química Aplicada, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Donostia-San Sebastián20018, Spain
| | - Javier Plou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Nanoscience (CIC nanoGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20018, Spain
| | - Isabel García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ana M. Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Biomedical Research Networking Center in hepatic diseases, Derio48160, Spain
| | - José E. Martin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ivan R. Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Fisica de Materiales, Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Universitatea (CSIC-UPV)/EHU), Donostiarra-San Sebastián20018, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Translational Prostate Cancer Research Lab, Center for Cooperative Research in Biosciences-Basurto, Biocruces Bizkaia Health Research Institute, Derio48160, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Leioa48940, Spain
| | - Luis M. Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Cinbio, Universidade de Vigo, Vigo36310, Spain
| |
Collapse
|
13
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
15
|
Fan N, Zhang Y, Zou S. Methylthioadenosine phosphorylase deficiency in tumors: A compelling therapeutic target. Front Cell Dev Biol 2023; 11:1173356. [PMID: 37091983 PMCID: PMC10113547 DOI: 10.3389/fcell.2023.1173356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
The methionine salvage pathway is responsible for recycling sulfur-containing metabolites to methionine. This salvage pathway has been found to be implicated in cell apoptosis, proliferation, differentiation and inflammatory response. Methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5′-methylthioadenosine, a by-product produced from polyamine biosynthesis. The MTAP gene is located adjacent to the cyclin-dependent kinase inhibitor 2A gene and co-deletes with CDKN2A in nearly 15% of tumors. Moreover, MTAP-deleted tumor cells exhibit greater sensitivity to methionine depletion and to the inhibitors of purine synthesis. In this review, we first summarized the molecular structure and expression of MTAP in tumors. Furthermore, we discussed PRMT5 and MAT2A as a potential vulnerability for MTAP-deleted tumors. The complex and dynamic role of MTAP in diverse malignancies has also been discussed. Finally, we demonstrated the implications for the treatment of MTAP-deleted tumors.
Collapse
Affiliation(s)
- Na Fan
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suyun Zou
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Suyun Zou,
| |
Collapse
|
16
|
Patro CPK, Biswas N, Pingle SC, Lin F, Anekoji M, Jones LD, Kesari S, Wang F, Ashili S. MTAP loss: a possible therapeutic approach for glioblastoma. J Transl Med 2022; 20:620. [PMID: 36572880 PMCID: PMC9791736 DOI: 10.1186/s12967-022-03823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is the most lethal form of brain tumor with a recurrence rate of almost 90% and a survival time of only 15 months post-diagnosis. It is a highly heterogeneous, aggressive, and extensively studied tumor. Multiple studies have proposed therapeutic approaches to mitigate or improve the survival for patients with glioblastoma. In this article, we review the loss of the 5'-methylthioadenosine phosphorylase (MTAP) gene as a potential therapeutic approach for treating glioblastoma. MTAP encodes a metabolic enzyme required for the metabolism of polyamines and purines leading to DNA synthesis. Multiple studies have explored the loss of this gene and have shown its relevance as a therapeutic approach to glioblastoma tumor mitigation; however, other studies show that the loss of MTAP does not have a major impact on the course of the disease. This article reviews the contrasting findings of MTAP loss with regard to mitigating the effects of glioblastoma, and also focuses on multiple aspects of MTAP loss in glioblastoma by providing insights into the known findings and some of the unexplored areas of this field where new approaches can be imagined for novel glioblastoma therapeutics.
Collapse
Affiliation(s)
- C. Pawan K. Patro
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA ,grid.4280.e0000 0001 2180 6431Present Address: Cancer Science Institute, National University of Singapore, Singapore, 117599 Singapore
| | | | | | - Feng Lin
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA
| | - Misa Anekoji
- CureScience, 5820 Oberlin Dr, 202, San Diego, CA 92121 USA
| | | | - Santosh Kesari
- grid.416507.10000 0004 0450 0360Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John’s Cancer Institute at Providence Saint John’s Health Center, CA 90404 Santa Monica, USA
| | - Feng Wang
- grid.412901.f0000 0004 1770 1022Department of Medical Oncology, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | | |
Collapse
|
17
|
Low V, Li Z, Blenis J. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Sci Signal 2022; 15:eabj4220. [DOI: 10.1126/scisignal.abj4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of metabolites exchanged in the tumor microenvironment is largely thought of as fuels to drive the increased biosynthetic and bioenergetic demands of growing tumors. However, this view is shifting as metabolites are increasingly shown to function as signaling molecules that directly regulate oncogenic pathways. Combined with our growing understanding of the essential role of stromal cells, this shift has led to increased interest in how the collective and interconnected metabolome of the tumor microenvironment can drive malignant transformation, epithelial-to-mesenchymal transition, drug resistance, immune evasion, and metastasis. In this review, we discuss how metabolite exchange between tumors and various cell types in the tumor microenvironment—such as fibroblasts, adipocytes, and immune cells—can activate signaling pathways that drive cancer progression.
Collapse
Affiliation(s)
- Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zhongchi Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
18
|
Sowers ML, Sowers LC. Glioblastoma and Methionine Addiction. Int J Mol Sci 2022; 23:7156. [PMID: 35806160 PMCID: PMC9266821 DOI: 10.3390/ijms23137156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is a fatal brain tumor with a bleak prognosis. The use of chemotherapy, primarily the alkylating agent temozolomide, coupled with radiation and surgical resection, has provided some benefit. Despite this multipronged approach, average patient survival rarely extends beyond 18 months. Challenges to glioblastoma treatment include the identification of functional pharmacologic targets as well as identifying drugs that can cross the blood-brain barrier. To address these challenges, current research efforts are examining metabolic differences between normal and tumor cells that could be targeted. Among the metabolic differences examined to date, the apparent addiction to exogenous methionine by glioblastoma tumors is a critical factor that is not well understood and may serve as an effective therapeutic target. Others have proposed this property could be exploited by methionine dietary restriction or other approaches to reduce methionine availability. However, methionine links the tumor microenvironment with cell metabolism, epigenetic regulation, and even mitosis. Therefore methionine depletion could result in complex and potentially undesirable responses, such as aneuploidy and the aberrant expression of genes that drive tumor progression. If methionine manipulation is to be a therapeutic strategy for glioblastoma patients, it is essential that we enhance our understanding of the role of methionine in the tumor microenvironment.
Collapse
Affiliation(s)
- Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Spiliopoulou P, Yang SC, Bruce JP, Wang BX, Berman HK, Pugh TJ, Siu LL. All is not lost: learning from 9p21 loss in cancer. Trends Immunol 2022; 43:379-390. [DOI: 10.1016/j.it.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
|