1
|
Bakhet S, Mardosaitė R, Ahmed Baba M, Tamulevičienė A, Abakevičienė B, Klinavičius T, Dagilis K, Račkauskas S, Tamulevičius S, Lelešius R, Zienius D, Šalomskas A, Šmits K, Tamulevičius T. Virucidal Efficacy of Laser-Generated Copper Nanoparticle Coatings against Model Coronavirus and Herpesvirus. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26431-26444. [PMID: 40263124 PMCID: PMC12067380 DOI: 10.1021/acsami.5c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
High-efficiency antiviral surfaces can be an effective means of fighting viral diseases, such as the recent COVID-19 pandemic. Copper and copper oxides, their nanoparticles (NPs) (CuNPs), and coatings are among the effective antiviral materials having internal and external biocidal effects on viruses. In this work, CuNP colloids were produced via femtosecond laser ablation of the metal target in water, a photophysical, cost-effective green synthesis alternative utilizing sodium citrate surfactant stabilizing the NPs. Raman spectroscopy and X-ray diffraction studies confirmed that the 32 nm mean size CuNPs are mixtures of mainly metallic copper and copper(I) oxide. Polyvinyl butyral was utilized as the binding agent for the CuNPs deposited via high-throughput spray-coating technology. The virucidal efficacy of such coatings containing Cu content ranging from 2.9 to 11.2 atom % was confirmed against animal-origin coronavirus containing ribonucleic acid, the agent of avian infectious bronchitis (IBV), and herpesvirus containing DNA, the agent of bovine herpesvirus (BoHV-1) infection. It was demonstrated that after a short time of exposure, the Cu NP-based coatings do not have a toxic effect on the cell cultures while demonstrating a negative effect on the biological activity of both model viruses that was confirmed by quantification of the viruses via the determination of tissue culture infectious dose (TCID50) virus titer and their viral nucleic acids via determination of threshold cycle (Ct) employing real-time polymerase chain reaction analysis. The assays showed that the decrease in TCID50 virus titer and increase in Ct values correlated with Cu content in Cu NP-based coatings for both investigated viruses. Contact with coatings decreased IBV and BoHV-1 numbers from 99.42% to 100.00% and from 98.65% to 99.96%, respectively. These findings suggest that CuNPs show inhibitory effects leading to the inactivation of viruses and their nuclei regardless of the presence of a viral envelope.
Collapse
Affiliation(s)
- Shahd Bakhet
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Rasa Mardosaitė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Mohamed Ahmed Baba
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Asta Tamulevičienė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Brigita Abakevičienė
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Tomas Klinavičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Kristupas Dagilis
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Simas Račkauskas
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Sigitas Tamulevičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute
of Microbiology and Virology, Lithuanian
University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Dainius Zienius
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute
of Microbiology and Virology, Lithuanian
University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Algirdas Šalomskas
- Department
of Veterinary Pathobiology, Lithuanian University
of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Krišja̅nis Šmits
- Institute
of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Tomas Tamulevičius
- Institute
of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department
of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
2
|
Umezawa E, Fujino K, Yamanaka HI, Sekiguchi S, Motoshiromizu T, Ouchi MK, Murai S, Masuda T, Ito M, Nobumasa H, Taharaguchi S. Nonwoven fabric coated with cerium oxide nanoparticles for viral inactivation and transmission Inhibition. Sci Rep 2025; 15:10340. [PMID: 40133417 PMCID: PMC11937568 DOI: 10.1038/s41598-025-94199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Studies on virus inactivation by metal nanoparticles indicate that antiviral activity is influenced by the stabilizer on the particle surface. Additionally, cerium oxide nanoparticles stabilized with boric acid (BA-CeO2) exhibit potent antiviral activity. However, previous studies utilized BA-CeO2 dispersed in liquid form and did not fully account for the practical application of antiviral materials in real-world environments. We investigated the antiviral activity of nonwoven fabric coated with BA-CeO2 (NC-NWF). When a medium containing viruses was placed on NC-NWF, the titers of mouse hepatitis virus (MHV), influenza A virus, and feline calicivirus were reduced by > 99% within 2 h. Furthermore, the transmission of MHV was assessed in cages lined with NC-NWF. The cages were divided into two compartments using a mesh and NC-NWF, housing infected and uninfected mice on either side. The results indicated a significantly lower antibody titer against MHV in naïve mice with the NC-NWF partition than in the control partition. Additionally, placing infected mice in NC-NWF cages for 2 h, followed by naïve mice for 24 h, resulted in lower antibody titers against MHV than those in the control fabric. These findings suggest that NC-NWF exhibits antiviral activity and retains efficacy in living environments, such as rearing cages.
Collapse
Affiliation(s)
- Eisuke Umezawa
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kan Fujino
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Hiroko Ito Yamanaka
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Shota Sekiguchi
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Takahiro Motoshiromizu
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Miho Kawanishi Ouchi
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Shunsuke Murai
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Tomohide Masuda
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Masateru Ito
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Hitoshi Nobumasa
- New Frontiers Research Laboratories, Toray Industries, Inc, 6-10-1, Kamakura, 248-8555, Kanagawa, Japan
| | - Satoshi Taharaguchi
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
3
|
Gamonchuang J, Meeklinhom S, Muangnapoh T, Imhan C, Chantho V, Sillapaprayoon S, Pimtong W, Warin C, Isanapong J, Ratanatawanate C, Kumnorkaew P. Eco-Friendly and Low-Cost Synthesis of Transparent Antiviral- and Antibacterial-Coated Films Based on Cu 2O and MIL-53(Al). ACS APPLIED BIO MATERIALS 2024; 7:7280-7291. [PMID: 39450473 DOI: 10.1021/acsabm.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This research presents the development of an innovative antimicrobial coating consisting of cuprous oxide (Cu2O) integrated with the metal-organic framework MIL-53(Al) through an eco-friendly and low-cost synthesis method that employs glucose as a reducing agent under mild conditions. The microstructural properties of the composite materials were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The antibacterial efficacy of the Cu2O-MIL-53(Al) (CuM) composite was assessed against Escherichia coli and Staphylococcus aureus, achieving a reduction efficacy of 99.99% with 5% copper incorporated into the MIL-53(Al) framework within a contact time of 24 h. The incorporation of CuM into a macromolecular host matrix of polyurethane-carboxymethylcellulose (CuM/PUD-CMC), applied as a coating on a low-cost plastic film, produced a transparent film with 87.10% transparency. This coating demonstrated a 99.99% reduction in E. coli and S. aureus populations within a contact time of 24 h. The CuM/PUD-CMC coating demonstrated substantial antiviral efficacy, achieving inactivation rates of 99.35% for Human Coronavirus 229E, 99.40% for Influenza A virus, and 97.76% for Enterovirus 71 within a contact time of 5 min. The CuM nanoparticles exhibited low toxicity toward zebrafish while effectively eradicating bacteria and inactivating viruses. The proposed low-cost material and coating method demonstrate significant potential as a broad-spectrum antimicrobial and antiviral agent, highlighting its suitability for various applications in biomedical and healthcare formulations.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sorrawit Meeklinhom
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tanyakorn Muangnapoh
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalida Imhan
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jantiya Isanapong
- Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bang Sue, Bangkok 10800, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Jacinto GS, Dias LFG, Tsukamoto J, Lisboa-Filho PN, Souza MT, de Moraes AP, Arns CW. Insight into the role of copper-based materials against the coronaviruses MHV-3, a model for SARS-CoV-2, during the COVID-19 pandemic. Biometals 2024; 37:923-941. [PMID: 38502284 DOI: 10.1007/s10534-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.
Collapse
Affiliation(s)
- Gislaine S Jacinto
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil.
| | - Leonardo F G Dias
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), 75005, Paris, France
| | - Junko Tsukamoto
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Paulo N Lisboa-Filho
- Department of Physics and Meteorology, School of Sciences, UNESP - São Paulo State University, Bauru, São Paulo, 17033-360, Brazil
| | - Marina T Souza
- CeRTEV - Center for Research, Technology and Education in Vitreous Materials, Vitreous Materials Laboratory, Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Ana Paula de Moraes
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Clarice W Arns
- Laboratory of Virology and Applied Biotechnology, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
5
|
R. R, Kurup HP, Aparna A, Saritha A. Copper Nanostructures-Based Functional Materials as Antibacterial and Antiviral Agents. ACS SYMPOSIUM SERIES 2024:309-328. [DOI: 10.1021/bk-2024-1472.ch010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Rejithamol R.
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana, Kerala, India 690525
| | - Hridya P. Kurup
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana, Kerala, India 690525
| | - Asok Aparna
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana, Kerala, India 690525
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana, Kerala, India 690525
| |
Collapse
|
6
|
Hilton J, Nanao Y, Flokstra M, Askari M, Smith TK, Di Falco A, King PDC, Wahl P, Adamson CS. The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2. Appl Environ Microbiol 2024; 90:e0155323. [PMID: 38259079 PMCID: PMC10880620 DOI: 10.1128/aem.01553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.
Collapse
Affiliation(s)
- Jane Hilton
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Yoshiko Nanao
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Machiel Flokstra
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Meisam Askari
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrea Di Falco
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Phil D. C. King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Peter Wahl
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Catherine S. Adamson
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
7
|
Soni SK, Marya T, Sharma A, Thakur B, Soni R. A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants. Arch Microbiol 2024; 206:111. [PMID: 38372809 DOI: 10.1007/s00203-023-03818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic. Coronaviruses can mutate over time, potentially leading to the emergence of new variants. Some of these variants may have increased transmissibility or resistance to existing vaccines and treatments. The emergence of the COVID-19 pandemic in the recent past has sparked innovation in curbing virus spread, with sanitizers and disinfectants taking center stage. These essential tools hinder pathogen dissemination, especially for unvaccinated or rapidly mutating viruses. The World Health Organization supports the use of alcohol-based sanitizers and disinfectants globally against pandemics. However, there are ongoing concerns about their widespread usage and their potential impact on human health, animal well-being, and ecological equilibrium. In this ever-changing scenario, metal nanoparticles hold promise in combating a range of pathogens, including SARS-CoV-2, as well as other viruses such as norovirus, influenza, and HIV-1. This review explores their potential as non-alcoholic champions against SARS-CoV-2 and other pandemics of tomorrow. This extends beyond metal nanoparticles and advocates a balanced examination of pandemic control tools, exploring their strengths and weaknesses. The manuscript thus involves the evaluation of metal nanoparticle-based alternative approaches as hand sanitizers and disinfectants, providing a comprehensive perspective on this critical issue.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| | - Tripta Marya
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Apurav Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Bishakha Thakur
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Raman Soni
- Department of Biotechnology, DAV College, Chandigarh, 160011, India
| |
Collapse
|
8
|
Kumari P, Sainath K, Biswas S, Bellare J. Risk mitigation to healthcare workers against viral and bacterial bioaerosol load in laparoscopic surgical exhaust with a new flow mode in hollow fiber membranes-based filter. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132517. [PMID: 37757552 DOI: 10.1016/j.jhazmat.2023.132517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Laparoscopy of COVID-19-infected/suspected patients needs to be performed with the utmost care due to the chances of virus carryover through the pneumoperitoneum gas. In this study, polysulfone/polyvinyl-pyrrolidone hollow fiber membranes (HFMs) were fabricated by phase inversion process, and these HFMs were bundled into a module consisting of tortuous, circular-helical arrangement. Further, copper (Cu) and zinc (Zn) nanoparticles (NPs), known to have antimicrobial and antiviral properties, were flow-coated on the lumen side of the HFMs. To test functional efficiency, the modules were challenged with wet aerosol and bioaerosols. Wet aerosol removal efficiency was ∼98%. Bioaerosol-containing bacteria E. coli strain K-12, showed 2.6 log (∼99.8%), and 2.1 log (∼99.3%) removal efficiency for Cu NPs and Zn NPs coated HFMs modules, respectively, and 1.6 log (∼97%) removal for plain (uncoated) HFMs. Bioaerosols containing SARS-CoV-2 surrogate virus (MS2 bacteriophage) showed ∼5-7 log reduction of bacteriophage for plain HFMs, 3.9 log, and 2.3 log reduction for Cu and Zn coated HFMs, respectively. The flow of aerosols entirely through the HFM lumen helps in attaining a low ΔP of < 1 mm Hg, thus rendering its usefulness, particularly for exhausting pneumoperitoneum gases where high upstream pressures could lead to barotrauma. STATEMENT OF ENVIRONMENTAL IMPLICATION: Surgical smoke is generated during minimally invasive surgical (MIS) procedure such as laparoscopy when electrosurgical devices are used to cut any tissues. This smoke is a hazard as it contains toxic volatile compounds, mutagens, carcinogens, bacteria, and virus-laden aerosols. Infection to healthcare professionals through the bioaerosols containing smoke is well reported in literature. The limitation of using hypochlorite and pleated/HEPA filter, led us to design a low pressure drop bioaerosol filter, which can remove smoke, tissue fragments, and COVID-19 virus. It provides a much safer operation theatre environment during MIS procedures as well as in general for bioaerosol removal.
Collapse
Affiliation(s)
- Preety Kumari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Krishnamurthy Sainath
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Department of Chemical Engineering, B.M.S. College of Engineering, Bengaluru, Karnataka 560019, India
| | - Snehasis Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Izzi M, Oliver M, Mateos H, Palazzo G, Cioffi N, Miró M. Analytical probing of membranotropic effects of antimicrobial copper nanoparticles on lipid vesicles as membrane models. NANOSCALE ADVANCES 2023; 5:6533-6541. [PMID: 38024310 PMCID: PMC10662242 DOI: 10.1039/d3na00608e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Copper nanoparticles (CuNPs) are antimicrobial agents that are increasingly being used in several real-life goods. However, concerns are arising about their potential toxicity and thus, appropriate legislation is being issued in various countries. In vitro exploration of the permeability and the distribution of nanoparticles in cell membranes should be explored as the first step towards the investigation of the toxicity mechanisms of metal nanoantimicrobials. In this work, phosphatidylcholine-based large unilamellar vesicles have been explored as mimics of cellular membranes to investigate the effect of ultra-small CuNPs on the physicochemical features of phospholipid membranes. 4 nm-sized CuNPs were synthesized by a wet-chemical route that involves glutathione as a stabilizer, with further characterization by UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. Two fluorescent membrane probes bearing naphthalene moieties (laurdan and prodan) were used to monitor the bilayer structure and dynamics, as well as to demonstrate the strong membranotropic effects of CuNPs. The fluorescence spectroscopic studies were supported by dynamic light scattering (DLS) measurements and the calcein leakage assay. Additionally, the degree of perturbation of the phospholipid bilayer by CuNPs was compared against that of Cu2+ ions, the latter resulting in negligible effects. The findings suggested that CuNPs are able to damage the phospholipid membranes, leading to their agglomeration or disruption.
Collapse
Affiliation(s)
- Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 E-07122 Palma de Mallorca Spain
| | - Helena Mateos
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 E-07122 Palma de Mallorca Spain
| |
Collapse
|
10
|
Woźniak-Budych MJ, Staszak K, Staszak M. Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. Molecules 2023; 28:6687. [PMID: 37764463 PMCID: PMC10536384 DOI: 10.3390/molecules28186687] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has ushered in a new era of medical innovation, offering unique solutions to longstanding healthcare challenges. Among nanomaterials, copper and copper oxide nanoparticles stand out as promising candidates for a multitude of medical applications. This article aims to provide contemporary insights into the perspectives and challenges regarding the use of copper and copper oxide nanoparticles in medicine. It summarises the biomedical potential of copper-based nanoformulations, including the progress of early-stage research, to evaluate and mitigate the potential toxicity of copper nanomaterials. The discussion covers the challenges and prospects of copper-based nanomaterials in the context of their successful clinical translation. The article also addresses safety concerns, emphasizing the need for toxicity assessments of nanomedicines. However, attention is needed to solve the current challenges such as biocompatibility and controlled release. Ongoing research and collaborative efforts to overcome these obstacles are discussed. This analysis aims to provide guidance for the safe and effective integration of copper nanoparticles into clinical practice, thereby advancing their medical applications. This analysis of recent literature has highlighted the multifaceted challenges and prospects associated with copper-based nanomaterials in the context of their translation from the laboratory to the clinic. In particular, biocompatibility remains a formidable hurdle, requiring innovative solutions to ensure the seamless integration into the human body. Additionally, achieving the controlled release of therapeutic agents from copper nanoparticles poses a complex challenge that requires meticulous engineering and precise design.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.S.); (M.S.)
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.S.); (M.S.)
| |
Collapse
|
11
|
da Silva DJ, Duran A, Fonseca FLA, Parra DF, Bueno RF, Rosa DS. Omicron SARS-CoV-2 antiviral on poly(lactic acid) with nanostructured copper coating: Wear effects. APPLIED SURFACE SCIENCE 2023; 623:157015. [PMID: 36942083 PMCID: PMC10015093 DOI: 10.1016/j.apsusc.2023.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Surface modification corresponds to a set of viable technological approaches to introduce antimicrobial properties in materials that do not have such characteristics. Antimicrobial materials are important to prevent the proliferation of microorganisms and minimize the transmission of diseases caused by pathogens. Herein, poly(lactic acid) (PLA) was decorated with nanocones through copper sputtering followed by a plasma etching. Antiviral assays by Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) show that nanostructured Cu-coated PLA has high antiviral activity against Omicron SARS-CoV-2, showing a relative reduction in the amplified RNA (78.8 ± 3.9 %). Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), and wear-resistance tests show that 20 wear cycles disrupt the surface nanocone patterns and significantly reduce the Cu content at the surface of the nanostructured Cu-coated PLA, leading to total loss of the antiviral properties of nanostructured PLA against Omicron SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, Bangú, Santo André, SP, Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, Bangú, Santo André, SP, Brazil
| | - Fernando L A Fonseca
- Faculty of Medicine of ABC (FMABC), Department of Clinical Analysis, Av. Lauro Gomes, 2000, Santo André, SP, Brazil
| | - Duclerc F Parra
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, Brazil
| | - Rodrigo F Bueno
- Coordinator of the COVID-19 Monitoring Network in Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and Innovation and Ministry of Health, Brazil. Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, Bangú, Santo André, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, Bangú, Santo André, SP, Brazil
| |
Collapse
|
12
|
Alshammari SO, Mahmoud SY, Farrag ES. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules 2023; 28:4629. [PMID: 37375184 DOI: 10.3390/molecules28124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is one of the most dynamic research areas and the fastest-growing market. Developing eco-friendly products using available resources to acquire maximum production, better yield, and stability is a great challenge for nanotechnology. In this study, copper nanoparticles (CuNP) were synthesized via the green method using root extract of the medical plant Rhatany (Krameria sp.) as a reducing and capping agent and used to investigate the influence of microorganisms. The maximum production of CuNP was noted at 70 °C after 3 h of reaction time. The formation of nanoparticles was confirmed through UV-spectrophotometer, and the product showed an absorbance peak in the 422-430 nm range. The functional groups were observed using the FTIR technique, such as isocyanic acid attached to stabilize the nanoparticles. The spherical nature and average crystal sizes of the particle (6.16 nm) were determined using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-ray diffractometer (XRD) analysis. In tests with a few drug-resistant pathogenic bacteria and fungus species, CuNP showed encouraging antimicrobial efficacy. CuNP had a significant antioxidant capacity of 83.81% at 200 g/m-1. Green synthesized CuNP are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Shifaa O Alshammari
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Sabry Younis Mahmoud
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Eman Saleh Farrag
- Clinical Laboratory Sciences Department, College of Applied Medical Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
- Microbiology Department, South Valley University, Qena 83523, Egypt
| |
Collapse
|
13
|
Wolfgruber S, Rieger J, Cardozo O, Punz B, Himly M, Stingl A, Farias PMA, Abuja PM, Zatloukal K. Antiviral Activity of Zinc Oxide Nanoparticles against SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24098425. [PMID: 37176131 PMCID: PMC10179150 DOI: 10.3390/ijms24098425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The highly contagious SARS-CoV-2 virus is primarily transmitted through respiratory droplets, aerosols, and contaminated surfaces. In addition to antiviral drugs, the decontamination of surfaces and personal protective equipment (PPE) is crucial to mitigate the spread of infection. Conventional approaches, including ultraviolet radiation, vaporized hydrogen peroxide, heat and liquid chemicals, can damage materials or lack comprehensive, effective disinfection. Consequently, alternative material-compatible and sustainable methods, such as nanomaterial coatings, are needed. Therefore, the antiviral activity of two novel zinc-oxide nanoparticles (ZnO-NP) against SARS-CoV-2 was investigated in vitro. Each nanoparticle was produced by applying highly efficient "green" synthesis techniques, which are free of fossil derivatives and use nitrate, chlorate and sulfonate salts as starting materials and whey as chelating agents. The two "green" nanomaterials differ in size distribution, with ZnO-NP-45 consisting of particles ranging from 30 nm to 60 nm and ZnO-NP-76 from 60 nm to 92 nm. Human lung epithelial cells (Calu-3) were infected with SARS-CoV-2, pre-treated in suspensions with increasing ZnO-NP concentrations up to 20 mg/mL. Both "green" materials were compared to commercially available ZnO-NP as a reference. While all three materials were active against both virus variants at concentrations of 10-20 mg/mL, ZnO-NP-45 was found to be more active than ZnO-NP-76 and the reference material, resulting in the inactivation of the Delta and Omicron SARS-CoV-2 variants by a factor of more than 106. This effect could be due to its greater total reactive surface, as evidenced by transmission electron microscopy and dynamic light scattering. Higher variations in virus inactivation were found for the latter two nanomaterials, ZnO-NP-76 and ZnO-NP-ref, which putatively may be due to secondary infections upon incomplete inactivation inside infected cells caused by insufficient NP loading of the virions. Taken together, inactivation with 20 mg/mL ZnO-NP-45 seems to have the greatest effect on both SARS-CoV-2 variants tested. Prospective ZnO-NP applications include an antiviral coating of filters or PPE to enhance user protection.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Julia Rieger
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Olavo Cardozo
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
- Post-Graduate Program on Electrical Engineering, Federal University of Pernambuco, Cidade Universitaria, Recife 50670-901, Brazil
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Andreas Stingl
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
| | - Patricia M A Farias
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
- Department of Biophysics and Radiobiology, Post-Graduate Program on Material Sciences, Federal University of Pernambuco, Cidade Universitaria, Recife 50670-901, Brazil
| | - Peter M Abuja
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
14
|
Karrer LG, Mathew EN, Nava-Chavez J, Bhatti A, Delong RK. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering (Basel) 2023; 10:bioengineering10050512. [PMID: 37237582 DOI: 10.3390/bioengineering10050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Conserved omicron RNA (COR) is a 40 base long 99.9% conserved sequence in SARS-CoV-2 Omicron variant, predicted to form a stable stem loop, the targeted cleavage of which can be an ideal next step in controlling the spread of variants. The Cas9 enzyme has been traditionally utilized for gene editing and DNA cleavage. Previously Cas9 has been shown to be capable of RNA editing under certain conditions. Here we investigated the ability of Cas9 to bind to single-stranded conserved omicron RNA (COR) and examined the effect of copper nanoparticles (Cu NPs) and/or polyinosinic-polycytidilic acid (poly I:C) on the RNA cleavage ability of Cas9. The interaction of the Cas9 enzyme and COR with Cu NPs was shown by dynamic light scattering (DLS) and zeta potential measurements and was confirmed by two-dimensional fluorescence difference spectroscopy (2-D FDS). The interaction with and enhanced cleavage of COR by Cas9 in the presence of Cu NPs and poly I:C was shown by agarose gel electrophoresis. These data suggest that Cas9-mediated RNA cleavage may be potentiated at the nanoscale level in the presence of nanoparticles and a secondary RNA component. Further explorations in vitro and in vivo may contribute to the development of a better cellular delivery platform for Cas9.
Collapse
Affiliation(s)
- Lindy G Karrer
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Juliet Nava-Chavez
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abeera Bhatti
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Robert K Delong
- Landmark Bio, Innovation Development Laboratory, Watertown, MA 02472, USA
| |
Collapse
|
15
|
Usseglio N, Onnainty R, Konigheim B, Aguilar J, Petiti JP, Lingua G, Leimgruber C, Bonafé Allende JC, Torres A, Granero G. Cuprous oxide nanoparticles incorporated into a polymeric matrix embedded in fabrics to prevent spread of SARS-CoV-2. Int J Pharm 2023; 636:122790. [PMID: 36863542 PMCID: PMC9974211 DOI: 10.1016/j.ijpharm.2023.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
This paper describes the development of a coating for cotton and polypropylene (PP) fabrics based on a polymeric matrix embedded with cuprous oxide nanoparticles (Cu2O@SDS NPs) in order to inactivate SARS-CoV-2 and manufactured by a simple process using a dip-assisted layer-by-layer technology, at low curing temperature and without the need for expensive equipment, capable of achieving disinfection rates of up to 99%. The polymeric bilayer coating makes the surface of the fabrics hydrophilic, enabling the transportation of the virus-infected droplets to achieve the rapid inactivation of SARS-CoV-2 by contact with the Cu2O@SDS NPs incorporated in the coated fabrics.
Collapse
Affiliation(s)
- Nadina Usseglio
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA) -CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Renée Onnainty
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA) -CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Brenda Konigheim
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella"- Argentina, Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Javier Aguilar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella"- Argentina, Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Juan Pablo Petiti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA)-CONICET, Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Giuliana Lingua
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella"- Argentina, Enfermera Gordillo S/N, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina Leimgruber
- Instituto de Investigaciones en Ciencias de la Salud (INICSA)-CONICET, Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Juan Cruz Bonafé Allende
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, IPQA-CONICET, Universidad Nacional de Córdoba, Argentina
| | - Alicia Torres
- Instituto de Investigaciones en Ciencias de la Salud (INICSA)-CONICET, Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Gladys Granero
- Unidad de Investigaciones y Desarrollo en Tecnología Farmacéutica (UNITEFA) -CONICET, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
16
|
Antifungal activity against plant pathogens of purely microwave-assisted copper nanoparticles using Citrus grandis peel. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Ghosal K. Tackling COVID-19 Using Antiviral Nanocoating's-Recent Progress and Future Challenges. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2023; 40:2200154. [PMID: 36711425 PMCID: PMC9874835 DOI: 10.1002/ppsc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Indexed: 05/05/2023]
Abstract
In the current situation of the global coronavirus disease 2019 (COVID-19) pandemic, there is a worldwide demand for the protection of regular handling surfaces from viral transmission to restrict the spread of COVID-19 infection. To tackle this challenge, researchers and scientists are continuously working on novel antiviral nanocoatings to make various substrates capable of arresting the spread of such pathogens. These nanocoatings systems include metal/metal oxide nanoparticles, electrospun antiviral polymer nanofibers, antiviral polymer nanoparticles, graphene family nanomaterials, and etched nanostructures. The antiviral mechanism of these systems involves depletion of the spike glycoprotein that anchors to surfaces by the nanocoating and makes the spike glycoprotein and viral nucleotides inactive; however, the nature of the interaction between the spike proteins and virus depends on the type of nanostructure and a surface charge over the coating surface. In this article, the current scenario of COVID-19 and how it can be tackled using antiviral nanocoatings from the further transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with their different mode of action, are discussed. Additionally, it is also highlighted different types of nanocoatings developed for various substrates to encounter transmission of SARS-CoV-2, future research areas along with the current challenges related to it, and how these challenges can be resolved.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research & Development LaboratoryShalimar Paints LimitedNashikMaharashtra422403India
- The Wolfson Faculty of Chemical EngineeringTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
18
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
19
|
Cirri D, Chiaverini L, Pratesi A, Marzo T. Is the Next Cisplatin Already in Our Laboratory? COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
20
|
Jampa S, Ratanatawanate C, Pimtong W, Aueviriyavit S, Chantho V, Sillapaprayoon S, Kunyanee C, Warin C, Gamonchuang J, Kumnorkaew P. Transparent Anti-SARS COV-2 Film from Copper(I) Oxide Incorporated in Zeolite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52334-52346. [PMID: 36352778 DOI: 10.1021/acsami.2c12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.
Collapse
Affiliation(s)
- Sureerat Jampa
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chanikarn Kunyanee
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
21
|
Ivanauskas R, Ancutienė I, Milašienė D, Ivanauskas A, Bronušienė A. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7623. [PMID: 36363214 PMCID: PMC9657411 DOI: 10.3390/ma15217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Textile materials modified with copper-containing particles have antibacterial and antiviral properties that have prospects for use in healthcare. In the study, textile materials were saturated with copper-containing particles in their entire material volume by the absorption/diffusion method. The antibacterial properties of modified textile materials were confirmed by their inhibitory effect on Staphylococcus aureus, a Gram-positive bacterium that spreads predominantly through the respiratory tract. For the modification, ordinary textile materials of various origins and fiber structures were used. Technological conditions and compositions of modifying solutions were established, as well as the most suitable textile materials for modification. To assess the morphological and physical characteristics of copper-containing particles and the textile materials themselves, X-ray diffraction, a scanning electron microscope, and an energy-dispersive X-ray spectrum were used. In modified textile samples, XRD data showed the presence of crystalline phases of copper (Cu) and copper (I) oxide (Cu2O). On the grounds of the SEM/EDS analysis, the saturation of textile materials with copper-containing particles depends on the structure of the textile materials and the origins of the fibers included in their composition, as well as the modification conditions and the copper precursor.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Ingrida Ancutienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Daiva Milašienė
- Faculty of Mechanical Engineering and Design, Department of Production Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Asta Bronušienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| |
Collapse
|
22
|
Cimolai N. Disinfection and decontamination in the context of SARS-CoV-2-specific data. J Med Virol 2022; 94:4654-4668. [PMID: 35758523 PMCID: PMC9350315 DOI: 10.1002/jmv.27959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineChildren's and Women's Health Centre of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
23
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
24
|
Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci 2022; 306:102726. [PMID: 35785596 DOI: 10.1016/j.cis.2022.102726] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pragathi Kamarasu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|