1
|
Bai C, Zhang T, Wu T, Wang Y, Yao S, Wang C, Tan J, Huang R, Zhou P. Aptamer selection of radiation-sensitive protein p21 and electrical impedance detection-based applications in radiation dose assessment. Biosens Bioelectron 2025; 282:117447. [PMID: 40253803 DOI: 10.1016/j.bios.2025.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Radiation dose assessment is the main basis for the diagnosis of acute radiation sickness. At present, there is a lack of rapid and portable dose assessment methods, which has an important impact on the rapid diagnosis and precise treatment of radiation accident patients and nuclear practitioners. We selected and obtained specific aptamers for radiation-sensitive protein p21 protein by the magnetic cross-linking precipitation (MCP)-SELEX procedure. The aptamer has a high affinity for binding to the p21 protein and its Kd value is 2.21 × 10-7 mol/L. We subsequently established a new method for radiation dose assessment of an electrochemical impedance (EIS) aptasensor with screen-printed electrode chips. There was a good dose-effect relationship between the p21 protein expression level in PBMCs in human peripheral blood detected by this method within the dose range of 0-10 Gy, and detection limit of radiation dose is 0.38 Gy (LOD, S/N = 3). This dose range covers the diagnostic range of acute radiation sickness in the bone marrow. This method is not only portable but also fast, saving hours to days compared with the previous dose assessment method based on radiation sensitive protein. It can be applied to the rapid and portable diagnosis of acute radiation sickness.
Collapse
Affiliation(s)
- Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Tinghui Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Tao Wu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yuting Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Cui Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jinpeng Tan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, PR China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
2
|
Emmons N, Gibson JM, McDonough MH, Gerson J, Erdal MK, Leung K, Fetter LC, Plaxco KW, Kippin TE. Simultaneous, Seconds-Resolved Doxorubicin Measurements in the Blood and Subcutaneous Interstitial Fluid Identify Quantitative Pharmacokinetic Relationships between the Two. ACS Pharmacol Transl Sci 2025; 8:1347-1358. [PMID: 40370992 PMCID: PMC12070229 DOI: 10.1021/acsptsci.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
The kinetics with which chemotherapeutics distribute into solid tissues, including their sites of both action and toxicity, remains poorly characterized. This is due to the limited temporal resolution of traditional methods of measuring drug concentrations in the body, all of which employ sample collection (e.g., via a blood draw or microdialysis) followed by benchtop analysis. Here, we have used electrochemical aptamer-based (EAB) sensors to perform simultaneous, 12 s resolution, nanomolar-precision measurements of the chemotherapeutic doxorubicin in the jugular vein (plasma) and subcutaneous space (interstitial fluid) of live rats. The resulting data sets identify predictively strong correlations between its plasma and solid-tissue pharmacokinetics in terms of both cumulative (area under the curve) and maximum exposure. In contrast, the correlations between delivered body-mass-adjusted and body-surface-area-adjusted doses and drug exposure in both the plasma and solid tissue are relatively poor. The latter observation highlights the need for therapeutic drug monitoring, and the former observation shows the potential value of employing subcutaneous EAB sensors as a convenient, minimally invasive, high-precision means of performing such monitoring. The high time density of our two-compartment data sets also provides unprecedented opportunities to model the distribution of a drug from the central compartment to a distal physiological compartment. We find that the preferred description of doxorubicin transport into the solid tissues for five of our six data sets is a three-compartment model composed of the vein (plasma), the interstitial fluid, and an unobserved third compartment distal to the interstitial fluid, with this additional compartment presumably representing intracellular fluid.
Collapse
Affiliation(s)
- Nicole
A. Emmons
- University of
California, Santa
Barbara, California 93106, United States
| | - Jennifer M. Gibson
- University of
California, Santa
Barbara, California 93106, United States
| | | | - Julian Gerson
- University of
California, Santa
Barbara, California 93106, United States
| | - Murat Kaan Erdal
- University of
California, Santa
Barbara, California 93106, United States
| | - Kaylyn Leung
- University of
California, Santa
Barbara, California 93106, United States
| | - Lisa C. Fetter
- University of
California, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- University of
California, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- University of
California, Santa
Barbara, California 93106, United States
| |
Collapse
|
3
|
Emmons N, Duman Z, Erdal MK, Hespanha J, Kippin TE, Plaxco KW. Feedback Control over Plasma Drug Concentrations Achieves Rapid and Accurate Control over Solid-Tissue Drug Concentrations. ACS Pharmacol Transl Sci 2025; 8:1416-1423. [PMID: 40370982 PMCID: PMC12070313 DOI: 10.1021/acsptsci.5c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors enable the continuous, real-time monitoring of drugs and biomarkers in situ in the blood, brain, and peripheral tissues of live subjects. The real-time concentration information produced by these sensors provides unique opportunities to perform closed-loop, feedback-controlled drug delivery, by which the plasma concentration of a drug can be held constant or made to follow a specific, time-varying profile. Motivated by the observation that the site of action of many drugs is the solid tissues and not the blood, here we experimentally confirm that maintaining constant plasma drug concentrations also produces constant concentrations in the interstitial fluid (ISF). Using an intravenous EAB sensor we performed feedback control over the concentration of doxorubicin, an anthracycline chemotherapeutic, in the plasma of live rats. Using a second sensor placed in the subcutaneous space, we find drug concentrations in the ISF rapidly (30-60 min) match and then accurately (RMS deviation of 8 to 21%) remain at the feedback-controlled plasma concentration, validating the use of feedback-controlled plasma drug concentrations to control drug concentrations in the solid tissues that are the site of drug action. We expanded to pairs of sensors in the ISF, the outputs of the individual sensors track one another with good precision (R 2 = 0.95-0.99), confirming that the performance of in vivo EAB sensors matches that of prior, in vitro validation studies. These observations suggest EAB sensors could prove a powerful new approach to the high-precision personalization of drug dosing.
Collapse
Affiliation(s)
- Nicole
A. Emmons
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara 93106, United States
- Neuroscience
Research Institute, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| | - Zeki Duman
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - Murat Kaan Erdal
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - João Hespanha
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara 93106, United States
- Neuroscience
Research Institute, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| |
Collapse
|
4
|
Park TI, Yang AH, Kanth BK, Pack SP. Aptamers as Diagnostic and Therapeutic Agents for Aging and Age-Related Diseases. BIOSENSORS 2025; 15:232. [PMID: 40277546 PMCID: PMC12024714 DOI: 10.3390/bios15040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
In the 21st century, the demographic shift toward an aging population has posed a significant challenge, particularly with respect to age-related diseases, which constitute a major threat to human health. Accordingly, the detection, prevention, and treatment of aging and age-related diseases have become critical issues, and the introduction of novel molecular recognition elements, called aptamers, has been considered. Aptamers, a class of oligonucleotides, can bind to target molecules with high specificity. In addition, aptamers exhibit superior stability, biocompatibility, and applicability, rendering them promising tools for the diagnosis and treatment of human diseases. In this paper, we present a comprehensive overview of aptamers, systematic evolution of ligands by exponential enrichment (SELEX), biomarkers associated with aging, as well as aptamer-based diagnostic and therapeutic platforms. Finally, the limitations associated with predicting and preventing age-related conditions are discussed, along with potential solutions based on advanced technologies and theoretical approaches.
Collapse
Affiliation(s)
- Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Ah Hyun Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Bashistha Kumar Kanth
- Department of Food Science and Nutrition, Dong-A University, Pusan 602760, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| |
Collapse
|
5
|
Luo S, Wu Q, Wang L, Qu H, Zheng L. Direct detection of doxorubicin in whole blood using a hydrogel-protected electrochemical aptamer-based biosensor. Talanta 2025; 285:127289. [PMID: 39613489 DOI: 10.1016/j.talanta.2024.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Electrochemical aptamer-based biosensors (EABs) have been developed for multiple important biomarkers for their convenient and real-time features. However, the application of EABs in complex biological fluids has been limited by the rapid loss of sensitivity and selectivity due to inactivation and biofouling of aptamer probes and electrodes. To address this issue, we report the preparation of a simple hydrogel-protected aptamer-based biosensor (HP-EAB) for direct detection of Doxorubicin (DOX) in whole blood. The aptamer provides excellent selectivity for the electrochemical sensor, allowing the prepared sensor to accurately detect DOX in a 50-fold diluted whole blood sample. The agarose hydrogel coating on the electrode surface allows the passage of small molecules while hindering the adsorption of biomolecules from the whole blood matrix to the electrode surface. The experimental results show that the prepared HP-EAB has high stability compared with the unprotected EAB, and the HP-EAB maintains excellent detection performance after 7 days of storage. The hydrogel coating can effectively reduce the non-specific response to the whole blood matrix and prolong the life-time of the sensor. When used to detect DOX in rabbit whole blood, the HP-EAB exhibited excellent detection performance with a detection limit of 25.9 nM (S/N = 3) and a detection range of 0.1 μM-50 μM. The developed HP-EAB provides an excellent platform for the rapid and accurate determination of important analytes in complex biological fluids.
Collapse
Affiliation(s)
- Songjia Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
6
|
Liu Y, Pandey R, McCarthy MJ, Raymond O. Single-Use Electrochemical Aptamer-Based Sensors for Calibration-Free Measurements in Human Saliva via Dual-Frequency Approaches: Prospects and Challenges. Anal Chem 2025; 97:5234-5243. [PMID: 40009034 DOI: 10.1021/acs.analchem.4c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Despite the rapid growth in aptamer-based biosensor research, there remains a significant demand for aptasensors that operate without the need for sample preparation and calibration, to better facilitate real-world applications. Electrochemical aptamer-based (EAB) sensors, particularly those utilizing a dual-frequency, calibration-free approach, have shown promising advances toward commercialization. Single-use, disposable sensors represent a cost-effective solution for at-home and on-site point-of-care (POC) diagnostics. However, the development of these sensors presents unique challenges compared to in vivo monitoring and reusable platforms, with pronounced variations across sensors and batches. Motivated by these challenges, we have comprehensively investigated the dual-frequency, calibration-free approach, focusing on sensor-to-sensor and batch-to-batch variations. Our research explored the use of a nonresponsive frequency-based ratiometric method for detecting cocaine with laser-ablated, disposable EAB sensors. Additionally, to overcome the absence of nonresponsive frequencies in some aptasensors, we developed strategies to modify the aptamer structure and optimize operational conditions, effectively tailoring nonresponsive frequencies to allow for rapid result turnover. Moreover, we assessed the effects of various filter types on saliva pretreatment using liquid chromatography with tandem mass spectrometry (LCMS/MS) and developed a saliva collection workflow using an oral swab. This workflow and the disposable aptasensors developed herein achieved low μM sensitivity in saliva, with results obtainable in under 5 min, including saliva collection and processing. Furthermore, our findings indicate that certain food and drink residues in saliva can compromise sensor accuracy, highlighting an area for future refinement.
Collapse
Affiliation(s)
- Yasmin Liu
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Rishi Pandey
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Mary Jane McCarthy
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Onyekachi Raymond
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
7
|
Bakestani RM, Wu Y, Glahn-Martínez B, Kippin TE, Plaxco KW, Kolkman RW. Carboxylate-Terminated Electrode Surfaces Improve the Performance of Electrochemical Aptamer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8706-8714. [PMID: 39841926 PMCID: PMC11803614 DOI: 10.1021/acsami.4c21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance. Here, using 4 different EAB sensors, we show that the mixed monolayers composed of mixtures of 6-carbon hydroxyl-terminated thiols and varying amounts of either 6- or 8-carbon, carboxylate-terminated thiols lead to improved EAB sensor performance. Specifically, the use of such mixed monolayers enhances the signal gain (the relative change in the signal seen upon target addition) for all tested sensors, often by several fold, both in buffer and whole blood at room temperature or physiological temperatures. Moreover, these improvements in gain are achieved without significant changes in the aptamer affinity or the stability of the resulting sensors. In addition to proving a ready means of improving EAB sensor performance, these results suggest that exploration of the chemistry of the electrode surface employed in such sensors could prove to be a fruitful means of advancing this unique in vivo sensing technology.
Collapse
Affiliation(s)
- Rose Mery Bakestani
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yuyang Wu
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Bettina Glahn-Martínez
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological
Engineering Graduate Program, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Ruben W. Kolkman
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Liu ZJ, Liang YQ, Li JY, Wu B, Huang C, Liu YW, Zhang CZ, Yang Y, Cai NQ, Chen JY, Lin XH. Engineered Aptamer-Derived Fluorescent Aptasensor: the Label-Free, Single-Step, Rapid Detection of Vancomycin in Clinical Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407799. [PMID: 39676392 DOI: 10.1002/smll.202407799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Currently, the reported vancomycin (VCM) aptamers, including the 3- (Kd = 9.13 × 10-6 m) and 4-truncated variants (Kd = 45.5 × 10-6 m), are engineered via stem truncation of the VCM parent aptamer, which inevitably compromises their affinities, thus affecting their clinical application within the VCM therapeutic window of 6.9-13.8 × 10-6 m. Herein, the binding pocket of the VCM parent aptamer is elucidated for the first time and we implemented the Post-SELEX modification strategy involving truncation and mutagenesis to refined the VCM parent aptamer. This yielded a VCM aptamer (ABC20-11) with an intramolecular G-triplex, an enhanced thioflavin T (ThT) fluorescence intensity, and an improved affinity (Kd = 0.591 × 10-6 m) and specificity (one-methyl level) for VCM. Utilizing a portable fluorescence detector specifically designed for rapidly detecting VCM concentration and leveraging the competitive binding between VCM and ThT to ABC20-11, a label-free fluorescent aptasensor is developed. This aptasensor exhibits exceptional analytical performances across various clinical samples (serum, cerebrospinal fluid, and joint fluid), with corresponding linear ranges of 0.5-50, 0.5-40, and 0.5-50 × 10-6 m and detection limits at 0.11, 0.12, and 0.16 × 10-6 m, respectively. Consequently, the proposed VCM aptasensor displays considerable clinical value and potential for use in rapid VCM detection.
Collapse
Affiliation(s)
- Zhou-Jie Liu
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Qi Liang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Yi Li
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Bing Wu
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chen Huang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Wei Liu
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chen-Zhi Zhang
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ye Yang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Nai-Qing Cai
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Yuan Chen
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
9
|
Emmons N, Duman Z, Erdal M, Kippin T, Hespanha J, Plaxco K. Feedback control over plasma drug concentrations achieves rapid and accurate control over solid-tissue drug concentrations. RESEARCH SQUARE 2025:rs.3.rs-5868915. [PMID: 39975897 PMCID: PMC11838736 DOI: 10.21203/rs.3.rs-5868915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors enable the continuous, real-time monitoring of drugs and biomarkers in situ in the blood, brain, and peripheral tissues of live subjects. The real-time concentration information produced by these sensors provides unique opportunities to perform closed-loop, feedback-controlled drug delivery, by which the plasma concentration of a drug can be held constant or made to follow a specific, time-varying profile. Motivated by the observation that the site of action of many drugs is the solid tissues and not the blood, here we experimentally confirm that maintaining constant plasma drug concentrations also produces constant concentrations in the interstitial fluid (ISF). Using an intravenous EAB sensor we performed feedback control over the concentration of doxorubicin, an anthracycline chemotherapeutic, in the plasma of live rats. Using a second sensor placed in the subcutaneous space, we find drug concentrations in the ISF rapidly (30-60 min) match and then accurately (RMS deviation of 8-21%) remain at the feedback-controlled plasma concentration, validating the use of feedback-controlled plasma drug concentrations to control drug concentrations in the solid tissues that are the site of drug action. We expanded to pairs of sensors in the ISF, the outputs of the individual sensors track one another with good precision (R 2 = 0.95-0.99), confirming that the performance of in vivo EAB sensors matches that of prior, in vitro validation studies. These observations suggest EAB sensors could prove a powerful new approach to the high-precision personalization of drug dosing.
Collapse
|
10
|
Fetter LC, McDonough MH, Kippin TE, Plaxco KW. Effects of Physiological-Scale Variation in Cations, pH, and Temperature on the Calibration of Electrochemical Aptamer-Based Sensors. ACS Sens 2024; 9:6675-6684. [PMID: 39570094 PMCID: PMC11855119 DOI: 10.1021/acssensors.4c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors are the first technology supporting high-frequency, real-time, in vivo molecular measurements that is independent of the chemical reactivity of its targets, rendering it easily generalizable. As is true for all biosensors, however, EAB sensor performance is affected by the measurement environment, potentially reducing accuracy when this environment deviates from the conditions under which the sensor was calibrated. Here, we address this question by measuring the extent to which physiological-scale environmental fluctuations reduce the accuracy of a representative set of EAB sensors and explore the means of correcting these effects. To do so, we first calibrated sensors against vancomycin, phenylalanine, and tryptophan under conditions that match the average ionic strength, cation composition, pH, and temperature of healthy human plasma. We then assessed their accuracy in samples for which the ionic composition, pH, and temperature were at the lower and upper ends of their physiological ranges. Doing so, we find that physiologically relevant fluctuations in ionic strength, cation composition, and pH do not significantly harm EAB sensor accuracy. Specifically, all 3 of our test-bed sensors achieve clinically significant mean relative accuracy (i.e., better than 20%) over the clinically or physiologically relevant concentration ranges of their target molecules. In contrast, physiologically plausible variations away from the temperature used for calibration induce more substantial errors. With knowledge of the temperature in hand, however, these errors are easily ameliorated. It thus appears that physiologically induced changes in the sensing environment are likely not a major impediment to clinical application of this in vivo molecular monitoring technology.
Collapse
Affiliation(s)
- Lisa C Fetter
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew H McDonough
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Keyvani F, GhavamiNejad P, Saleh MA, Soltani M, Zhao Y, Sadeghzadeh S, Shakeri A, Chelle P, Zheng H, Rahman FA, Mahshid S, Quadrilatero J, Rao PPN, Edginton A, Poudineh M. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309027. [PMID: 39250329 PMCID: PMC11538706 DOI: 10.1002/advs.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex. The HMN extracts dermal interstitial fluid (ISF) and transfers it to the Flex electrode where sensing of the target antibiotics happens. The HMN-Flex performance is validated ex vivo using skin models as well as in vivo in live rat animal models. Data is leveraged from the HMN-Flex system to construct pharmacokinetic profiles for VAN and GEN and compare these profiles with conventional blood-based measurements. Additionally, to track pH and monitor patient's response during antibiotic treatment, an HMN is developed that employs a colorimetric method to detect changes in the pH, named HMN-pH assay, whose performance has been validated both in vitro and in vivo. Further, multiplexed antibiotic and pH detection is achieved by simultaneously employing the HMN-pH and HMN-Flex on live animals.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahmoud Ayman Saleh
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Mohammad Soltani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Yusheng Zhao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Arash Shakeri
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Pierre Chelle
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Hanjia Zheng
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Fasih A. Rahman
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sarah Mahshid
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Praveen P. N. Rao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
12
|
Gerson J, Erdal MK, Dauphin-Ducharme P, Idili A, Hespanha JP, Plaxco KW, Kippin TE. A high-precision view of intercompartmental drug transport via simultaneous, seconds-resolved, in situ measurements in the vein and brain. Br J Pharmacol 2024; 181:3869-3885. [PMID: 38877797 PMCID: PMC11890181 DOI: 10.1111/bph.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The ability to measure specific molecules at multiple sites within the body simultaneously, and with a time resolution of seconds, could greatly advance our understanding of drug transport and elimination. EXPERIMENTAL APPROACH As a proof-of-principle demonstration, here we describe the use of electrochemical aptamer-based (EAB) sensors to measure transport of the antibiotic vancomycin from the plasma (measured in the jugular vein) to the cerebrospinal fluid (measured in the lateral ventricle) of live rats with temporal resolution of a few seconds. KEY RESULTS In our first efforts, we made measurements solely in the ventricle. Doing so we find that, although the collection of hundreds of concentration values over a single drug lifetime enables high-precision estimates of the parameters describing intracranial transport, due to a mathematical equivalence, the data produce two divergent descriptions of the drug's plasma pharmacokinetics that fit the in-brain observations equally well. The simultaneous collection of intravenous measurements, however, resolves this ambiguity, enabling high-precision (typically of ±5 to ±20% at 95% confidence levels) estimates of the key pharmacokinetic parameters describing transport from the blood to the cerebrospinal fluid in individual animals. CONCLUSIONS AND IMPLICATIONS The availability of simultaneous, high-density 'in-vein' (plasma) and 'in-brain' (cerebrospinal fluid) measurements provides unique opportunities to explore the assumptions almost universally employed in earlier compartmental models of drug transport, allowing the quantitative assessment of, for example, the pharmacokinetic effects of physiological processes such as the bulk transport of the drug out of the CNS via the dural venous sinuses.
Collapse
Affiliation(s)
- Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Murat Kaan Erdal
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Joao P. Hespanha
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, USA
- Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, California, USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
13
|
Yang Y, Gao X, Widdicombe B, Zhang X, Zielinski JL, Cheng T, Gunatilaka A, Leung KK, Plaxco KW, Rajasekharan Unnithan R, Stewart AG. Dual-Purpose Aptamer-Based Sensors for Real-Time, Multiplexable Monitoring of Metabolites in Cell Culture Media. ACS NANO 2024; 18. [PMID: 39255458 PMCID: PMC11441400 DOI: 10.1021/acsnano.4c06813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The availability of high-frequency, real-time measurements of the concentrations of specific metabolites in cell culture systems will enable a deeper understanding of cellular metabolism and facilitate the application of good laboratory practice standards in cell culture protocols. However, currently available approaches to this end either are constrained to single-time-point and single-parameter measurements or are limited in the range of detectable analytes. Electrochemical aptamer-based (EAB) biosensors have demonstrated utility in real-time monitoring of analytes in vivo in blood and tissues. Here, we characterize a pH-sensing capability of EAB sensors that is independent of the specific target analyte of the aptamer sequence. We applied this dual-purpose EAB to the continuous measurement of pH and phenylalanine in several in vitro cell culture settings. The miniature EAB sensor that we developed exhibits rapid response times, good stability, high repeatability, and biologically relevant sensitivity. We also developed and characterized a leak-free reference electrode that mitigates the potential cytotoxic effects of silver ions released from conventional reference electrodes. Using the resulting dual-purpose sensor, we performed hourly measurements of pH and phenylalanine concentrations in the medium superfusing cultured epithelial tumor cell lines (A549, MDA-MB-23) and a human fibroblast cell line (MRC-5) for periods of up to 72 h. Our scalable technology may be multiplexed for high-throughput monitoring of pH and multiple analytes in support of the broad metabolic qualification of microphysiological systems.
Collapse
Affiliation(s)
- Yiling Yang
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Xumei Gao
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Bryce Widdicombe
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xiaodan Zhang
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jana Lorraine Zielinski
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tianhong Cheng
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Avanka Gunatilaka
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kaylyn K. Leung
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ranjith Rajasekharan Unnithan
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Alastair G. Stewart
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Nguyen TNH, Horowitz LF, Krilov T, Lockhart E, Kenerson HL, Gujral TS, Yeung RS, Arroyo-Currás N, Folch A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. SCIENCE ADVANCES 2024; 10:eadn5875. [PMID: 39241078 PMCID: PMC11378948 DOI: 10.1126/sciadv.adn5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Because of the sensor's high affinity, it primarily tracks rising concentrations of cytochrome C, capturing dynamic changes during apoptosis. This approach could help develop more advanced cancer disease models and apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Timothy Krilov
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
15
|
Cheng C, Chen H, Chen X, Lu M. A Simultaneous Calibration and Detection Strategy for Electrochemical Sensing with High Accuracy in Complex Water. ACS Sens 2024; 9:3986-3993. [PMID: 39078137 DOI: 10.1021/acssensors.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The electrochemical sensors loaded with nanomaterials have exhibited a great sensitivity. Nonetheless, the field detection for complex waterbodies can be affected by cross-sensitivity, environmental conditions such as temperature and pH value, as well as the relatively low reproducibility and stability of nanomaterials. In this paper, a simultaneous calibration and detection (SCD) strategy is proposed to introduce a simultaneous and precise calibration during field electrochemical detection, which is composed of a linear regression algorithm and a compact electrochemical sensor containing a series of identical sensing cells. This design can significantly mitigate cross-sensitivity in complex water and the inconsistency of sensing materials. Applied in the NO2- detection for practical waterbodies, the SCD strategy has exhibited a relative error of no more than 9.6% for the measurement compared to the results obtained by the standard Griess method and higher accuracy than the normal electrochemical method. The SCD strategy is independent of sensing materials, indicating that it can be widely applied to various detections by just switching the corresponding sensing material.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Verrinder E, Gerson J, Leung K, Kippin TE, Plaxco KW. Dual-Frequency, Ratiometric Approaches to EAB Sensor Interrogation Support the Calibration-Free Measurement of Specific Molecules In Vivo. ACS Sens 2024; 9:3205-3211. [PMID: 38775190 DOI: 10.1021/acssensors.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors represent the first molecular measurement technology that is both (1) independent of the chemical reactivity of the target, and thus generalizable to many targets and (2) able to function in an accurate, drift-corrected manner in situ in the living body. Signaling in EAB sensors is generated when an electrode-bound aptamer binds to its target ligand, altering the rate of electron transfer from an attached redox reporter and producing an easily detectable change in peak current when the sensor is interrogated using square wave voltammetry. Due to differences in the microscopic surface area of the interrogating electrodes, the baseline peak currents obtained from EAB sensors, however, can be highly variable. To overcome this, we have historically performed single-point calibration using measurements performed in a single sample of known target concentration. Here, however, we explore approaches to EAB sensor operation that negate the need to perform even single-point calibration of individual sensors. These are a ratiometric approach employing the ratio of the peak currents observed at two distinct square wave frequencies, and a kinetic differential measurement approach that employs the difference between peak currents seen at the two frequencies. Using in vivo measurements of vancomycin and phenylalanine as our test bed, we compared the output of these methods with that of the same sensor when single-point calibration was employed. Doing so we find that both methods support accurately drift-corrected measurements in vivo in live rats, even when employing rather crudely handmade devices. By removing the need to calibrate each individual sensor in a sample of known target concentration, these interrogation methods should significantly simplify the use of EAB sensors for in vivo applications.
Collapse
Affiliation(s)
- Elsi Verrinder
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Julian Gerson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylyn Leung
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
d'Astous ÉV, Dauphin-Ducharme P. Whole blood multiplex measurements using electrochemical aptamer-based biosensors. Chem Commun (Camb) 2024; 60:6419-6422. [PMID: 38828657 DOI: 10.1039/d4cc01452a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Simultaneous measurements of various molecules ("multiplex") using electrochemical biosensors typically require multiple electrode implementations, which for neonates, hemophiliacs, etc. is problematic. Here, we introduce the oxazine ATTO 700 into electrochemical aptamer-based biosensors to achieve "true" multiplex, continuous and real-time measurements of two different molecules in undiluted whole blood using a single electrode.
Collapse
Affiliation(s)
- Élodie V d'Astous
- Université de Sherbrooke, Département de Chimie, 2500 boul. de l'Université, Sherbrooke, J1K 2R1, Canada.
| | - Philippe Dauphin-Ducharme
- Université de Sherbrooke, Département de Chimie, 2500 boul. de l'Université, Sherbrooke, J1K 2R1, Canada.
| |
Collapse
|
19
|
Whitehouse WL, Lo LHY, Kinghorn AB, Shiu SCC, Tanner JA. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS APPLIED BIO MATERIALS 2024; 7:3721-3730. [PMID: 38485932 DOI: 10.1021/acsabm.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome. Currently, clinical turn-around times for established CRP detection methods take between 30 min to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers, functionalized onto inexpensive, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 min. The aptasensor limit of detection spans approximately 20-60 nM in 50% human serum with dynamic response windows spanning 1-200 or 1-500 nM (R = 0.97/R = 0.98 respectively). The sensor is stable for at least 1 week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of structure-switching electrochemical aptamer-based sensors (SS-EABs) for reagentless, voltammetric CRP detection. We hope this study inspires further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for broader use by the public.
Collapse
Affiliation(s)
- William L Whitehouse
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Louisa H Y Lo
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simon C C Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Abeykoon SW, White RJ. Single Voltammetric Sweep Calibration-Free Interrogation of Electrochemical Aptamer-Based Sensors Employing Continuous Square Wave Voltammetry. Anal Chem 2024; 96:6958-6967. [PMID: 38662230 PMCID: PMC12014223 DOI: 10.1021/acs.analchem.3c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Continuous square wave voltammetry (cSWV) is a technique that enables the continuous collection of current data (at 100 kHz) to maximize the information content obtainable from a single voltammetric sweep. This data collection procedure results in the generation of multiple voltammograms corresponding to different effective square wave frequencies. The application of cSWV brings significant benefits to electrochemical aptamer-based (E-AB) sensors. The E-AB sensor platform permits continuous real-time monitoring of small biological molecules. Traditionally, E-AB sensors report only on changes in analyte concentration rather than absolute quantification in matrices when basal concentrations are not known a priori. This is because they exhibit a voltammetric peak current even in the absence of a target. However, using a dual-frequency approach, calibration-free sensing can be performed effectively, eliminating the sensor-to-sensor variation by taking ratiometric current responses obtained at two different frequencies from two different voltammetric sweeps. In employing our approach, cSWV provides a great advantage over the conventionally used square wave voltammetry since the required voltammograms are collected with a single sweep, which improves the temporal resolution of the measurement when considering the current at multiple frequencies for improved accuracy and reduced surface interrogation. Moreover, we show here that using cSWV provides significantly improved concentration predictions. E-AB sensors sensitive to ATP and tobramycin were interrogated across a wide range of concentrations. With this approach, cSWV allowed us to estimate the target concentration, retaining up to an ±5% error of the expected concentration when tested in buffer and complex media.
Collapse
Affiliation(s)
- Sanduni W. Abeykoon
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
21
|
Wu Y, Shi J, Kippin TE, Plaxco KW. Codeposition Enhances the Performance of Electrochemical Aptamer-Based Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8703-8710. [PMID: 38616608 PMCID: PMC11821552 DOI: 10.1021/acs.langmuir.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors, a minimally invasive means of performing high-frequency, real-time measurement of drugs and biomarkers in situ in the body, have traditionally been fabricated by depositing their target-recognizing aptamer onto an interrogating gold electrode using a "sequential" two-step method involving deposition of the thiol-modified oligonucleotide (typically for 1 h) followed by incubation in mercaptohexanol solution (typically overnight) to complete the formation of a stable, self-assembled monolayer. Here we use EAB sensors targeting vancomycin, tryptophan, and phenylalanine to show that "codeposition", a less commonly employed EAB fabrication method in which the thiol-modified aptamer and the mercaptohexanol diluent are deposited on the electrode simultaneously and for as little as 1 h, improves the signal gain (relative change in signal upon the addition of high concentrations of the target) of the vancomycin and tryptophan sensors without significantly reducing their stability. In contrast, the gain of the phenylalanine sensor is effectively identical irrespective of the fabrication approach employed. This sensor, however, appears to employ binding-induced displacement of the redox reporter rather than binding-induced folding as its signal transduction mechanism, suggesting in turn a mechanism for the improvement observed for the other two sensors. Codeposition thus not only provides a more convenient means of fabricating EAB sensors but also can improve their performance.
Collapse
Affiliation(s)
- Yuyang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jinyuan Shi
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Thompson IAP, Fu KX, Yang K, Wu D, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet MJF, Vuckovic J, Soh HT. Modular Aptamer Switches for the Continuous Optical Detection of Small-Molecule Analytes in Complex Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304410. [PMID: 37975267 DOI: 10.1002/adma.202304410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.
Collapse
Affiliation(s)
- Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kiyoul Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diana Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Brian E Young
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Behrad Habib Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Michel J F Digonnet
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Nguyen MD, Nguyen KN, Malo S, Banerjee I, Wu D, Du-Thumm L, Dauphin-Ducharme P. Electrochemical Aptamer-Based Biosensors for Measurements in Undiluted Human Saliva. ACS Sens 2023; 8:4625-4635. [PMID: 37992319 DOI: 10.1021/acssensors.3c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Although blood remains a gold standard diagnostic fluid for most health exams, it involves an unpleasant and relatively invasive sampling procedure (finger pricking or venous draw). Saliva contains many relevant and useful biomarkers for diagnostic purposes, and its collection, in contrast, is noninvasive and can be obtained with minimal effort. Current saliva analyses are, however, achieved using chromatography or lateral flow assays, which, despite their high accuracy and sensitivity, can demand expensive laboratory-based instruments operated by trained personnel or offer only semiquantitative results. In response, we investigated electrochemical aptamer-based (E-AB) biosensors, a reagentless sensing platform, to allow for continuous and real-time measurements directly in undiluted, unstimulated human whole saliva. As a proof-of-concept study, we developed E-AB biosensors capable of detecting low-molecular-weight analytes (glucose and adenosine monophosphate (AMP)). To our knowledge, we report the first E-AB sensor for glucose, an approach that is inherently independent of its chemical reactivity in contrast to home glucometers. For these three sensors, we evaluated their figures of merits, stability, and reusability over short- and long-term exposure directly in saliva. In doing so, we found that E-AB sensors allow rapid and convenient molecular measurements in whole saliva with unprecedented sensitivities in the pico- to nanomolar regime and could be regenerated and reused up to 7 days when washed and stored in phosphate-buffered saline at room temperature. We envision that salivary molecular measurements using E-AB sensors are a promising alternative to invasive techniques and can be used for improved point-of-care clinical diagnosis and at-home measurements.
Collapse
Affiliation(s)
- Minh-Dat Nguyen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Khoa-Nam Nguyen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Samuel Malo
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Indrani Banerjee
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | - Donghui Wu
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | - Laurence Du-Thumm
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
24
|
Roehrich B, Leung KK, Gerson J, Kippin TE, Plaxco KW, Sepunaru L. Calibration-Free, Seconds-Resolved In Vivo Molecular Measurements using Fourier-Transform Impedance Spectroscopy Interrogation of Electrochemical Aptamer Sensors. ACS Sens 2023; 8:3051-3059. [PMID: 37584531 PMCID: PMC10463274 DOI: 10.1021/acssensors.3c00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Electrochemical aptamer-based (EAB) sensors are capable of measuring the concentrations of specific molecules in vivo, in real time, and with a few-second time resolution. For their signal transduction mechanism, these sensors utilize a binding-induced conformational change in their target-recognizing, redox-reporter-modified aptamer to alter the rate of electron transfer between the reporter and the supporting electrode. While a variety of voltammetric techniques have been used to monitor this change in kinetics, they suffer from various drawbacks, including time resolution limited to several seconds and sensor-to-sensor variation that requires calibration to remove. Here, however, we show that the use of fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS) to interrogate EAB sensors leads to improved (here better than 2 s) time resolution and calibration-free operation, even when such sensors are deployed in vivo. To showcase these benefits, we demonstrate the approach's ability to perform real-time molecular measurements in the veins of living rats.
Collapse
Affiliation(s)
- Brian Roehrich
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylyn K. Leung
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Center
for Bioengineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Julian Gerson
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara, California 93106, United States
- Center
for Bioengineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara, California 93106, United States
- Department
of Molecular Cellular and Developmental Biology, University of California, Santa
Barbara, California 93106,United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Center
for Bioengineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Son K, Uzawa T, Ito Y, Kippin T, Plaxco KW, Fujie T. Survey of oligoethylene glycol-based self-assembled monolayers on electrochemical aptamer-based sensor in biological fluids. Biochem Biophys Res Commun 2023; 668:1-7. [PMID: 37230045 DOI: 10.1016/j.bbrc.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The ability to monitor levels of endogenous markers and clearance profiles of drugs and their metabolites can improve the quality of biomedical research and precision with which therapies are individualized. Towards this end, electrochemical aptamer-based (EAB) sensors have been developed that support the real-time monitoring of specific analytes in vivo with clinically relevant specificity and sensitivity. A challenge associated with the in vivo deployment of EAB sensors, however, is how to manage the signal drift which, although correctable, ultimately leads to unacceptably low signal-to-noise ratios, limiting the measurement duration. Motivated by the correction of signal drift, in this paper, we have explored the use of oligoethylene glycol (OEG), a widely employed antifouling coating, to reduce the signal drift in EAB sensors. Counter to expectations, however, when challenged in 37 °C whole blood in vitro, EAB sensors employing OEG-modified self-assembled monolayers exhibit both greater drift and reduced signal gain, compared with those employ a simple, hydroxyl-terminated monolayer. On the other hand, when EAB sensor was prepared with a mix monolayer using MCH and lipoamido OEG 2 alcohol, reduced signal noise was observed compared to the same sensor prepared with MCH presumably due to improved SAM construction. These results suggest broader exploration of antifouling materials will be required to improve the signal drift of EAB sensors.
Collapse
Affiliation(s)
- Kon Son
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan; RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takanori Uzawa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tod Kippin
- Department of Psychological and Brain Sciences, UCSB, Santa Barbara, CA, 93106, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, CA, 93106, USA
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, B-50, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
26
|
Downs AM, Bolotsky A, Weaver BM, Bennett H, Wolff N, Polsky R, Miller PR. Microneedle electrochemical aptamer-based sensing: Real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles. Biosens Bioelectron 2023; 236:115408. [PMID: 37267688 DOI: 10.1016/j.bios.2023.115408] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Microneedle sensors could enable minimally-invasive, continuous molecular monitoring - informing on disease status and treatment in real-time. Wearable sensors for pharmaceuticals, for example, would create opportunities for treatments personalized to individual pharmacokinetics. Here, we demonstrate a commercial-off-the-shelf (COTS) approach for microneedle sensing using an electrochemical aptamer-based sensor that detects the high-toxicity antibiotic, vancomycin. Wearable monitoring of vancomycin could improve patient care by allowing targeted drug dosing within its narrow clinical window of safety and efficacy. To produce sensors, we miniaturize the electrochemical aptamer-based sensors to a microelectrode format, and embed them within stainless steel microneedles (sourced from commercial insulin pen needles). The microneedle sensors achieve quantitative measurements in body-temperature undiluted blood. Further, the sensors effectively maintain electrochemical signal within porcine skin. This COTS approach requires no cleanroom fabrication or specialized equipment, and produces individually-addressable, sterilizable microneedle sensors capable of easily penetrating the skin. In the future, this approach could be adapted for multiplexed detection, enabling real-time monitoring of a range of biomarkers.
Collapse
Affiliation(s)
- Alex M Downs
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA.
| | - Adam Bolotsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Bryan M Weaver
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Haley Bennett
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Nathan Wolff
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Ronen Polsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Philip R Miller
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
27
|
Watkins Z, Karajic A, Young T, White R, Heikenfeld J. Week-Long Operation of Electrochemical Aptamer Sensors: New Insights into Self-Assembled Monolayer Degradation Mechanisms and Solutions for Stability in Serum at Body Temperature. ACS Sens 2023; 8:1119-1131. [PMID: 36884003 PMCID: PMC10443649 DOI: 10.1021/acssensors.2c02403] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Conventional wisdom suggests that widely utilized self-assembled alkylthiolate monolayers on gold are too unstable to last more than several days when exposed to complex fluids such as raw serum at body temperature. Demonstrated here is that these monolayers can not only last at least 1 week under such harsh conditions but that significant applied value can be captured for continuous electrochemical aptamer biosensors. Electrochemical aptamer biosensors provide an ideal tool to investigate monolayer degradation, as aptamer sensors require a tightly packed monolayer to preserve sensor signal vs background current and readily reveal fouling by albumin and other solutes when operating in biofluids. Week-long operation in serum at 37 °C is achieved by (1) increasing van der Waals interactions between adjacent monolayer molecules to increase the activation energy required for desorption, (2) optimizing electrochemical measurement to decrease both alkylthiolate oxidation and electric-field-induced desorption, and (3) mitigating fouling using protective zwitterionic membranes and zwitterion-based blocking layers with antifouling properties. This work further proposes origins and mechanisms of monolayer degradation in a logical stepwise manner that was previously unobservable over multiday time scales. Several of the observed results are surprising, revealing that short-term improvements to sensor longevity (i.e., hours) actually increase sensor degradation in the longer term (i.e., days). The results and underlying insights on mechanisms not only push forward fundamental understanding of stability for self-assembled monolayers but also demonstrate an important milestone for continuous electrochemical aptamer biosensors.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aleksandar Karajic
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Thomas Young
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Ryan White
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
28
|
Abeykoon S, White RJ. Continuous Square Wave Voltammetry for High Information Content Interrogation of Conformation Switching Sensors. ACS MEASUREMENT SCIENCE AU 2023; 3:1-9. [PMID: 36817008 PMCID: PMC9936610 DOI: 10.1021/acsmeasuresciau.2c00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/18/2023]
Abstract
Square wave voltammetry (SWV) is a voltammetric technique for measuring Faradaic current while minimizing contributions from non-Faradaic processes. In square wave voltammetry, the potential waveform applied to a working electrode and the current sampling protocols followed are designed to minimize contributions from non-Faradaic processes (i.e., double layer charging) to improve voltammetric sensitivity. To achieve this, the current is measured at the end of each forward and reverse potential pulse after allowing time for non-Faradaic currents to decay exponentially. A consequence of sampling current at the end of a potential pulse is that the current data from the preceding time of the potential pulse are discarded. These discarded data can provide information about the non-Faradaic contributions as well as information about the redox system including charge transfer rates. In this paper, we introduce continuous square wave voltammetry (cSWV), which utilizes the continuous collection of current to maximize the information content obtainable from a single voltammetry sweep eliminating the need for multiple scans. cSWV enables acquiring a multitude of voltammograms corresponding to various frequencies and, thus, different scan rates from a single sweep. An application that benefits significantly from cSWV is conformation switching, functional nucleic acid sensors. We demonstrate the utility of cSWV on two representative small molecules targeting electrochemical, aptamer-based sensors. Moreover, we show that cSWV provides comparable results to those obtained from traditional square wave voltammetry, but with cSWV, we are able to acquire dynamic information about the sensor surfaces enabling rapid calibration and optimization of sensing performance. We also demonstrate cSWV on soluble redox markers. cSWV can potentially become a mainstay technique in the field of conformation switching sensors.
Collapse
Affiliation(s)
- Sanduni
W. Abeykoon
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Ryan J. White
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
- Department
of Electrical Engineering, University of
Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
29
|
Rahbarimehr E, Chao HP, Churcher ZR, Slavkovic S, Kaiyum YA, Johnson PE, Dauphin-Ducharme P. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors. Anal Chem 2023; 95:2229-2237. [PMID: 36638814 DOI: 10.1021/acs.analchem.2c03566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electrochemical aptamer-based (E-AB) biosensors afford real-time measurements of the concentrations of molecules directly in complex matrices and in the body, offering alternative strategies to develop innovative personalized medicine tools. While different electroanalytical techniques have been used to interrogate E-AB sensors (i.e., cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry) to resolve the change in electron transfer of the aptamer's covalently attached redox reporter, square-wave voltammetry remains a widely used technique due to its ability to maximize the redox reporter's faradic contribution to the measured current. Several E-AB sensors interrogated with this technique, however, show lower aptamer affinity (i.e., μM-mM) even in the face of employing aptamers that have high affinities (i.e., nM-μM) when characterized using solution techniques such as isothermal titration calorimetry (ITC) or fluorescence spectroscopy. Given past reports showing that E-AB sensor's response is dependent on square-wave interrogation parameters (i.e., frequency and amplitude), we hypothesized that the difference in dissociation constants measured with solution techniques stemmed from the electrochemical interrogation technique itself. In response, we decided to compare six dissociation constants of aptamers when characterized in solution with ITC and when interrogated on electrodes with electrochemical impedance spectroscopy, a technique able to, in contrast to square-wave voltammetry, deconvolute and quantify E-AB sensors' contributions to the measured current. In doing so, we found that we were able to measure dissociation constants that were either separated by 2-3-fold or within experimental errors. These results are in contrast with square-wave voltammetry-measured dissociation constants that are at the most separated by 2-3 orders of magnitude from ones measured by ITC. We thus envision that the versatility and time scales covered by electrochemical impedance spectroscopy offer the highest sensitivity to measure target binding in electrochemical biosensors relying on changes in electron-transfer rates.
Collapse
Affiliation(s)
- Erfan Rahbarimehr
- Département de chimie, Université de Sherbrooke, Sherbrooke, QuébecJ1K 2R1, Canada
| | - Hoi Pui Chao
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Sladjana Slavkovic
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Yunus A Kaiyum
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | | |
Collapse
|
30
|
Chamorro-Garcia A, Gerson J, Flatebo C, Fetter L, Downs AM, Emmons N, Ennis HL, Milosavić N, Yang K, Stojanovic M, Ricci F, Kippin TE, Plaxco KW. Real-Time, Seconds-Resolved Measurements of Plasma Methotrexate In Situ in the Living Body. ACS Sens 2023; 8:150-157. [PMID: 36534756 DOI: 10.1021/acssensors.2c01894] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dose-limiting toxicity and significant patient-to-patient pharmacokinetic variability often render it difficult to achieve the safe and effective dosing of drugs. This is further compounded by the slow, cumbersome nature of the analytical methods used to monitor patient-specific pharmacokinetics, which inevitably rely on blood draws followed by post-facto laboratory analysis. Motivated by the pressing need for improved "therapeutic drug monitoring", we are developing electrochemical aptamer-based (EAB) sensors, a minimally invasive biosensor architecture that can provide real-time, seconds-resolved measurements of drug levels in situ in the living body. A key advantage of EAB sensors is that they are generalizable to the detection of a wide range of therapeutic agents because they are independent of the chemical or enzymatic reactivity of their targets. Three of the four therapeutic drug classes that have, to date, been shown measurable using in vivo EAB sensors, however, bind to nucleic acids as part of their mode of action, leaving open questions regarding the extent to which the approach can be generalized to therapeutics that do not. Here, we demonstrate real-time, in vivo measurements of plasma methotrexate, an antimetabolite (a mode of action not reliant on DNA binding) chemotherapeutic, following human-relevant dosing in a live rat animal model. By providing hundreds of drug concentration values, the resulting seconds-resolved measurements succeed in defining key pharmacokinetic parameters, including the drug's elimination rate, peak plasma concentration, and exposure (area under the curve), with unprecedented 5 to 10% precision. With this level of precision, we easily identify significant (>2-fold) differences in drug exposure occurring between even healthy rats given the same mass-adjusted methotrexate dose. By providing a real-time, seconds-resolved window into methotrexate pharmacokinetics, such measurements can be used to precisely "individualize" the dosing of this significantly toxic yet vitally important chemotherapeutic.
Collapse
Affiliation(s)
- Alejandro Chamorro-Garcia
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Charlotte Flatebo
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Lisa Fetter
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex M Downs
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nicole Emmons
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Herbert L Ennis
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Nenad Milosavić
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Kyungae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Milan Stojanovic
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States.,Department of Biomedical Engineering and Systems Biology, Columbia University New York, New York, New York 10032, United States
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
31
|
Wu Y, Ranallo S, Del Grosso E, Chamoro-Garcia A, Ennis HL, Milosavić N, Yang K, Kippin T, Ricci F, Stojanovic M, Plaxco KW. Using Spectroscopy to Guide the Adaptation of Aptamers into Electrochemical Aptamer-Based Sensors. Bioconjug Chem 2023; 34:124-132. [PMID: 36044602 PMCID: PMC10799766 DOI: 10.1021/acs.bioconjchem.2c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrochemical aptamer-based (EAB) sensors utilize the binding-induced conformational change of an electrode-attached, redox-reporter-modified aptamer to transduce target recognition into an easily measurable electrochemical output. Because this signal transduction mechanism is single-step and rapidly reversible, EAB sensors support high-frequency, real-time molecular measurements, and because it recapitulates the reagentless, conformation-linked signaling seen in vivo among naturally occurring receptors, EAB sensors are selective enough to work in the complex, time-varying environments found in the living body. The fabrication of EAB sensors, however, requires that their target-recognizing aptamer be modified such that (1) it undergoes the necessary binding-induced conformational change and (2) that the thermodynamics of this "conformational switch" are tuned to ensure that they reflect an acceptable trade-off between affinity and signal gain. That is, even if an "as-selected" aptamer achieves useful affinity and specificity, it may fail when adapted to the EAB platform because it lacks the binding-induced conformational change required to support EAB signaling. In this paper we reveal the spectroscopy-guided approaches we use to modify aptamers such that they support the necessary binding-induced conformational change. Specifically, using newly reported aptamers, we demonstrate the systematic design of EAB sensors achieving clinically and physiologically relevant specificity, limits of detection, and dynamic range against the targets methotrexate and tryptophan.
Collapse
Affiliation(s)
- Yuyang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Simona Ranallo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Erica Del Grosso
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Alejandro Chamoro-Garcia
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Herbert L Ennis
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Nenad Milosavić
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Kyungae Yang
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Tod Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Milan Stojanovic
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Downs AM, Plaxco KW. Real-Time, In Vivo Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sens 2022; 7:2823-2832. [PMID: 36205360 PMCID: PMC9840907 DOI: 10.1021/acssensors.2c01428] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The continuous, real-time measurement of specific molecules in situ in the body would greatly improve our ability to understand, diagnose, and treat disease. The vast majority of continuous molecular sensing technologies, however, either (1) rely on the chemical or enzymatic reactivity of their targets, sharply limiting their scope, or (2) have never been shown (and likely will never be shown) to operate in the complex environments found in vivo. Against this background, here we review electrochemical aptamer-based (EAB) sensors, an electrochemical approach to real-time molecular monitoring that has now seen 15 years of academic development. The strengths of the EAB platform are significant: to date it is the only molecular measurement technology that (1) functions independently of the chemical reactivity of its targets, and is thus general, and (2) supports in vivo measurements. Specifically, using EAB sensors we, and others, have already reported the real-time, seconds-resolved measurements of multiple, unrelated drugs and metabolites in situ in the veins and tissues of live animals. Against these strengths, we detail the platform's remaining weaknesses, which include still limited measurement duration (hours, rather than the more desirable days) and the difficulty in obtaining sufficiently high performance aptamers against new targets, before then detailing promising approaches overcoming these hurdles. Finally, we close by exploring the opportunities we believe this potentially revolutionary technology (as well as a few, possibly competing, technologies) will create for both researchers and clinicians.
Collapse
Affiliation(s)
- Alex M. Downs
- Sandia National Laboratories, Albuquerque, NM 87106, USA
| | - Kevin W. Plaxco
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Corresponding author:
| |
Collapse
|