1
|
Szóstak N, Budnik M, Tomela K, Handschuh L, Samelak-Czajka A, Pietrzak B, Schmidt M, Kaczmarek M, Galus Ł, Mackiewicz J, Mackiewicz A, Kozlowski P, Philips A. Exploring correlations between gut mycobiome and lymphocytes in melanoma patients undergoing anti-PD-1 therapy. Cancer Immunol Immunother 2025; 74:110. [PMID: 39998665 PMCID: PMC11861499 DOI: 10.1007/s00262-024-03918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/02/2024] [Indexed: 02/27/2025]
Abstract
Research has shown that the microbiome can influence how the immune system responds to melanoma cells, affecting the course of the disease and the outcome of the therapy. Here, we used the metagenomic approach and flow cytometry analyses of blood cells to discover correlations between gut fungi of metastatic melanoma patients enrolled in anti-PD-1 therapy and lymphocytes in their blood.We analyzed the patterns of associations before the first administration of anti-PD-1 therapy (BT, n = 61) and in the third month of the therapy (T3, n = 37), allowing us to track changes during treatment. To understand the possible impact of gut fungi on the efficacy of anti-PD-1 therapy, we analyzed the associations in clinical beneficiaries (CB, n = 37) and non-beneficiaries (NB, n = 24), as well as responders (R, n = 28) and non-responders (NR, n = 33).Patients with LDH < 338 units/L, overall survival (OS) > 12, CB, as well as R, had lower levels of Shannon diversity (p = 0.02, p = 0.05, p = 0.05, and p = 0.03, respectively). We found that the correlation pattern between intestinal fungi and lymphocytes was specific to the type of response, positive or negative. When comparing CB and NB groups, correlations with opposite directions were detected for C. albicans, suggesting a response-specific immune reaction. For CB, M. restricta exhibited a set of correlations with different types of lymphocytes, with prevalent positive correlations, suggesting a robust immune response in the CB group. This result extends our former research, where M. restricta and C. albicans were associated with an increased risk of melanoma progression and a poorer response to anti-PD-1 treatment.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Michał Budnik
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Łukasz Galus
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
2
|
Portela ND, Mena C, Martín MG, Burstein VL, Chiapello LS, Pesoa SA. Effect of DNA extraction method in gut fungal community assessment. Rev Argent Microbiol 2025:S0325-7541(24)00161-5. [PMID: 39920009 DOI: 10.1016/j.ram.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 02/09/2025] Open
Abstract
Understanding the gut mycobiota composition and its impact on health requires reliable methods for fungal community assessment. This study explores the influence of DNA extraction methods in GM analysis. Three protocols were evaluated: Qiagen DNeasy blood and tissue kit with mechanical glass bead lysis (DNgb), Thermofisher MagMax Microbiome ultra-nucleic isolation kit automated method (MM), and MM combined with glass beads lysis (MMgb). Fecal samples from healthy volunteers were collected, DNA extracted and ITS2 amplicon library preparation and sequencing performed. Results showed that DNA yields did not significantly differ among methods and the addition of glass bead beating favored the recovery of DNA more appropriate for fungal analysis. Beta diversity revealed distinct clusters, with MMgb showing the most pronounced variation in mycobiota composition, exposing particularly the low abundance taxa. LEfSe analysis identified significant differences in the abundance of fungal species among the extraction methods. Samples extracted with bead beating were enriched in filamentous species, while those without this step showed higher relative abundance of yeast fungi. This study underscores the importance of selecting appropriate DNA extraction methods for accurate characterization of the gut mycobiota, emphasizing the need for standardized methodologies to ensure reproducibility and reliability in microbial data acquisition.
Collapse
Affiliation(s)
- Néstor D Portela
- Departamento de Diagnóstico Molecular, LACE Laboratorios, Córdoba X5000JJS, Argentina
| | - Cristian Mena
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, Argentina
| | - Mauricio G Martín
- Departamento de Neurobiología Molecular y Celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Argentina
| | - Verónica L Burstein
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, Argentina
| | - Laura S Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, Argentina
| | - Susana A Pesoa
- Departamento de Diagnóstico Molecular, LACE Laboratorios, Córdoba X5000JJS, Argentina.
| |
Collapse
|
3
|
Pu Y, Zhou X, Cai H, Lou T, Liu C, Kong M, Sun Z, Wang Y, Zhang R, Zhu Y, Ye L, Zheng Y, Zhu B, Quan Z, Zhao G, Zheng Y. Impact of DNA Extraction Methods on Gut Microbiome Profiles: A Comparative Metagenomic Study. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:76-90. [PMID: 40313603 PMCID: PMC12040788 DOI: 10.1007/s43657-025-00232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 05/03/2025]
Abstract
In gut microbial research, DNA extraction remarkably influences study outcomes and biological interpretations. Rapid advancements in the research scale and technological upgrades necessitate evaluating new methods to ensure reliability and precision in microbial community profiling. We systematically evaluated the performance of eight recent and commonly used extraction methods using a microbial mock community (MMC) and fecal samples from two healthy volunteers, incorporating bacterial, archaeal, and fungal constituents. Performance metrics included nucleic acid assessment, microbial profile assessment, and scalability for large-scale studies, leveraging shotgun metagenomics for in-depth analysis. Despite variations in DNA quantity and quality, all methods yielded sufficient DNA for shotgun metagenomic sequencing. In the MMC microbial profile assessment, the QIAamp PowerFecal pro Kit (PF) and DNeasy PowerSoil HTP kit (PS) methods exhibited higher similarity with the theoretical composition and lower variability across technical replicates compared to other methods. For fecal samples, the extraction method accounted for 21.4% of the overall microbiome variation and significantly affected the abundances of 32% of detected microbial species. Methods using mechanical lysis with small beads, such as PF and PS, demonstrated better efficiency, indicated by increased microbial diversity in extracting DNA from Gram-positive bacteria. Furthermore, the PF and PS methods are notably simple to execute and automation-friendly, though relatively costly. Our study underscores the importance of maintaining consistency in DNA extraction methods for reliable comparative metagenomic analyses. We recommend PF and PS methods as optimal for expansive gut metagenomic research, emphasizing the critical role of mechanical lysis in DNA extraction. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-025-00232-x.
Collapse
Affiliation(s)
- Yanni Pu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Hao Cai
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Tao Lou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Chenglin Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Mengmeng Kong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Yanren Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Ruyi Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yuxuan Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Lin Ye
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, 200438 China
| | - Baoli Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Taoyuan Agro-Ecosystem Research Station, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Zhexue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Room C601, No. 2005 Songhu Road, Yangpu District, Shanghai, 200438 China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Yiwu Research Institute, Fudan University, Yiwu, 322000 China
| |
Collapse
|
4
|
Lee JH, Son H, Subramaniyam S, Lim HJ, Park S, Choi RY, Kim IW, Seo M, Kweon HY, Kim Y, Kim SW, Choi JS, Shin Y. Impact of Edible Insect Polysaccharides on Mouse Gut Microbiota: A Study on White-Spotted Flower Chafer Larva ( Protaetia brevitarsis seulensis) and Silkworm Pupa ( Bombyx mori). Foods 2024; 14:6. [PMID: 39796296 PMCID: PMC11720208 DOI: 10.3390/foods14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, Protaetia brevitarsis seulensis larva and Bombyx mori pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes. Seven-week-old female C57BL/6J mice were administered the edible insects, along with fracto-oligosaccharide (FOS) as a positive control and sham (phosphate buffer saline (PBS)) as a negative control, to assess the relative abundance of insect-diet-associated gut microbes. In total, 567 genera and 470 species were observed, and among these, 15 bacterial genera were differentially abundant in all three groups. These results show that among the two insects, Bombyx mori pupa polysaccharides have a greater ability to regulate beneficial probiotics and next-generation probiotics. In particular, Lactococcus garvieae, which has promising effects on the gastrointestinal tracts of humans and animals, was significantly enriched in both Protaetia brevitarsis seulensis larva and Bombyx mori pupa polysaccharides, similar to fracto-oligosaccharide. The results suggest that the consumption of these insects, particularly polysaccharides, can enhance the growth of beneficial gut microbes, potentially leading to improved overall health in healthy populations.
Collapse
Affiliation(s)
- Joon-Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Hyojung Son
- Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea
| | | | - Hyun-Jung Lim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Sohyun Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Hae-Yong Kweon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Yongsoon Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea (S.-W.K.)
| | - Jong-Soon Choi
- Department of Family Medicine, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea
| |
Collapse
|
5
|
Liu Y, Ghaffari MH, Ma T, Tu Y. Impact of database choice and confidence score on the performance of taxonomic classification using Kraken2. ABIOTECH 2024; 5:465-475. [PMID: 39650139 PMCID: PMC11624175 DOI: 10.1007/s42994-024-00178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/07/2024] [Indexed: 12/11/2024]
Abstract
Accurate taxonomic classification is essential to understanding microbial diversity and function through metagenomic sequencing. However, this task is complicated by the vast variety of microbial genomes and the computational limitations of bioinformatics tools. The aim of this study was to evaluate the impact of reference database selection and confidence score (CS) settings on the performance of Kraken2, a widely used k-mer-based metagenomic classifier. In this study, we generated simulated metagenomic datasets to systematically evaluate how the choice of reference databases, from the compact Minikraken v1 to the expansive nt- and GTDB r202, and different CS (from 0 to 1.0) affect the key performance metrics of Kraken2. These metrics include classification rate, precision, recall, F1 score, and accuracy of true versus calculated bacterial abundance estimation. Our results show that higher CS, which increases the rigor of taxonomic classification by requiring greater k-mer agreement, generally decreases the classification rate. This effect is particularly pronounced for smaller databases such as Minikraken and Standard-16, where no reads could be classified when the CS was above 0.4. In contrast, for larger databases such as Standard, nt and GTDB r202, precision and F1 scores improved significantly with increasing CS, highlighting their robustness to stringent conditions. Recovery rates were mostly stable, indicating consistent detection of species under different CS settings. Crucially, the results show that a comprehensive reference database combined with a moderate CS (0.2 or 0.4) significantly improves classification accuracy and sensitivity. This finding underscores the need for careful selection of database and CS parameters tailored to specific scientific questions and available computational resources to optimize the results of metagenomic analyses. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00178-0.
Collapse
Affiliation(s)
- Yunlong Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agricultural and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Morteza H. Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, 53115 Germany
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agricultural and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agricultural and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
6
|
Biennier S, Fontaine M, Duquenoy A, Schwintner C, Doré J, Corvaia N. Narrative Review: Advancing Dysbiosis Treatment in Onco-Hematology with Microbiome-Based Therapeutic Approach. Microorganisms 2024; 12:2256. [PMID: 39597645 PMCID: PMC11596191 DOI: 10.3390/microorganisms12112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the complex relationship between gut dysbiosis and hematological malignancies, focusing on graft-versus-host disease (GvHD) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. We discuss how alterations in microbial diversity and composition can influence disease development, progression, and treatment outcomes in blood cancers. The mechanisms by which the gut microbiota impacts these conditions are examined, including modulation of immune responses, production of metabolites, and effects on intestinal barrier function. Recent advances in microbiome-based therapies for treating and preventing GvHD are highlighted, with emphasis on full ecosystem standardized donor-derived products. Overall, this review underscores the growing importance of microbiome research in hematology-oncology and its potential to complement existing treatments and improve outcomes for thousands of patients worldwide.
Collapse
Affiliation(s)
- Salomé Biennier
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Aurore Duquenoy
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, 78350 Jouy-en-Josas, France;
| | | |
Collapse
|
7
|
Schettini F, Gattazzo F, Nucera S, Rubio Garcia E, López-Aladid R, Morelli L, Fontana A, Vigneri P, Casals-Pascual C, Iebba V, Generali D. Navigating the complex relationship between human gut microbiota and breast cancer: Physiopathological, prognostic and therapeutic implications. Cancer Treat Rev 2024; 130:102816. [PMID: 39182440 DOI: 10.1016/j.ctrv.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The human body represents the habitat of trillions of symbiotic microorganisms, collectively known as human microbiota, approximately half of which residing in the gut. The development of next-generation sequencing techniques has boosted the profiling of human microbiota in recent years. A growing body of evidence seems to support a strict relationship between the disruption of the mutualistic relationship between the microbiota and the host (i.e., dysbiosis) and the development of several diseases, including breast malignancies. Breast cancer still represents the most frequent cause of cancer-related death in women. Its complex relationship with gut microbiota is the object of a growing body of evidence. In fact, the interaction with the host immune system and a direct impact of gut microbiota on estrogen, lipid and polyphenols metabolism, seem to potentially affect breast tumor development, progression and response to treatments. In this review, in an attempt to help oncologists navigating this rapidly-evolving research field, we provide an essential overview on the taxonomy, main analytical techniques and terminology most commonly adopted. We discuss what is currently known regarding the interaction between gut microbiota and breast cancer and potential efforts to harness this complex interplay for therapeutic purposes, and revise main ongoing studies. We also briefly provide an overview on breast cancer intratumoral microbiota and its potential role beyond gut microbiota.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.
| | - Federica Gattazzo
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy; Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sabrina Nucera
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elisa Rubio Garcia
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ruben López-Aladid
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Climent Casals-Pascual
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Valerio Iebba
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
8
|
Ma J, Yang X, He J. Comprehensive gut microbiota composition and microbial interactions among the three age groups. PLoS One 2024; 19:e0305583. [PMID: 39423213 PMCID: PMC11488730 DOI: 10.1371/journal.pone.0305583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 10/21/2024] Open
Abstract
There is a growing interest in studying the microbiota associated with aging by integrating multiple longevity researches while minimizing the influence of confounding factors. Here, we reprocessed metagenomic sequencing data from four different aging research studies and evaluated potential confounding factors in order to minimize the batch effect. Subsequently, we detected the diversity and abundance of the gut microbiome in three different age cohorts. Out of 1053 different bacteria species, only four showed substantial depletion across different age groups: Ligilactobacillus ruminis, Turicibacter sp. H121, Blautia massiliensis, and Anaerostipes hadrus. Archaea accumulated more in young individuals compared to elderly and centenarians. Candida albicans was more prevalent in centenarians, but Nakaseomyces glabratus (also known as Candida glabrata) was more common in elderly adults. Shuimuvirus IME207 showed a significant increase in centenarians compared to both control groups. In addition, we utilized a Fisher's exact test to investigate topological properties of differentially abundant microbiota in the co-occurrence network of each age group. Microbial signatures specific to different age stages were identified based on the condition: the reads showing differential abundance were higher compared to the other age groups. Lastly, we selected Methanosarcina sp. Kolksee for the Y group, Prevotella copri for the E group and Shuimuvirus IME207 for the C group as representatives of age-related characteristics to study how their interactions change during the aging process. Our results provide crucial insights into the gut microbiome's ecological dynamics in relation to the aging process.
Collapse
Affiliation(s)
- Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiaohua Yang
- Pulmonary and Critical Care Medicine, Tongchuan People’s Hospital, Tongchuan, Shaanxi, China
| | - Jianwu He
- Pulmonary and Critical Care Medicine, Tongchuan People’s Hospital, Tongchuan, Shaanxi, China
| |
Collapse
|
9
|
Manter DK, Reardon CL, Ashworth AJ, Ibekwe AM, Lehman RM, Maul JE, Miller DN, Creed T, Ewing PM, Park S, Ducey TF, Tyler HL, Veum KS, Weyers SL, Knaebel DB. Unveiling errors in soil microbial community sequencing: a case for reference soils and improved diagnostics for nanopore sequencing. Commun Biol 2024; 7:913. [PMID: 39069530 PMCID: PMC11284219 DOI: 10.1038/s42003-024-06594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
The sequencing platform and workflow strongly influence microbial community analyses through potential errors at each step. Effective diagnostics and experimental controls are needed to validate data and improve reproducibility. This cross-laboratory study evaluates sources of variability and error at three main steps of a standardized amplicon sequencing workflow (DNA extraction, polymerase chain reaction [PCR], and sequencing) using Oxford Nanopore MinION to analyze agricultural soils and a simple mock community. Variability in sequence results occurs at each step in the workflow with PCR errors and differences in library size greatly influencing diversity estimates. Common bioinformatic diagnostics and the mock community are ineffective at detecting PCR abnormalities. This work outlines several diagnostic checks and techniques to account for sequencing depth and ensure accuracy and reproducibility in soil community analyses. These diagnostics and the inclusion of a reference soil can help ensure data validity and facilitate the comparison of multiple sequencing runs within and between laboratories.
Collapse
Affiliation(s)
- Daniel K Manter
- Soil Management and Sugar Beet Research, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Fort Collins, CO, USA.
| | | | - Amanda J Ashworth
- Poultry Production and Product Safety Research Unit, USDA-ARS, Fayetteville, AR, USA
| | | | - R Michael Lehman
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD, USA
| | - Jude E Maul
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Daniel N Miller
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Timothy Creed
- Soil Management and Sugar Beet Research, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Fort Collins, CO, USA
| | | | - Stanley Park
- Water Efficiency and Salinity Research Unit, USDA-ARS, Riverside, CA, USA
| | - Thomas F Ducey
- Coastal Plains Soil, Water and Plant Research Center, USDA-ARS, Florence, SC, USA
| | - Heather L Tyler
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA
| | - Kristen S Veum
- Cropping Systems and Water Quality Research Unit, USDA-ARS, Columbia, MO, USA
| | | | | |
Collapse
|
10
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
11
|
Chandel N, Maile A, Shrivastava S, Verma AK, Thakur V. Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e8. [PMID: 39776539 PMCID: PMC11704572 DOI: 10.1017/gmb.2024.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025]
Abstract
Human gut microbial species are crucial for dietary metabolism and biosynthesis of micronutrients. Digested products are utilised by the host as well as several gut bacterial species. These species are influenced by various factors such as diet, age, geographical location, and ethnicity. India is home to the largest human population in the world. It is spread across diverse ecological and geographical locations. With variable dietary habits and lifestyles, Indians have unique gut microbial composition. This review captures contrasting and common trends of gut bacterial community establishment in infants (born through different modes of delivery), and how that bacterial community manifests itself along infancy, through old age between Indian and global populations. Because dysbiosis of the gut community structure is associated with various diseases, this review also highlights the common and unique bacterial species associated with various communicable as well as noncommunicable diseases such as diarrhoea, amoebiasis, malnutrition, type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation and damage to the brain in the global and Indian population.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| | - Anwesh Maile
- DBT-Centre for Microbial Informatics, University of Hyderabad, Hyderabad, India
| | - Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Rosenbaum W, Bovinder Ylitalo E, Castel G, Sjödin A, Larsson P, Wigren Byström J, Forsell MNE, Ahlm C, Pettersson L, Tuiskunen Bäck A. Hybrid capture-based next-generation sequencing of new and old world Orthohantavirus strains and wild-type Puumala isolates from humans and bank voles. J Clin Virol 2024; 172:105672. [PMID: 38574565 DOI: 10.1016/j.jcv.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Orthohantaviruses, transmitted primarily by rodents, cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome in the Americas. These viruses, with documented human-to-human transmission, exhibit a wide case-fatality rate, 0.5-40 %, depending on the virus species, and no vaccine or effective treatment for severe Orthohantavirus infections exists. In Europe, the Puumala virus (PUUV), carried by the bank vole Myodes glareolus, causes a milder form of HFRS. Despite the reliance on serology and PCR for diagnosis, the three genomic segments of Swedish wild-type PUUV have yet to be completely sequenced. We have developed a targeted hybrid-capture method aimed at comprehensive genomic sequencing of wild-type PUUV isolates and the identification of other Orthohantaviruses. Our custom-designed panel includes >11,200 probes covering the entire Orthohantavirus genus. Using this panel, we sequenced complete viral genomes from bank vole lung tissue, human plasma samples, and cell-cultured reference strains. Analysis revealed that Swedish PUUV isolates belong to the Northern Scandinavian lineage, with nucleotide diversity ranging from 2.8 % to 3.7 % among them. Notably, no significant genotypic differences were observed between the viral sequences from reservoirs and human cases except in the nonstructural protein. Despite the high endemicity of PUUV in Northern Sweden, these are the first complete Swedish wild-type PUUV genomes and substantially increase our understanding of PUUV evolution and epidemiology. The panel's sensitivity enables genomic sequencing of human samples with viral RNA levels reflecting the natural progression of infection and underscores our panel's diagnostic value, and could help to uncover novel Orthohantavirus transmission routes.
Collapse
Affiliation(s)
- William Rosenbaum
- Department of Medical Biosciences, Umeå University, SE-90185, Umeå, Sweden
| | | | - Guillaume Castel
- CBGP, INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Andreas Sjödin
- CBRN Security and Defence, Swedish Defence Research Agency - FOI, Umeå, Sweden
| | - Pär Larsson
- Clinical Genomics Umeå, Umeå University, SE-90185, Umeå, Sweden
| | | | - Mattias N E Forsell
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Lisa Pettersson
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden
| | - Anne Tuiskunen Bäck
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden.
| |
Collapse
|
13
|
Szóstak N, Handschuh L, Samelak-Czajka A, Tomela K, Pietrzak B, Schmidt M, Galus Ł, Mackiewicz J, Mackiewicz A, Kozlowski P, Philips A. Gut Mycobiota Dysbiosis Is Associated with Melanoma and Response to Anti-PD-1 Therapy. Cancer Immunol Res 2024; 12:427-439. [PMID: 38315788 PMCID: PMC10985481 DOI: 10.1158/2326-6066.cir-23-0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Recent research indicates that gut microbiota may be vital in the advancement of melanoma. In this study, we found that melanoma patients exhibited a distinct gut mycobiota structure compared with healthy participants. Candida albicans, Candida dubliniensis, and Neurospora crassa were more abundant in samples from patients with melanoma, whereas Saccharomyces cerevisiae and Debaryomyces hansenii were less abundant. During anti-PD-1 treatment, the relative amount of Malassezia restricta and C. albicans increased. A higher level of Saccharomyces paradoxus was associated with a positive response to anti-PD-1 treatment, whereas a higher level of Tetrapisispora blattae was associated with a lack of clinical benefits. High levels of M. restricta and C. albicans, elevated serum lactate dehydrogenase, and being overweight were linked to increased risk of melanoma progression and poorer response to anti-PD-1 treatment. Thus, this study has revealed melanoma-associated mycobiome dysbiosis, characterized by altered fungal composition and fungi species associated with a higher risk of melanoma progression, identifying a role for the gut mycobiome in melanoma progression.
Collapse
Affiliation(s)
- Natalia Szóstak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Tomela
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Marcin Schmidt
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
14
|
Roy G, Prifti E, Belda E, Zucker JD. Deep learning methods in metagenomics: a review. Microb Genom 2024; 10:001231. [PMID: 38630611 PMCID: PMC11092122 DOI: 10.1099/mgen.0.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The ever-decreasing cost of sequencing and the growing potential applications of metagenomics have led to an unprecedented surge in data generation. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome plays a crucial role in human health, providing vital information for patient diagnosis and prognosis. However, analysing metagenomic data remains challenging due to several factors, including reference catalogues, sparsity and compositionality. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification and disease prediction. Beyond generating predictive models, a key aspect of these methods is also their interpretability. This article reviews DL approaches in metagenomics, including convolutional networks, autoencoders and attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the microbiome's key role in our health.
Collapse
Affiliation(s)
- Gaspar Roy
- IRD, Sorbonne University, UMMISCO, 32 avenue Henry Varagnat, Bondy Cedex, France
| | - Edi Prifti
- IRD, Sorbonne University, UMMISCO, 32 avenue Henry Varagnat, Bondy Cedex, France
- Sorbonne University, INSERM, Nutriomics, 91 bvd de l’hopital, 75013 Paris, France
| | - Eugeni Belda
- IRD, Sorbonne University, UMMISCO, 32 avenue Henry Varagnat, Bondy Cedex, France
- Sorbonne University, INSERM, Nutriomics, 91 bvd de l’hopital, 75013 Paris, France
| | - Jean-Daniel Zucker
- IRD, Sorbonne University, UMMISCO, 32 avenue Henry Varagnat, Bondy Cedex, France
- Sorbonne University, INSERM, Nutriomics, 91 bvd de l’hopital, 75013 Paris, France
| |
Collapse
|
15
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
16
|
Wheeler NE, Price V, Cunningham-Oakes E, Tsang KK, Nunn JG, Midega JT, Anjum MF, Wade MJ, Feasey NA, Peacock SJ, Jauneikaite E, Baker KS. Innovations in genomic antimicrobial resistance surveillance. THE LANCET. MICROBE 2023; 4:e1063-e1070. [PMID: 37977163 DOI: 10.1016/s2666-5247(23)00285-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Whole-genome sequencing of antimicrobial-resistant pathogens is increasingly being used for antimicrobial resistance (AMR) surveillance, particularly in high-income countries. Innovations in genome sequencing and analysis technologies promise to revolutionise AMR surveillance and epidemiology; however, routine adoption of these technologies is challenging, particularly in low-income and middle-income countries. As part of a wider series of workshops and online consultations, a group of experts in AMR pathogen genomics and computational tool development conducted a situational analysis, identifying the following under-used innovations in genomic AMR surveillance: clinical metagenomics, environmental metagenomics, gene or plasmid tracking, and machine learning. The group recommended developing cost-effective use cases for each approach and mapping data outputs to clinical outcomes of interest to justify additional investment in capacity, training, and staff required to implement these technologies. Harmonisation and standardisation of methods, and the creation of equitable data sharing and governance frameworks, will facilitate successful implementation of these innovations.
Collapse
Affiliation(s)
- Nicole E Wheeler
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, Edgbaston, UK
| | - Vivien Price
- Department of Clinical Infection, Immunology and Microbiology, Liverpool Centre for Global Health Research, University of Liverpool, Liverpool, UK
| | - Edward Cunningham-Oakes
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kara K Tsang
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Surrey, UK
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Nicholas A Feasey
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | | | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Kate S Baker
- Centre for Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
West ML, Hart S, Loughman A, Jacka FN, Staudacher HM, Abbaspour A, Phillipou A, Ruusunen A, Rocks T. Challenges and priorities for researching the gut microbiota in individuals living with anorexia nervosa. Int J Eat Disord 2023; 56:2001-2011. [PMID: 37548294 DOI: 10.1002/eat.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE The gut microbiota is implicated in several symptoms and biological pathways relevant to anorexia nervosa (AN). Investigations into the role of the gut microbiota in AN are growing, with a specific interest in the changes that occur in response to treatment. Findings suggest that microbial species may be associated with some of the symptoms common in AN, such as depression and gastrointestinal disturbances (GID). Therefore, researchers believe the gut microbiota may have therapeutic relevance. Whilst research in this field is rapidly expanding, the unique considerations relevant to conducting gut microbiota research in individuals with AN must be addressed. METHOD We provide an overview of the published literature investigating the relationship between the gut microbiota and symptoms and behaviors present in AN, discuss important challenges in gut microbiota research, and offer recommendations for addressing these. We conclude by summarizing research design priorities for the field to move forward. RESULTS Several ways exist to reduce participant burden and accommodate challenges when researching the gut microbiota in individuals with AN. DISCUSSION Recommendations from this article are foreseen to encourage scientific rigor and thoughtful protocol planning for microbiota research in AN, including ways to reduce participant burden. Employing such methods will contribute to a better understanding of the role of the gut microbiota in AN pathophysiology and treatment. PUBLIC SIGNIFICANCE The field of gut microbiota research is rapidly expanding, including the role of the gut microbiota in anorexia nervosa. Thoughtful planning of future research will ensure appropriate data collection for meaningful interpretation while providing a positive experience for the participant. We present current challenges, recommendations for research design and priorities to facilitate the advancement of research in this field.
Collapse
Affiliation(s)
- Madeline L West
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Susan Hart
- Eating and Nutrition Research Group, School of Medicine, Western Sydney University, Cambelltown, Australia
- Nutrition Services, St Vincent's Health Network, Darlinghurst, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Amy Loughman
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
- James Cook University, Townsville, Queensland, Australia
| | - Heidi M Staudacher
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutetet, Solna, Stockholm, Sweden
| | - Andrea Phillipou
- Orygen, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Mental Health, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Mental Health, Austin Health, Melbourne, Victoria, Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Tetyana Rocks
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
- Translational Health Research Institute, Eating Disorders and Body Image, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
18
|
Tang H, Chen X, Huang S, Yin G, Wang X, Shen G. Targeting the gut-microbiota-brain axis in irritable bowel disease to improve cognitive function - recent knowledge and emerging therapeutic opportunities. Rev Neurosci 2023; 34:763-773. [PMID: 36757367 DOI: 10.1515/revneuro-2022-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
The brain-gut axis forms a bidirectional communication system between the gastrointestinal (GI) tract and cognitive brain areas. Disturbances to this system in disease states such as inflammatory bowel disease have consequences for neuronal activity and subsequent cognitive function. The gut-microbiota-brain axis refers to the communication between gut-resident bacteria and the brain. This circuits exists to detect gut microorganisms and relay information to specific areas of the central nervous system (CNS) that in turn, regulate gut physiology. Changes in both the stability and diversity of the gut microbiota have been implicated in several neuronal disorders, including depression, autism spectrum disorder Parkinson's disease, Alzheimer's disease and multiple sclerosis. Correcting this imbalance with medicinal herbs, the metabolic products of dysregulated bacteria and probiotics have shown hope for the treatment of these neuronal disorders. In this review, we focus on recent advances in our understanding of the intricate connections between the gut-microbiota and the brain. We discuss the contribution of gut microbiota to neuronal disorders and the tangible links between diseases of the GI tract with cognitive function and behaviour. In this regard, we focus on irritable bowel syndrome (IBS) given its strong links to brain function and anxiety disorders. This adds to the growing body of evidence supporting targeted therapeutic strategies to modulate the gut microbiota for the treatment of brain/mental-health-related disease.
Collapse
Affiliation(s)
- Heyong Tang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Xiaoqi Chen
- School of Acupuncture and Massage, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Shun Huang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Gang Yin
- Xin'an School, Anhui University of Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiyang Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| | - Guoming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, 230012 Hefei, Anhui, China
| |
Collapse
|
19
|
Kool J, Tymchenko L, Shetty SA, Fuentes S. Reducing bias in microbiome research: Comparing methods from sample collection to sequencing. Front Microbiol 2023; 14:1094800. [PMID: 37065158 PMCID: PMC10101209 DOI: 10.3389/fmicb.2023.1094800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/22/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundMicrobiota profiles are strongly influenced by many technical aspects that impact the ability of researchers to compare results. To investigate and identify potential biases introduced by technical variations, we compared several approaches throughout the entire workflow of a microbiome study, from sample collection to sequencing, using commercially available mock communities (from bacterial strains as well as from DNA) and multiple human fecal samples, including a large set of positive controls created as a random mix of several participant samples.MethodsHuman fecal material was sampled, and aliquots were used to test two commercially available stabilization solutions (OMNIgene·GUT and Zymo Research) in comparison to samples frozen immediately upon collection. In addition, the methodology for DNA extraction, input of DNA, or the number of PCR cycles were analyzed. Furthermore, to investigate the potential batch effects in DNA extraction, sequencing, and barcoding, we included 139 positive controls.ResultsSamples preserved in both the stabilization buffers limited the overgrowth of Enterobacteriaceae when compared to unpreserved samples stored at room temperature (RT). These stabilized samples stored at RT were different from immediately frozen samples, where the relative abundance of Bacteroidota was higher and Actinobacteriota and Firmicutes were lower. As reported previously, the method used for cell disruption was a major contributor to variation in microbiota composition. In addition, a high number of cycles during PCR lead to an increase in contaminants detected in the negative controls. The DNA extraction had a significant impact on the microbial composition, also observed with the use of different Illumina barcodes during library preparation and sequencing, while no batch effect was observed in replicate runs.ConclusionOur study reaffirms the importance of the mechanical cell disruption method and immediate frozen storage as critical aspects in fecal microbiota studies. A comparison of storage conditions revealed that the bias was limited in RT samples preserved in stabilization systems, and these may be a suitable compromise when logistics are challenging due to the size or location of a study. Moreover, to reduce the effect of contaminants in fecal microbiota profiling studies, we suggest the use of ~125 pg input DNA and 25 PCR cycles as optimal parameters during library preparation.
Collapse
Affiliation(s)
- Jolanda Kool
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Liza Tymchenko
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sudarshan A. Shetty
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, Netherlands
| | - Susana Fuentes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- *Correspondence: Susana Fuentes
| |
Collapse
|
20
|
Mock community as an in situ positive control for amplicon sequencing of microbiotas from the same ecosystem. Sci Rep 2023; 13:4056. [PMID: 36906688 PMCID: PMC10008532 DOI: 10.1038/s41598-023-30916-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Metataxonomy has become the standard for characterizing the diversity and composition of microbial communities associated with multicellular organisms and their environment. Currently available protocols for metataxonomy assume a uniform DNA extraction, amplification and sequencing efficiency for all sample types and taxa. It has been suggested that the addition of a mock community (MC) to biological samples before the DNA extraction step could aid identification of technical biases during processing and support direct comparisons of microbiota composition, but the impact of MC on diversity estimates of samples is unknown. Here, large and small aliquots of pulverized bovine fecal samples were extracted with no, low or high doses of MC, characterized using standard Illumina technology for metataxonomics, and analysed with custom bioinformatic pipelines. We demonstrated that sample diversity estimates were distorted only if MC dose was high compared to sample mass (i.e. when MC > 10% of sample reads). We also showed that MC was an informative in situ positive control, permitting an estimation of the sample 16S copy number, and detecting sample outliers. We tested this approach on a range of sample types from a terrestrial ecosystem, including rhizosphere soil, whole invertebrates, and wild vertebrate fecal samples, and discuss possible clinical applications.
Collapse
|
21
|
Sidebottom AM. A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome. Clin Colon Rectal Surg 2023; 36:98-104. [PMID: 36844714 PMCID: PMC9946713 DOI: 10.1055/s-0042-1760678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Collapse
|
22
|
Abstract
Recent studies revealed a significant role of the gut fungal community in human health. Here, we investigated the content and variation of gut mycobiota among subjects from the European population. We explored the interplay between gut fungi and various host-related sociodemographic, lifestyle, health, and dietary factors. The study included 923 participants. Fecal DNA samples were analyzed by whole-metagenome high-throughput sequencing. Subsequently, fungi taxonomic profiles were determined and accompanied by computational and statistical analyses of the association with 53 host-related factors. Fungal communities were characterized by a high prevalence of Saccharomyces, Candida, and Sporisorium. Ten factors were found to correlate significantly with the overall mycobiota variation. Most were diet related, including the consumption of chips, meat, sodas, sweetening, processed food, and alcohol, followed by age and marital status. Differences in α- and/or β-diversity were also reported for other factors such as body mass index (BMI), job type, autoimmunological diseases, and probiotics. Differential abundance analysis revealed fungal species that exhibited different patterns of changes under specific conditions. The human gut mycobiota is dominated by yeast, including Saccharomyces, Malassezia, and Candida. Although intervolunteer variability was high, several fungal species persisted across most samples, which may be evidence that a core gut mycobiota exists. Moreover, we showed that host-related factors such as diet, age, and marital status influence the variability of gut mycobiota. To our knowledge, this is the first large and comprehensive study of the European cohort in terms of gut mycobiota associations with such an extensive and differentiated host-related set of factors. IMPORTANCE The human gut is inhabited by many organisms, including bacteria and fungi, that may affect human health. However, research on human gut mycobiome is still rare. Moreover, the large European-based cohort study is missing. Here, we analyzed the first large European cohort in terms of gut mycobiota associations with a differentiated host-related set of factors. Our results showed that chips, meat, sodas, sweetening, processed food, beer, alcohol consumption, age, and marital status were associated with the variability of gut mycobiota. Moreover, our analysis revealed changes in abundances at the fungal species level for many investigated factors. Our results can suggest potentially valuable paths for further, narrowly focused research on gut mycobiome and its impact on human health. In the coming era of gut microbiome-based precision medicine, further research into the relationship between different mycobial structures and host-related factors may result in new preventive approaches or therapeutic procedures.
Collapse
|
23
|
Xiao K, Sun Y, Song J, Li L, Mao W, Jiang C. Gut microbiota involved in myocardial dysfunction induced by sepsis. Microb Pathog 2023; 175:105984. [PMID: 36638851 DOI: 10.1016/j.micpath.2023.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Myocardial dysfunction is an important complication of sepsis and an important cause of death in sepsis patients. Sepsis will significantly change the composition of gut microbiota, and the destruction of gut microbiota also creates conditions for the occurrence and progression of sepsis. Gut microbiota is an important player in myocardial injury in sepsis. This review elaborates on the possible mechanisms of gut microbiota affecting myocardial injury in sepsis, including short-chain fatty acids, trimethylamine and trimethylamine oxides, various cytokines, and mitochondrial dysfunction. A better understanding of the mechanism could help improve the treatment of sepsis and get a better prognosis for sepsis patients.
Collapse
Affiliation(s)
- Kaihao Xiao
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Lei Li
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Mao
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chunming Jiang
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China.
| |
Collapse
|
24
|
Igisu M, Miyazaki M, Sakai S, Nakagawa S, Sakai HD, Takai K. Domain-level Identification of Single Prokaryotic Cells by Optical Photothermal Infrared Spectroscopy. Microbes Environ 2023; 38:ME23052. [PMID: 37853632 PMCID: PMC10728636 DOI: 10.1264/jsme2.me23052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
Infrared spectroscopy is used for the chemical characterization of prokaryotes. However, its application has been limited to cell aggregates and lipid extracts because of the relatively low spatial resolution of diffraction. We herein report optical photothermal infrared (O-PTIR) spectroscopy of prokaryotes for a domain-level diagnosis at the single-cell level. The technique provided infrared spectra of individual bacterial as well as archaeal cells, and the resulting aliphatic CH3/CH2 intensity ratios showed domain-specific signatures, which may reflect distinctive cellular lipid compositions; however, there was interference by other cellular components. These results suggest the potential of O-PTIR for a domain-level diagnosis of single prokaryotic cells in natural environments.
Collapse
Affiliation(s)
- Motoko Igisu
- Super-cutting-edge Grand and Advanced Research (Sugar) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 237–0061, Japan
| | - Masayuki Miyazaki
- Super-cutting-edge Grand and Advanced Research (Sugar) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 237–0061, Japan
| | - Sanae Sakai
- Super-cutting-edge Grand and Advanced Research (Sugar) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 237–0061, Japan
| | - Satoshi Nakagawa
- Super-cutting-edge Grand and Advanced Research (Sugar) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 237–0061, Japan
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki, Aichi 444–8787, Japan
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Present address: BioResource Research Center, Japan Collection of Microorganisms, RIKEN, Tsukuba, Ibaraki 305–0074, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (Sugar) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima, Yokosuka, Kanagawa 237–0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki, Aichi 444–8787, Japan
| |
Collapse
|
25
|
Chapman JA, Stewart CJ. Methodological challenges in neonatal microbiome research. Gut Microbes 2023; 15:2183687. [PMID: 36843005 PMCID: PMC9980642 DOI: 10.1080/19490976.2023.2183687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 02/28/2023] Open
Abstract
Following microbial colonization at birth, the gut microbiome plays a vital role in the healthy development of human neonates and impacts both health and disease in later life. Understanding the development of the neonatal gut microbiome and how it interacts with the neonatal host are therefore important areas of study. However, research within this field must address a range of specific challenges that impact the design and implementation of research methods. If not considered ahead of time, these challenges have the potential to introduce biases into studies, negatively affecting the relevance, reproducibility, and impact of any findings. This review outlines the nature of these challenges and points to current and future solutions, as outlined in the literature, to assist researchers in the early stages of study design.
Collapse
Affiliation(s)
- Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Huang Z, Liu K, Ma W, Li D, Mo T, Liu Q. The gut microbiome in human health and disease-Where are we and where are we going? A bibliometric analysis. Front Microbiol 2022; 13:1018594. [PMID: 36590421 PMCID: PMC9797740 DOI: 10.3389/fmicb.2022.1018594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background There are trillions of microbiota in our intestinal tract, and they play a significant role in health and disease via interacting with the host in metabolic, immune, neural, and endocrine pathways. Over the past decades, numerous studies have been published in the field of gut microbiome and disease. Although there are narrative reviews of gut microbiome and certain diseases, the whole field is lack of systematic and quantitative analysis. Therefore, we outline research status of the gut microbiome and disease, and present insights into developments and characteristics of this field to provide a holistic grasp and future research directions. Methods An advanced search was carried out in the Web of Science Core Collection (WoSCC), basing on the term "gut microbiome" and its synonyms. The current status and developing trends of this scientific domain were evaluated by bibliometric methodology. CiteSpace was used to perform collaboration network analysis, co-citation analysis and citation burst detection. Results A total of 29,870 articles and 13,311 reviews were retrieved from the database, which involve 42,900 keywords, 176 countries/regions, 19,065 institutions, 147,225 authors and 4,251 journals. The gut microbiome and disease research is active and has received increasing attention. Co-cited reference analysis revealed the landmark articles in the field. The United States had the largest number of publications and close cooperation with other countries. The current research mainly focuses on gastrointestinal diseases, such as inflammatory bowel disease (IBD), ulcerative colitis (UC) and Crohn's disease (CD), while extra-intestinal diseases are also rising, such as obesity, diabetes, cardiovascular disease, Alzheimer's disease, Parkinson's disease. Omics technologies, fecal microbiota transplantation (FMT) and metabolites linked to mechanism would be more concerned in the future. Conclusion The gut microbiome and disease has been a booming field of research, and the trend is expected to continue. Overall, this research field shows a multitude of challenges and great opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|