1
|
Balogh-Lantos Z, Fiáth R, Horváth ÁC, Fekete Z. High density laminar recordings reveal cell type and layer specific responses to infrared neural stimulation in the rat neocortex. Sci Rep 2024; 14:31523. [PMID: 39732850 PMCID: PMC11682324 DOI: 10.1038/s41598-024-82980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]). By analyzing the infrared (IR) stimulation-related responses of more than 7500 single units, we found that elevating tissue temperature with IR stimulation resulted in a significant increase in the number of cells affected, including a substantial rise in the number of inhibited cells. Pulsed stimulation affected an average of [Formula: see text] of units, resulting primarily in increased activity. In contrast, continuous stimulation significantly increased the percentage of affected cells to [Formula: see text], with single units tending to be suppressed. Furthermore, when analyzing cell types, a higher percentage of principal cells displayed increased firing rates ([Formula: see text]) compared to suppressed activity ([Formula: see text]). Meanwhile, more interneurons were suppressed ([Formula: see text]) than showed increased activity ([Formula: see text]). On average, the firing rate of neurons reached 90% of the maximal activation within approximately 36 seconds after the onset of infrared stimulation. The proportion of neurons with suppressed activity decreased with cortical depth, while the proportion of neurons with elevated activity increased in deeper layers. These results provide valuable data to understand the mechanism of infrared neural stimulation in the living brain.
Collapse
Affiliation(s)
- Zsófia Balogh-Lantos
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
| | - Richárd Fiáth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágoston Csaba Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
3
|
Sato H, Sugimoto F, Furukawa R, Tateno T. Modulatory Effects on Laminar Neural Activity Induced by Near-Infrared Light Stimulation with a Continuous Waveform to the Mouse Inferior Colliculus In Vivo. eNeuro 2024; 11:ENEURO.0521-23.2024. [PMID: 38627064 DOI: 10.1523/eneuro.0521-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.
Collapse
Affiliation(s)
- Hiromu Sato
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Futoshi Sugimoto
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takashi Tateno
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
4
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
5
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Ismaiel E, Fiáth R, Szabó Á, Horváth ÁC, Fekete Z. Thermal neuromodulation using pulsed and continuous infrared illumination in a penicillin-induced acute epilepsy model. Sci Rep 2023; 13:14460. [PMID: 37660232 PMCID: PMC10475096 DOI: 10.1038/s41598-023-41552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Infrared neuromodulation (INM) is a promising neuromodulation tool that utilizes pulsed or continuous-wave near-infrared (NIR) laser light to produce an elevation of the background temperature of the neural tissue. The INM-based cortical heating has been proven as an effective modality to induce changes in neuronal activities. In this paper, we investigate the effect of INM-based cortical heating on the characteristics of interictal epileptiform discharges (IEDs) induced by penicillin in anesthetized rats. Cortical heating was conducted using a NIR laser light guided through a needle-like silicon-based waveguide probe. We detected penicillin-induced cortical IEDs from preprocessed micro-electrocorticography ([Formula: see text]ECoG) recordings, then we assessed changes in various temporal and spectral features of IEDs due to INM. Our findings show that the fast cortical heating phase obtained with continuous-wave NIR light is highly associated with a reduction of IED amplitudes, small but significant changes in the negative amplitude of IEDs compared with the baseline, and a proportional increase in the power of frequency bands related to delta/theta (2-8 Hz) and gamma (28-80 Hz) oscillations. Furthermore, a low rate of cortical heating with pulsed NIR illumination has a more inhibitory impact on the sharp negative polarity of IEDs. Our findings do not indicate a clear reduction in the frequency of IEDs in anesthetized rodents. In contrast, 2-4 min of continuous laser illumination leads to a notable increase in IED frequency. This effect of INM could potentially restrict its use in therapeutic applications related to epilepsy. However, the thermal effect of INM on cortical neurons induces changes in other characteristics of IEDs, which could prove beneficial for future applications.
Collapse
Affiliation(s)
- Ebrahim Ismaiel
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Integrative Neuroscience Research Group, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Ágnes Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ágoston Csaba Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
7
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|