1
|
Rahman R, Fouhse JM, Ju T, Fan Y, Bhardwaj T, Brook RK, Nosach R, Harding J, Willing BP. The impact of wild-boar-derived microbiota transplantation on piglet microbiota, metabolite profile, and gut proinflammatory cytokine production differs from sow-derived microbiota. Appl Environ Microbiol 2025; 91:e0226524. [PMID: 39902926 PMCID: PMC11921332 DOI: 10.1128/aem.02265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Colonization of co-evolved, species-specific microbes in early life plays a crucial role in gastrointestinal development and immune function. This study hypothesized that modern pig production practices have resulted in the loss of co-evolved species and critical symbiotic host-microbe interactions. To test this, we reintroduced microbes from wild boars (WB) into conventional piglets to explore their colonization dynamics and effects on gut microbial communities, metabolite profiles, and immune responses. At postnatal day (PND) 21, 48 piglets were assigned to four treatment groups: (i) WB-derived mixed microbial community (MMC), (ii) sow-derived MMC, (iii) a combination of WB and sow MMC (Mix), or (iv) Control (PBS). Post-transplantation analyses at PND 48 revealed distinct microbial communities in WB-inoculated piglets compared with Controls, with trends toward differentiation from Sow but not Mix groups. WB-derived microbes were more successful in colonizing piglets, particularly in the Mix group, where they competed with Sow-derived microbes. WB group cecal digesta enriched with Lactobacillus helveticus, Lactobacillus mucosae, and Lactobacillus pontis. Cecal metabolite analysis showed that WB piglets were enriched in histamine, acetyl-ornithine, ornithine, citrulline, and other metabolites, with higher histamine levels linked to Lactobacillus abundance. WB piglets exhibited lower cecal IL-1β and IL-6 levels compared with Control and Sow groups, whereas the Mix group showed reduced IFN-γ, IL-2, and IL-6 compared with the Sow group. No differences in weight gain, fecal scores, or plasma cytokines were observed, indicating no adverse effects. These findings support that missing WB microbes effectively colonize domestic piglets and may positively impact metabolite production and immune responses.IMPORTANCEThis study addresses the growing concern over losing co-evolved, species-specific microbes in modern agricultural practices, particularly in pig production. The implementation of strict biosecurity measures and widespread antibiotic use in conventional farming systems may disrupt crucial host-microbe interactions that are essential for gastrointestinal development and immune function. Our research demonstrates that by reintroducing wild boar-derived microbes into domestic piglets, these microbes can successfully colonize the gut, influence microbial community composition, and alter metabolite profiles and immune responses without causing adverse effects. These findings also suggest that these native microbes can fill an intestinal niche, positively impacting immune activation. This research lays the groundwork for future strategies to enhance livestock health and performance by restoring natural microbial populations that produce immune-modulating metabolites.
Collapse
Affiliation(s)
- Rajibur Rahman
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle M Fouhse
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yi Fan
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tulika Bhardwaj
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- University of Calgary, Calgary, Alberta, Canada
| | - Ryan K Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P Willing
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Luise D, Correa F, Cestonaro G, Sattin E, Conte G, Mele M, Archetti I, Virdis S, Negrini C, Galasso I, Stefanelli C, Mazzoni M, Nataloni L, Trevisi P, Costanzo E. Effect of different doses of camelina cake inclusion as a substitute of dietary soyabean meal on growth performance and gut health of weaned pigs. Br J Nutr 2024; 131:1962-1974. [PMID: 38606551 PMCID: PMC11361914 DOI: 10.1017/s0007114524000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d post-weaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0·01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0·04) and increased linearly the feed to gain (P = 0·004). CAM increased linearly the liver weight (P < 0·0001) and affected the cadaverine (P < 0·001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0·05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Giulia Cestonaro
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| | | | - Giuseppe Conte
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, Pisa, 56124, Italy
| | - Marcello Mele
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, Pisa, 56124, Italy
| | - Ivonne Archetti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124, Brescia, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Clara Negrini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Incoronata Galasso
- Institute of Agricultural Biology and Biotechnology, CNR, via Alfonso Corti 12, Milan, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso D’Augusto 237, 47921Rimini, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Science, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell’Emilia, Italy
| | - Luigi Nataloni
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G Fanin, Bologna40127, Italy
| | - Enrico Costanzo
- Cereal Docks S.p.A – Dipartimento Ricerca & Innovazione (E. Costanzo, G. Cestonaro), Cereal Docks S.p.A (L. Nataloni) via Innovazione 1, Camisano Vicentino, 36043, Italy
| |
Collapse
|
3
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
4
|
Luise D, Correa F, Negrini C, Virdis S, Mazzoni M, Dalcanale S, Trevisi P. Blend of natural and natural identical essential oil compounds as a strategy to improve the gut health of weaning pigs. Animal 2023; 17:101031. [PMID: 38035660 DOI: 10.1016/j.animal.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Weaning is one of the most critical phases in pig's life, often leading to postweaning diarrhoea (PWD). Zinc oxide (ZnO), at pharmacological doses, has been largely used to prevent PWD; however, due to antimicrobial co-resistant and environmental pollution issues, the EU banned its use in June 2022. Natural or natural identical components of essential oils and their mixture with organic acids are possible alternatives studied for their antimicrobial, anti-inflammatory and antioxidant abilities. This study aimed to evaluate the effect of two blends of natural or natural identical components of essential oils and organic acids compared to ZnO on health, performance, and gut health of weaned pigs. At weaning (d0), 96 piglets (7 058 ± 895 g) were assigned to one of four treatments balanced for BW and litter: CO (control treatment), ZnO (2 400 mg/kg ZnO from d0 to d14); Blend1 (cinnamaldehyde, ajowan and clove essential oils, 1 500 mg/kg feed); Blend2 (cinnamaldehyde, eugenol and short- and medium-chain fatty acids, 2 000 mg/kg feed). Pigs were weighed weekly until d35. Faeces were collected at d13 and d35 for microbiota (v3-v4 regions of the 16 s rRNA gene) and Escherichia coli (E. coli) count analysis. At d14 and d35, eight pigs/treatment were slaughtered; pH was recorded on intestinal contents and jejunal samples were collected for morphological and gene expression analysis. From d7-d14, the Blend2 had a lower average daily gain (ADG) than CO and ZnO (P < 0.05). ZnO and Blend1 never differed in ADG and feed intake. At d14, ZnO had a lower caecum pH than all other treatments. The CO treatment had a higher abundance of haemolytic E. coli than Blend1 (P = 0.01). At d13, the ZnO treatment had a lower alpha diversity (P < 0.01) and a different microbial beta diversity (P < 0.001) compared to the other treatments. At d13, the ZnO treatment was characterised by a higher abundance of Prevotellaceae_NK3B31_group (Linear Discriminant Analysis (LDA) score = 4.5, P = 0.011), Parabacteroides (LDA score = 4.5, P adj. = 0.005), the CO was characterised by Oscillospiraceae UCG-005 (LDA score = 4.3, P adj. = 0.005), Oscillospiraceae NK4A214_group (LDA score = 4.2, P adj. = 0.02), the Blend2 was characterised by Megasphaera (LDA score = 4.1, P adj. = 0.045), and Ruminococcus (LDA score = 3.9, P adj. = 0.015) and the Blend1 was characterised by Christensenellaceae_R-7_group (LDA score = 4.6, P adj. < 0.001) and Treponema (LDA score = 4.5, P adj. < 0.001). In conclusion, Blend1 allowed to maintain the gut health of postweaning piglets through modulation of the gut microbiome, the reduction of haemolytic E. coli while Blend2 did not help piglets.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - C Negrini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - S Virdis
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Mazzoni
- Department of Veterinary Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - S Dalcanale
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
5
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
6
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|