1
|
Zhong Y, Chen G, Chen M, Cui J, Tan Q, Xiao Z. Gene prediction of immune cells association between gut microbiota and colorectal cancer: a Mendelian randomization study. Front Immunol 2025; 16:1460936. [PMID: 39958359 PMCID: PMC11825486 DOI: 10.3389/fimmu.2025.1460936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Background An increasing number of studies have revealed that gut microbiota influences the development and progression of Colorectal cancer (CRC). However, whether a causal relationship exists between the two remains unclear, and the role of immune cells in this context is not well understood. Objective To elucidate the causal relationship between gut microbiota and CRC and to explore the potential mediating role of circulating immune cells. Materials and methods To analyze the causal relationship between gut microbiota and CRC, we employed a univariable Mendelian randomization (UVMR) approach. Subsequently, a two-step multivariable Mendelian randomization (MVMR) to assess the potential mediating role of circulating immune cells. Primarily, applied the Inverse-Variance Weighted method to evaluate the causal relationship between exposure and outcome. To ensure the robustness of the results linking gut microbiota and CRC, we validated the findings using Robust Inverse-Variance Weighted, Penalized Inverse-Variance Weighted, and Penalized Robust Inverse-Variance Weighted methods. Additionally, we employed MR-Egger Intercept to mitigate the influence of horizontal pleiotropy. MR-PRESSO was used to detect and correct outliers by excluding anomalous instrumental variables. Finally, we supplemented our analysis with methods such as Bayesian Weighted Mendelian Randomization (BWMR), Maximum-Likelihood, Lasso, Debiased Inverse Variance Weighted, and Contamination Mixture to establish a robust and compelling causal relationship. Results After accounting for reverse causality, horizontal pleiotropy, and various methodological corrections, Bifidobacterium kashiwanohense, GCA-900066755 sp900066755, Geminocystis, and Saccharofermentanaceae exhibited strong and robust causal effects on CRC. Specifically, CD40 on monocytes (2.82%) and CD45 on CD33+HLA-DR+CD14- cells (12.87%) mediated the causal relationship between Bifidobacterium kashiwanohense and CRC risk. Furthermore, CD45 on CD33-HLA-DR+ (3.94%) mediated the causal relationship between GCA-900066755 sp900066755 and CRC risk. Additionally, terminally differentiated CD4+T cells (11.55%) mediated the causal relationship between Geminocystis and CRC risk. Lastly, CD40 on monocytes (2.35%), central memory CD4+T cells (5.76%), and CD28 on CD28+CD45RA+CD8+T cells (5.00%) mediated the causal relationship between Saccharofermentanaceae and CRC risk. Conclusion Our mediation MR analysis provides genetic evidence suggesting that circulating immune cells may mediate the causal relationship between gut microbiota and CRC. The identified associations and mediation effects offer new insights into potential therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Yan Zhong
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junsong Cui
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qianren Tan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhenghua Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
3
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Huang R, Jin X, Jiang Z, Wang Y, Wu Y, Wang L, Zhu W. Genetically evaluating the causal role of peripheral immune cells in colorectal cancer: a two-sample Mendelian randomization study. BMC Cancer 2024; 24:753. [PMID: 38902711 PMCID: PMC11191266 DOI: 10.1186/s12885-024-12515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Investigating novel therapeutic strategies for colorectal cancer (CRC) is imperative. However, there is limited research on the use of drugs to target peripheral blood immune cells in this context. To address this gap, we performed a two-sample Mendelian randomization (MR) analysis to identify potential therapeutic targets for CRC. METHODS We applied two-sample MR to identify the causal relationship between peripheral blood immune cells and CRC. GWAS data were obtained from the IEU OPEN GWAS project. Based on the implications from the MR results, we conducted a comprehensive database search and genetic analysis to explore potential underlying mechanisms. We predicted miRNAs for each gene and employed extensive research for potential therapeutic applications. RESULTS We have identified causal associations between two peripheral immune cells and colorectal cancer. Activated & resting Treg %CD4 + cell was positively associated with the risks of CRC, while DN (CD4-CD8-) %leukocyte cell exhibited a protective role in tumor progression. NEK7 (NIMA related kinase 7) and LHX9 (LIM homeobox 9) expressed in Treg cells were positively associated with CRC risks and may play a vital role in carcinogenesis. CONCLUSIONS This study identified causal relationship between peripheral immune cell and CRC. Treg and DN T cells were implicated to own promoting and inhibiting effects on CRC progression respectively. NEK7 and LHX9 in Treg cells were identified as potential biotarget for antitumor therapies.
Collapse
Affiliation(s)
- Runze Huang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziting Jiang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zu S, Lu Y, Xing R, Chen X, Zhang L. Changes in subset distribution and impaired function of circulating natural killer cells in patients with colorectal cancer. Sci Rep 2024; 14:12188. [PMID: 38806640 PMCID: PMC11133342 DOI: 10.1038/s41598-024-63103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.
Collapse
Affiliation(s)
- Shujin Zu
- Department of Reproductive Center, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, DongYang People's Hospital, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China
| | - Rui Xing
- The Department of Hematology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xiang Chen
- Department of Biomedical Sciences Laboratory, Affiliated DongYang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, DongYang People's Hospital, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 West Wuning Road, Dongyang, 322100, Zhejiang, China.
| |
Collapse
|
6
|
Koukourakis IM, Xanthopoulou E, Koukourakis MI, Tiniakos D, Kouloulias V, Zygogianni A. IFN-Type-I Response and Systemic Immunity in Rectal Adenocarcinoma Patients Treated with Conventional or Hypofractionated Neoadjuvant Radiotherapy. Biomolecules 2024; 14:448. [PMID: 38672465 PMCID: PMC11048635 DOI: 10.3390/biom14040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The IFN-type-I pathway is involved in radiotherapy (RT)-mediated immune responses. Large RT fractions have been suggested to potently induce this pathway. Neoadjuvant hypofractionated short-course (scRT) and conventional long-course (lcRT) RT applied for the treatment of locally advanced rectal adenocarcinoma patients provides a unique model to address the immuno-stimulatory properties of RT on a systemic level. We prospectively analyzed the IFNβ plasma levels and lymphocyte counts (LCs) of rectal adenocarcinoma patients before and after treatment with scRT (n = 22) and lcRT (n = 40). Flow cytometry was conducted to assess the effects on lymphocytic subpopulations in a subset of 20 patients. A statistically significant increase in the post-RT IFNβ plasma levels was noted in patients undergoing scRT (p = 0.004). Improved pathological tumor regression was associated with elevated post-RT IFNβ levels (p = 0.003). Although all patients experienced substantial lymphopenia after treatment, the post-RT LC of patients treated with scRT were significantly higher compared to lcRT (p = 0.001). Patients undergoing scRT displayed significantly lower percentages of regulatory CD4+/CD25+ T-cells after therapy (p = 0.02). scRT enables effective stimulation of the IFN-type-I pathway on a systemic level and confers decreased lymphocytic cytotoxicity and limited regulatory T-cell activation compared to lcRT, supporting its increasing role in immuno-RT trials.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece;
| | - Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (M.I.K.)
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (M.I.K.)
| | - Dina Tiniakos
- Department of Pathology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Attikon Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece;
| |
Collapse
|
7
|
Cao K, Wang X, Wang H, Xu C, Ma A, Zhang Y, Zheng M, Xu Y, Tang L. Phenotypic and functional exhaustion of circulating CD3 + CD56 + NKT-like cells in colorectal cancer patients. FASEB J 2024; 38:e23525. [PMID: 38430373 DOI: 10.1096/fj.202301743r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaowei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Wang
- Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cairui Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Along Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuntao Zhang
- The First Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Shen MH, Liu CY, Chang KW, Lai CL, Chang SC, Huang CJ. Propolis Has an Anticancer Effect on Early Stage Colorectal Cancer by Affecting Epithelial Differentiation and Gut Immunity in the Tumor Microenvironment. Nutrients 2023; 15:4494. [PMID: 37960147 PMCID: PMC10648826 DOI: 10.3390/nu15214494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 221037, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 110301, Taiwan;
- Laboratory Animal Center, Taipei Medical University, Taipei City 110301, Taiwan
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan;
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei City 106438, Taiwan;
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei City 106438, Taiwan
| |
Collapse
|
9
|
Leonhard J, Schaier M, Kälble F, Zeier M, Steinborn A. Exhaustion of CD8 + central memory responder T cell differentiation provokes non-melanoma skin cancer in elderly kidney transplant recipients. Front Immunol 2023; 14:1164284. [PMID: 37287988 PMCID: PMC10242110 DOI: 10.3389/fimmu.2023.1164284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Immunosuppressive therapy prevents graft rejection but increases the risk of non-melanoma skin cancer (NMSC), especially in elderly kidney transplant recipients (KTR). Methods In this study, we separately investigated the differentiation of CD8+ regulatory T cells (Tregs) and responder T cells (Tresps) between healthy KTR without NMSC, KTR developing de-novo NMSC within two years after the enrolment, and KTR with NMSC at the time of enrolment. Antigen-unexperienced CCR7+CD45RA+CD31+ recent thymic emigrant (RTE) cells differentiate via CD45RA-CD31+ memory (CD31+ memory) cells, via resting mature naïve (MN) cells or via direct proliferation into CD45RA-CD31- memory (CD31- memory) cells, consisting of both CCR7+CD45RA- central memory (CM) and CCR7-CD45RA- effector memory (EM) cells. Results We found that both RTE Treg and Tresp differentiation via CD31+ memory Tregs/Tresps was age-independently increased in KTR, who developed de novo NMSC during the follow-up period, causing abundant CM Treg/Tresp production, which may be crucial for cancer immunity. These changes favored a strongly increased CD8+ Treg/Tresp ratio, suggesting this ratio as a reliable marker for de-novo NMSC development in KTR. However, with age, this differentiation was replaced by increased conversion of resting MN Tregs/Tresps into CM Tregs/Tresps, which exhausted for Tresps but not for Tregs. In KTR with already existing NMSC at enrolment, differentiation was maintained via conversion and proliferation of resting MN Tregs/Tresps, which however increasingly exhausted with age, especially for Tresps. This resulted in a strong accumulation of terminally differentiated effector memory (TEMRA) Tresps in elderly individuals. Patients with NMSC recurrence showed increased proliferation of resting MN Tregs/Tresps into EM Tregs/Tresps, which tended to exhaust more rapidly, particularly for Tresps, than in patients without NMSC recurrence. Discussion In conclusion, we provide evidence that immunosuppressive therapy inhibits differentiation of CD8+ Tregs more than that of CD8+ Tresps, resulting in an exhausted Tresp profile, thus providing a possible therapeutic approach to improve poor cancer immunity in elderly KTR.
Collapse
Affiliation(s)
- Jonas Leonhard
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|