1
|
Boujnane M, Zommiti M, Lesouhaitier O, Ferchichi M, Tahrioui A, Boukerb AM, Connil N. Pediococcus pentosaceus MZF16 Probiotic Strain Prevents In Vitro Cytotoxic Effects of Pseudomonas aeruginosa H103 and Prolongs the Lifespan of Caenorhabditis elegans. Pathogens 2025; 14:244. [PMID: 40137729 PMCID: PMC11945076 DOI: 10.3390/pathogens14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium, responsible for several life-threatening infections due to its multiple virulence factors and problematic multi-drug resistance, hence the necessity to find alternatives such as competitive probiotics. Pediococcus pentosaceus MZF16 is an LAB strain, isolated from traditional dried meat "Ossban", with high probiotic potential. Our study investigated the capacity of P. pentosaceus MZF16 to counteract P. aeruginosa H103 using several tests on intestinal cells (analysis of cytotoxicity, inflammation, adhesion/invasion) and on the in vivo Caenorhabditis elegans model. The effect of MZF16 on the quorum sensing of the pathogen was also examined. We found that P. pentosaceus MZF16 was able to reduce H103 cytotoxicity and inflammatory activity and prevented pathogen colonization and translocation across Caco-2/TC7 cells. MZF16 also exerted an anti-virulence effect by attenuating quorum-sensing (QS) molecules and pyoverdine production and extended C. elegans lifespan. The obtained results highlight the potential of P. pentosaceus MZF16 probiotic strain as an anti-Pseudomonas aeruginosa alternative and establish a basis for elucidating the mechanisms of P. pentosaceus MZF16 involved in countering P. aeruginosa virulence.
Collapse
Affiliation(s)
- Meryem Boujnane
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| | - Mohamed Zommiti
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| | - Olivier Lesouhaitier
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia;
| | - Ali Tahrioui
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| | - Amine M. Boukerb
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| | - Nathalie Connil
- CBSA UR 4312, Université de Rouen Normandie, Université de Caen Normandie, Normandie Université, F-76000 Rouen, France; (M.B.); (M.Z.); (O.L.); (A.T.); (A.M.B.)
| |
Collapse
|
2
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Chutia B, Dutta PP, Saikia L, Chowdhury P, Borah M, Barhoi D, Kumar R, Borah SN, Borah D, Manhar AK, Mandal M, Gogoi B. Exploring the antidiabetic activity of potential probiotic bacteria isolated from traditional fermented beverage. World J Microbiol Biotechnol 2024; 41:10. [PMID: 39690349 DOI: 10.1007/s11274-024-04226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Type 2 Diabetes continues to be one of the major public health issues worldwide without any sustainable cure. The modulation of gut microbiota is believed to be caused by probiotic bacteria and several probiotic strains have previously shown antidiabetic activity. The present study aims to isolate potential probiotic bacteria from traditionally used fermented rice beer of Assam, India and to investigate its anti-hyperglycemic effect. Of the 20 isolated bacterial isolates, 5 isolates showed potential probiotic activities, of which, 2 isolates viz. Bacillus sp. FRB_A(A) and Acetobacter sp. FRB_B(S) showed good in vitro anti-oxidant and anti α-glucosidase activities. Based on the in vitro results, isolate Bacillus sp. FRB_A(A) was further used to evaluate the antidiabetic activity in streptozotocin induced diabetic rat model. After 21 days, the blood glucose level in diabetic rats with probiotic administration significantly lowered from 458.00 ± 46.62 mg/dl to 108.20 ± 6.76 mg/dl (p < 0.001), whereas, in diabetic rats without probiotic remained high (576.20 ± 29.48 mg/dl). On analyzing the endogenous antioxidant profile in various tissues of the experimental rats, reduced lipid peroxidation, glutathione level and superoxide dismutase and glutathione peroxidase activity were observed in probiotic administered rats in comparison to the streptozotocin treated diabetic controls. In conclusion, the bacteria Bacillus sp. FRB_A(A) isolated from fermented rice beer possesses probiotic attributes and exhibits significant anti-hyperglycemic activities.
Collapse
Affiliation(s)
- Bishwapriya Chutia
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Partha P Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Purvita Chowdhury
- Viral Research and Diagnostic Laboratory, All India Institute of Medical Sciences, Guwahati, Assam, 781101, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Dharmeswar Barhoi
- Department of Zoology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Rupesh Kumar
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Siddhartha N Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Ajay Kumar Manhar
- Indira Gandhi Govt. PG College, Vaishali Nagar, Bhilai-23, Chhattisgarh, 490023, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India.
| |
Collapse
|
4
|
Pannerchelvan S, Rios-Solis L, Wasoh H, Sobri MZM, Faizal Wong FW, Mohamed MS, Mohamad R, Halim M. Functional yogurt: a comprehensive review of its nutritional composition and health benefits. Food Funct 2024; 15:10927-10955. [PMID: 39446126 DOI: 10.1039/d4fo03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Functional yogurt, renowned for its enhanced nutritional profile and potential health benefits, has emerged as a promising functional food. This review meticulously examines the nutritional composition of functional yogurt, highlighting its enriched content of probiotics, prebiotics, synbiotics, antioxidants, vitamins, minerals, proteins, and other bioactive compounds, which contribute to its health-promoting properties. Functional yogurt has positively affected digestive health, immune function, metabolic health, and mental well-being. It benefits digestive health by alleviating diarrhoeal symptoms, constipation, colon cancer, irritable bowel syndrome (IBS), Helicobacter pylori infection, and digestive-related allergies. Moreover, the immune-boosting properties of functional yogurt play a pivotal role in reducing the risk of infections and inflammation. In addition, functional yogurt has the potential to improve metabolic health, leading to decreased cholesterol levels and enhanced blood sugar regulation. Emerging research also suggests functional yogurt may positively influence mood, behavior, and cognitive function. Functional yogurt is a valuable addition to the human diet, holding significant implications for public health. In addition to its numerous health benefits, functional yogurt also faces limitations, such as the stability of functional compounds, sensory alterations, potential digestive discomfort, and inconsistent efficacy across populations, highlighting the need for further research and optimization.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Leonardo Rios-Solis
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, 6.07, WC1E 6BT, United Kingdom
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Zulfazli Mohd Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Keeratikunakorn K, Kaeoket K, Ounjai P, Wannigama DL, Chatsuwan T, Ngamwongsatit N. First detection of multidrug-resistant and toxigenic Pasteurella aerogenes in sow vaginal discharge: a novel threat to swine health in Thailand. Sci Rep 2024; 14:25510. [PMID: 39462022 PMCID: PMC11513033 DOI: 10.1038/s41598-024-76428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Pasteurella aerogenes has been implicated in reproductive disorders in sows, yet its prevalence and characteristics in vaginal discharge are not well understood. This study aimed to detect P. aerogenes in sow vaginal discharge samples and investigate its antibiotic resistance profile, toxin genes, and toxicity. P. aerogenes was isolated from 40% (8/20) of samples. Antimicrobial susceptibility testing revealed universal resistance to amoxicillin-clavulanate (4:1), with 87.5% of isolates also resistant to oxytetracycline, amoxicillin, ceftriaxone, and enrofloxacin. The colistin resistance gene mcr-2 was detected in 75% of isolates, while class 1 integron (int1) was found in 12.5%. The pax toxin gene cluster was present in 75% of isolates. Toxicity assays using Panagrellus redivivus demonstrated dose-dependent effects of P. aerogenes supernatant containing pax toxins. This study represents the first report of P. aerogenes isolation from sow vaginal discharge in Thailand. The high prevalence of antibiotic resistance, presence of the mcr-2 gene, and toxicity of pax toxin-positive isolates suggest that P. aerogenes may be an underestimated factor in swine reproductive health. These findings highlight the need for further investigation into the role of P. aerogenes in sow reproductive disorders and its potential impact on swine production.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Rama VI, Phayathai, Bangkok, 10400, Thailand
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
6
|
Kompramool S, Singkhamanan K, Pomwised R, Chaichana N, Suwannasin S, Wonglapsuwan M, Jitpakdee J, Kantachote D, Yaikhan T, Surachat K. Genomic Insights into Pediococcus pentosaceus ENM104: A Probiotic with Potential Antimicrobial and Cholesterol-Reducing Properties. Antibiotics (Basel) 2024; 13:813. [PMID: 39334988 PMCID: PMC11428213 DOI: 10.3390/antibiotics13090813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Pediococcus pentosaceus, which often occurs in fermented foods, is characterized by numerous positive effects on the human health, such as the presence of possible probiotic abilities, the reduction of cholesterol levels, satisfactory antimicrobial activity, and certain therapeutic functions. This study was conducted with the goal of describing the genomic content of Pediococcus pentosaceus ENM104, a strain known for its inhibitory effects against pathogenic bacteria and its remarkable probiotic potential, including the induction of significant reductions in cholesterol levels and the production of γ-aminobutyric acid (GABA). The P. pentosaceus ENM104 chromosome is circular. The chromosome is 1,734,928 bp with a GC content of 37.2%. P. pentosaceus also harbors a circular plasmid, pENM104, that is 71,811 bp with a GC content of 38.1%. Functional annotations identified numerous genes associated with probiotic traits, including those involved in stress adaptation (e.g., heat stress: htpX, dnaK, and dnaJ), bile tolerance (e.g., ppaC), vitamin biosynthesis (e.g., ribU, ribZ, ribF, and btuD), immunomodulation (e.g., dltA, dltC, and dltD), and bacteriocin production (e.g., pedA). Notably, genes responsible for lowering cholesterol levels (bile salt hydrolase, bsh) and GABA synthesis (glutamate/GABA antiporter, gadC) were also identified. The in vitro assay results using cell-free supernatants of P. pentosaceus ENM104 revealed antibacterial activity against carbapenem-resistant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, and the inhibition zone diameter increased progressively over time. This comprehensive study provides valuable insights into the molecular characteristics of P. pentosaceus ENM104, emphasizing its potential as a probiotic. Its notable cholesterol-lowering, GABA-producing, and antimicrobial capabilities suggest promising applications in the pharmaceutical and food industries. Future research should focus on further exploring these functional properties and assessing the strain's efficacy in clinical settings.
Collapse
Affiliation(s)
- Siriwan Kompramool
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (R.P.); (M.W.); (J.J.); (D.K.)
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (R.P.); (M.W.); (J.J.); (D.K.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (R.P.); (M.W.); (J.J.); (D.K.)
| | - Jirayu Jitpakdee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (R.P.); (M.W.); (J.J.); (D.K.)
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (R.P.); (M.W.); (J.J.); (D.K.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (K.S.); (N.C.); (S.S.); (T.Y.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
7
|
Nair VG, Srinandan CS, Rajesh YBRD, Narbhavi D, Anupriya A, Prabhusaran N, Nagarajan S. Biogenic amine tryptamine in human vaginal probiotic isolates mediates matrix inhibition and thwarts uropathogenic E. coli biofilm. Sci Rep 2024; 14:15387. [PMID: 38965339 PMCID: PMC11224256 DOI: 10.1038/s41598-024-65780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.
Collapse
Affiliation(s)
- Veena G Nair
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C S Srinandan
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Y B R D Rajesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhiviya Narbhavi
- Department of Obstetrics and Gynaecology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - A Anupriya
- Department of Microbiology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - N Prabhusaran
- Research Faculty, Institutional Research Board TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
8
|
Keeratikunakorn K, Chanapiwat P, Aunpad R, Ngamwongsatit N, Kaeoket K. Effect of Antimicrobial Peptide BiF2_5K7K on Contaminated Bacteria Isolated from Boar Semen and Semen Qualities during Preservation and Subsequent Fertility Test on Pig Farm. Antibiotics (Basel) 2024; 13:579. [PMID: 39061261 PMCID: PMC11274119 DOI: 10.3390/antibiotics13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to determine the impact of an antimicrobial peptide, BiF2_5K7K, on semen quality and bacterial contamination in boar semen doses used for artificial insemination. A key factor affecting semen quality and farm production is bacterial contamination in semen doses. Using antibiotics in a semen extender seems to be the best solution for minimizing bacterial growth during semen preservation. However, concern regarding antibiotic-resistant microorganisms has grown globally. As a result, antimicrobial peptides have emerged as interesting alternative antimicrobial agents to replace the current antibiotics used in semen extenders. BiF2_5K7K is an antimicrobial peptide that can inhibit Gram-negative and Gram-positive bacteria isolated from boar semen and sow vaginal discharge. In this study, ten fresh boar semen samples were collected and diluted with one of two types of semen extender: with (positive control) or without (negative control) an antibiotic (i.e., gentamicin). The semen extender without an antibiotic contained antimicrobial peptide BiF2_5K7K at different concentrations (15.625, 31.25, 62.5, and 125 µg/mL). The samples were stored at 18 °C until use. Semen quality parameters were assessed on days 0, 1, 3, and 5, and the total bacterial count was also evaluated at 0, 24, 36, 48, and 72 h after storage. A fertility test on a pig farm was also performed via sow insemination with a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. No significant difference was found in terms of semen quality on days 0 or 1. On days 3 and 5, the total motility, progressive motility, and viability remained normal in the 15.625 and 31.25 µg/mL groups. However, the sperm parameters decreased starting on day 3 for the 125 µg/mL group and on day 5 for the 62.5 µg/mL group. For total bacterial count at 0, 24, 36, 48, and 72 h, the lowest bacterial count was found in the positive control group, and the highest bacterial count was found in the negative control group compared with the other groups. Comparing antimicrobial peptide groups from 0 to 48 h, the lowest bacterial count was found in the 125 µg/mL group, and the highest bacterial count was found in the 15.625 µg/mL group. For the fertility test, artificial insemination was conducted by using a commercial extender plus BiF2_5K7K at a concentration of 31.25 µg/mL. The results showed a superior pregnancy rate, farrowing rate, and total number of piglets born compared with artificial insemination conducted using a commercial extender plus antibiotic. In conclusion, BiF2_5K7K can inhibit bacterial growth in extended boar semen for 24 h, and thereafter, the bacterial count slightly increases. However, the increase in the number of bacterial counts from days 0 to 3 had no negative effect on sperm quality in the positive control, 15.625, or 31.25 µg/mL groups. This indicates that BiF2_5K7K might be an antimicrobial peptide candidate with potential for use as an alternative antimicrobial agent to replace the conventional antibiotic used in boar semen extenders.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| | - Panida Chanapiwat
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani 12120, Thailand;
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kampon Kaeoket
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.)
| |
Collapse
|
9
|
Nguyet LTY, Ounjai P, Ngamwongsatit N, Kaeoket K. The immune response of pregnant sow after vaccination with crude fimbriae (F4) extracts vaccine and immunoprotection of nursery pig against pathogenic E. coli (F4 +ETEC). Acta Trop 2024; 254:107173. [PMID: 38503364 DOI: 10.1016/j.actatropica.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Neonatal and post-weaning diarrhea is a concern disease caused by enterotoxigenic Escherichia coli fimbriae F4 (F4+ETEC) in pig farms. Diarrhea outbreaks are often severe and costly due to the high prevalence and spread of the disease within the same herd. Vaccine is one of strategic solution in protecting pig against F4+ETEC infection in particular pig farm. In present study, we conducted two trials of vaccination with crude F4 fimbriae extract vaccine in pregnant sow and nursery pigs. METHODS In experiment 1 (20 sows; non-vaccinated control, n=10), we vaccinated pregnant sows (n=10) twice at 4 wk and 2 wk before farrowing and evaluated impact of vaccination on maternal immunity. The sow serum and colostrum were collected before vaccination, 2 and 4 weeks after vaccination, 6 hours after farrowing, respectively, and the piglet's serum from both groups (2 piglet/sow, 10 piglets from each group) were also collected on 3 days old to measure F4 specific IgG, F4 specific IgA using in house ELISA kit. In experiment 2, to optimize doses and dosage of candidate vaccine in piglets, 18 piglets (3 piglets/group) were allocated into five immunized groups and one control group (unimmunized group), we immunized piglets twice at 4 and 6 weeks old with difference doses (i.e., 0, 50, 100, 150, 200 µg), and for a dose 150 µg, we immunized with two dosages at 1 ml and 2 ml. Piglets were challenged with a 3 ml dose of 3 × 109 CFU/ml bacterial culture of enterotoxigenic Escherichia coli (F4+ETEC) in order to evaluate the efficacy of vaccine. After challenging, the clinical sign of the piglets was daily observed and the rectal swab was performed every day for investigation of the fecal shedding of Escherichia coli (F4+ETEC) by using PCR technique. Serum were collected before, 2 and 4 weeks after vaccination and 1 week after challenge to measure F4 specific IgG, F4 specific IgA using in house ELISA kit and cytokines levels (i.e., IL-1 beta, IL-6, IL-8 and TNF alpha) before and 1 week after challenge using commercial ELISA kit. RESULTS The levels of antibody results showed that in experiment 1, the anti-F4 antibody levels both F4 specific IgG and F4 specific IgA in serum and colostrum of vaccinated sow increased significantly after vaccination. The piglets of immunized sows have antibody level both F4 specific IgG and F4 specific IgA in their serum higher than those piglets of unimmunized sows significantly (p < 0.01). In experiment 2, irrespective of different doses and dosage, there is no difference in term of F4 specific IgG and F4 specific IgA levels among immunized groups. However, all of vaccinated piglets showed F4 specific IgG and F4 specific IgA levels higher and the elimination of Escherichia coli (F4+ETEC) in feces post challenge faster (< 3 days) than unvaccinated group (> 5 days). For cytokines levels, a higher level of IL-1 beta, IL-6, IL-8 and TNF alpha at 1 week after challenge in vaccinated groups was found when compared with the levels in non-vaccinated group. CONCLUSIONS Our results suggest that crude F4 fimbriae extract autogenous vaccine is a candidate vaccine for protecting piglets against diarrhea disease caused by enterotoxigenic Escherichia coli (F4+ETEC) and vaccination the pregnant sow twice before farrowing is one of strategies to provide maternal derived antibody to the newborn piglets for against enterotoxigenic Escherichia coli (F4+ETEC) during early life.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand; Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
10
|
Keeratikunakorn K, Chanapiwat P, Aunpad R, Ngamwongsatit N, Kaeoket K. The Effects of Different Antimicrobial Peptides (A-11 and AP19) on Isolated Bacteria from Fresh Boar Semen and Semen Quality during Storage at 18 °C. Antibiotics (Basel) 2024; 13:489. [PMID: 38927156 PMCID: PMC11200709 DOI: 10.3390/antibiotics13060489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance (AMR) is a major public health concern. Antimicrobial peptides (AMPs) could be an alternative to conventional antibiotics. The purpose of this research was to investigate the antimicrobial ability of the synthetic AMPs (i.e., A-11 and AP19) on the most frequently isolated bacteria in boar semen and their effect on extended boar semen quality during storage. We tested the antimicrobial effect of A-11 and AP19 at different concentrations and compared them with gentamicin for inhibiting the growth of E. coli, Pseudomonas aeruginosa and Proteus mirabilis that were isolated from fresh boar semen. In order to evaluate the effect of AMP on semen qualities on days 0, 1, 3, and 5 after storage at 18 °C, seven fresh boar semen samples were collected, diluted with semen extender with antibiotic (i.e., gentamicin at 200 µg/mL, positive control) or without (negative control), and semen extender contained only A-11 or AP19 at different concentrations (i.e., 62.50, 31.25, and 15.625 µg/mL). The total bacterial count was also measured at 0, 24, 36, 48, and 72 h after storage. Comparable to gentamicin, both A-11 and AP19 inhibited the growth of E. coli, Pseudomonas aeruginosa, and Proteus mirabilis at 62.50, 31.25, and 15.625 µg/mL, respectively. Comparing the total bacterial count at 0, 24, 36, 48 and 72 h after storage, the lowest total bacterial concentration was found in the positive control group (p < 0.05), and an inferior total bacterial concentration was found in the treatment groups than in the negative control. On day 1, there is a lower percentage of all sperm parameters in the AP19 group at a concentration of 62.50 µg/mL compared with the other groups. On day 3, the highest percentage of all sperm parameters was found in the positive control and A-11 at a concentration of 31.25 µg/mL compared with the other groups. The AP19 group at 62.5 µg/mL constantly yielded inferior sperm parameters. On day 5, only A-11 at a concentration of 15.625 µg/mL showed a total motility higher than 70%, which is comparable to the positive control. A-11 and AP19 showed antimicrobial activity against E. coli, Pseudomonas aeruginosa and Proteus mirabilis isolated from boar semen. Considering their effect on semen quality during storage, these antimicrobial peptides are an alternative to conventional antibiotics used in boar semen extenders. Nevertheless, the utilization of these particular antimicrobial peptides relied on the concentration and duration of storage.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| | - Panida Chanapiwat
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klongluang, Pathum Thani 12120, Thailand;
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (K.K.); (P.C.); (N.N.)
| |
Collapse
|
11
|
Wishna-Kadawarage RN, Hickey RM, Siwek M. In-vitro selection of lactic acid bacteria to combat Salmonella enterica and Campylobacter jejuni in broiler chickens. World J Microbiol Biotechnol 2024; 40:133. [PMID: 38480610 PMCID: PMC10937796 DOI: 10.1007/s11274-024-03946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Campylobacter and Salmonella are the two most prominent foodborne zoonotic pathogens reported in the European Union. As poultry is one of the major sources of these pathogens, it is imperative to mitigate the colonization of these pathogens in poultry. Many strains of lactic acid bacteria (LAB) have demonstrated anti-Salmonella and anti-Campylobacter characteristics to varying degrees and spectrums which are attributed to the production of various metabolites. However, the production of these compounds and consequent antimicrobial properties are highly strain dependent. Therefore, the current study was performed to select a potent LAB and determine its causal attribute in inhibiting Salmonella enterica and Campylobacter jejuni, in-vitro. Six LAB (Lactiplantibacillus plantarum (LP), Lacticaseibacillus casei (LC), Limosilactobacillus reuteri (LR), Lacticaseibacillus rhamnosus (LRh), Leuconostoc mesenteroides (LM) and Pediococcus pentosaceus (PP)) and three serovars of Salmonella enterica (Typhimurium, Enterica and Braenderup) and Campylobacter jejuni were used in the current study. Spot overlays, well diffusion, co-culture and co-aggregation assays against Salmonella and well diffusion assays against Campylobacter jejuni were performed. Organic acid profiling of culture supernatants was performed using HPLC. The results indicated that LRh, LM and PP had the most significant anti-Salmonella effects while LP, LC, LM and PP displayed the most significant anti-Campylobacter effects. Lactic acid and formic acid detected in the culture supernatants seem the most likely source of the anti-Salmonella and anti-Campylobacter effects exhibited by these LAB. In conclusion, Leuconostoc mesenteroides displayed the most significant overall anti-pathogenic effects when compared to the other LAB strains studied, indicating its potential application in-vivo.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland.
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland
| |
Collapse
|
12
|
Al-Hazmi NE, Naguib DM. Antioxidant and Antibacterial Activities of Nano-probiotics Versus Free Probiotics Against Gastrointestinal Pathogenic Bacteria. Indian J Microbiol 2024; 64:141-152. [PMID: 38468740 PMCID: PMC10924813 DOI: 10.1007/s12088-023-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antibiotic-resistant pathogenic bacteria and the oxidative stress related to their infections are dangerous health problems. Finding new safe, effective antibacterial and antioxidant agents is an urgent global need. Probiotics are a strong candidate for possible antibacterial and antioxidant agents. The delivery of these probiotics without any effect on gastrointestinal digestion is the most important point for their application. The encapsulation of the probiotics on nanoparticles or other supports is a well-known method for the safe delivery of the probiotics. Little information is known about the effect of the probiotic encapsulation on its antibacterial and antioxidant activity. The present study tried to investigate the effect of probiotic encapsulation on nano-chitosan on its antioxidant activity and antibacterial activity against some pathogenic bacteria. We encapsulated some known probiotic species on nano-chitosan and investigated the antibacterial activity of the nano-probiotics and free probiotics against gastrointestinal pathogenic bacteria. The antioxidant characters of the free and encapsulated probiotics were investigated in terms of DPPH radicle scavenging activity, ferric ion chelating activity, hydroxyl radicle scavenging activity, superoxide anion radicle scavenging activity, and anti-lipid peroxidation activity. Results showed the superiority of the encapsulated probiotics as antibacterial and antioxidant agents over the free ones. The encapsulation improved the antibacterial activity of Sporolactobacillus laevolacticus against Bacteroides fragilis by 134% compared to the free one. Also, significantly, the encapsulation increased the hydroxyl radicle scavenging activity of Enterococcus faecium by about 180% compared to the free one. Nano-chitosan encapsulation synergistically increased the antioxidant and antibacterial activity of the studied probiotics. This can be promising for controlling pathogenic bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01140-2.
Collapse
Affiliation(s)
- Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Al Qunfudhah, Saudi Arabia
| | - Deyala M. Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Biology Department, Faculty of Science and Arts in Al-Mikhwah, Al-Baha University, Al Mikhwah, Saudi Arabia
| |
Collapse
|
13
|
Keeratikunakorn K, Aunpad R, Ngamwongsatit N, Kaeoket K. The Effect of Antimicrobial Peptide (PA-13) on Escherichia coli Carrying Antibiotic-Resistant Genes Isolated from Boar Semen. Antibiotics (Basel) 2024; 13:138. [PMID: 38391525 PMCID: PMC10886091 DOI: 10.3390/antibiotics13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
A major global public health concern is antimicrobial resistance (AMR). Antimicrobial peptides (AMPs) are a potentially appropriate replacement for conventional antibiotics. The purpose of this research was to investigate the potential of the antimicrobial peptide PA-13, a synthetic AMP with 13 amino acids, to inhibit E. coli isolated from boar semen expressing antibiotic-resistant genes, as well as to determine the mechanism of action of this antimicrobial peptide on the bacterial membrane. The effectiveness of the bacterial inhibitory activity of PA-13 was tested at different concentrations by two fold serial dilutions in the range 0.488-500 µg/mL using the MIC and MBC methods. The impact of PA-13 on the bacterial membrane was examined at different concentrations of 0×, 0.5×, 1×, 2× and 4× of MIC using DNA leakage assay and electron microscopy. The PA-13 antibacterial activity result exhibited the same MIC and MBC values at a concentration of 15.625 µg/mL. When comparing DNA leakage at different MIC values, the results revealed that the maximum amount of DNA concentration was found two and three hours after incubation. For the results of SEM and TEM, the bacterial membrane disruption of this E. coli was found in the PA-13-treated group when compared with the negative control. In conclusion, synthetic PA-13 with its antibacterial properties is an alternative antimicrobial peptide to antibiotics in the pig industry.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Klongluang, Pathum Thani 12120, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
14
|
Jalaliani H, Anvar S, Amini K, Karim G. Isolation and Characterization of Staphylococcus aureus from Raw Cow's Milk and Investigating the Effect of Bifidobacterium bifidum Probiotic Cell Free Supernatant on Their Enterotoxins Genes Expression. ARCHIVES OF RAZI INSTITUTE 2023; 78:1680-1689. [PMID: 38828166 PMCID: PMC11139386 DOI: 10.32592/ari.2023.78.6.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 06/05/2024]
Abstract
The present reserach aimed to detect and isolate the genes involved in the staphylococcal enterotoxins (SEs) production in strains isolated from unprocessed cow's milk and to examine the impact of Bifidobacterium bifidum probiotic cell-free supernatant (CFS) on their expression. Standard techniques were used for isolation and identification of Staphylococci strains in unprocessed milk. The PCR was used to identify strains carrying enterotoxin genes. The B. bifidum CFS was applied to strains containing the target genes, and the genes expression levels were quantified using Real-time PCR. Using 16SrDNA sequencing, the phylogenic relationship of the isolated strains was determined. Analysis revealed that bacteria such as Staphylococcus species were found in the 72% of the samples. The PCR test showed the presence of various SE superantigens, including SEA (16.7%), SEC (11.7%), SED (8.3%), SEE (6.7%), and SEB (1.7%) in isolated strains. The B. bifidum CFS had obvious antimicrobial activity against strains 24, 51, 54, and 35 of Staphylococcus species, and the minimum inhibitory concentration and minimum bactericidal concentration values for these strains treated with B. bifidum CFS were in the range of 31.25-125 μg/ml. Strains 51 and 24 were clustered with S.aureus ATCC 25923, and strains 54 and 35 were clustered with S.aureus ATCC 12600, respectively. The RT-PCR exhibited that probiotics CFS suppressed the expression of SEA, SEB, SEC, and SEE genes (P<0.05). The average fold change for SEA, SEB, SEC, and SED genes was -1.681, -1.28, -1.52, and -0.84, respectively. The research demonstrated that probiotic bacteria can lower enterotoxin production by downregulating the expression of SEs genes.
Collapse
Affiliation(s)
- H Jalaliani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saa Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - K Amini
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Saveh Branch, Saveh, Iran
| | - G Karim
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Innamma N, Ngamwongsatit N, Kaeoket K. The effects of using multi-species probiotics in late-pregnant and lactating sows on milk quality and quantity, fecal microflora, and performance of their offspring. Vet World 2023; 16:2055-2062. [PMID: 38023266 PMCID: PMC10668563 DOI: 10.14202/vetworld.2023.2055-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim The dietary probiotics in sows during gestation to lactation period have gained considerable attention with respect to their beneficial effects on sows and their piglets' performance and health. This study aimed to evaluate the effects of using probiotics in late-pregnant and lactating sows on milk quality, quantity, fecal microflora of sows, and growth performance of their offspring until weaning. Materials and Methods Thirty-four sows were equally divided into two groups (control and treatment). Only those in the treatment group were fed 5 g of probiotics at 12 weeks of pregnancy, once daily for 7 weeks, until their piglets were weaned. Colostrum samples were collected at 3, 6, 12, and 24 h after farrowing and measured for immunoglobulin concentration. Percentages of fat, protein, and lactose in colostrum, colostrum production, total intake of immunoglobulin A (IgA), immunoglobulin G (IgG), fat, protein, and lactose, the change of fecal microflora of sows, and average daily gain of piglets were measured. Results The results showed that there were no significant differences in the concentrations of IgA, IgG, and IgM in colostrum and the percentages of fat, protein, lactose, solid-not-fat, and total solid in colostrum between the groups; however, the colostrum production at 24 h in the treatment group (6,075.29 mL) was higher than in the control group (4,809.54 mL). Higher total intakes of IgA and IgG as well as total intake of fat, protein, and lactose, particularly at 3 h after farrowing, were found in the treatment group. Probiotic supplementation remarkably altered the microbiota community at the phylum level. We found that Firmicutes and Bacteroidetes are the dominant phyla, present in the gut of more than 90% of pregnant and lactating sows. Changes in microbial proportions were observed due to the changes of pig production stage. The weaning weight of the treatment group was higher than in the control group (6.34 ± 1.71 vs. 4.84 ± 1.29 kg, respectively). Conclusion Feeding of multi-species probiotic BACTOSAC-P™ during late pregnancy and lactation in sows positively influenced colostrum production. In this experiment, the use of BACTOSAC-P™ improved the yield of colostrum production. The high immunoglobulin concentration and high yield of the colostrum of sows with a diet supplemented with BACTOSAC-P™ significantly reduced piglet mortality during the suckling period. Furthermore, the probiotic diet induced changes in the fecal microbial population in sows by increasing the number of microorganisms from the Firmicutes phylum, which had positive effects on sow health and their piglets, leading to better piglet growth performance.
Collapse
Affiliation(s)
- Narathon Innamma
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
16
|
Nguyet LTY, Ounjai P, Kaeoket K, Ngamwongsatit N. Feasibility of crude F4 fimbriae extract as a vaccine candidate for preventing Escherichia coli-induced diarrhea in piglets. Vet World 2023; 16:2063-2070. [PMID: 38023270 PMCID: PMC10668550 DOI: 10.14202/vetworld.2023.2063-2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Enterotoxigenic Escherichia coli (ETEC) poses a substantial risk of neonatal diarrhea and post-weaning diarrhea among piglets, with F4+ ETEC strains emerging as a particularly challenging issue within the pig farming industry. This study aimed to introduce a straightforward approach for generating a crude extract of F4 fimbriae that shows promise as an antigenic determinant for potential vaccination strategies. Materials and Methods A crude F4 fimbriae extract was obtained from F4+ ETEC using a combination of heat shock and homogenization techniques. Subsequently, three 4-week-old piglets were immunized with a primary dose of 150 μg and a booster dose 2 weeks later. Blood samples were collected to evaluate the level of serum F4-specific antibodies using an enzyme-linked immunosorbent assay. Results Analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography tandem-mass spectrometry techniques unveiled crucial insights into the composition of the crude F4 fimbriae extract. Notably, a distinct prominent band (~24 kDa) was identified, corresponding to the size of FaeG, the major subunit of F4 fimbriae. Regarding antibody response, there was a remarkable disparity between the levels of serum immunoglobulin (Ig)G and IgA antibodies targeting F4 compared with other E. coli strains (F18+ ETEC, F41+ ETEC, and F4-F18-F41- EC), as well as with the unvaccinated control group (p < 0.01). Specifically, the levels of IgG antibodies against other E. coli strains were also significantly higher than those observed in the unvaccinated control group (p < 0.05). Conclusion Our findings suggest that the crude F4 fimbriae extracts obtained using our simple extraction method induce specific immune responses against F4+ E. coli and stimulate cross-immunity against other E. coli strains. Therefore, our method shows potential for use in future vaccine development against diarrhea in pigs caused by E. coli.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|