1
|
Guo Y, Liu M, Cheng Y, Tian J, Feng C, Wang Q, Zhao X, Yin L. Unraveling the cytotoxicity and cellular pharmacokinetic of mPEG 5-NH 2 polymers by UHPLC-MS/MS. J Pharm Biomed Anal 2025; 259:116767. [PMID: 40022966 DOI: 10.1016/j.jpba.2025.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Methoxy-polyethylene glycol amine (mPEG-NH₂), an important pharmaceutical excipient, has been extensively utilized in the field of biomedicine. To advance the development of mPEG-NH₂-related drug delivery systems, it is crucial to understand the safety profile and cellular pharmacokinetic behavior of mPEG-NH₂ polymers. In this study, a straightforward analytical assay based on ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) for quantifying mPEG5-NH₂ in biological matrices was established and validated. Multiple reaction monitoring (MRM) transitions were selected for quantification of mPEG5-NH₂ (mass-to-charge ratio, m/z 252.1 → 87.7) and octaethylene glycol (OH-PEG8-OH) (mass-to-charge ratio, m/z 371.2 → 89.2). The UHPLC-MS/MS assay demonstrated excellent linearity within the concentration range of 0.01-10 μg/mL, with an R² value of 0.9996. Both intra-day and inter-day accuracies and precisions of the analytical method were within ± 9.19 %. This analytical assay was successfully applied to study the in vitro cellular toxicity and uptake behavior of mPEG5-NH₂ in MCF-7 cells. The results indicate that high doses of mPEG5-NH₂ may have potential toxicity to MCF-7 cells.
Collapse
Affiliation(s)
- Yingxia Guo
- Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Meichen Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yajie Cheng
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Jiye Tian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Chunpeng Feng
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Qingbin Wang
- JenKem Technology Co. Ltd., Tianjin 300450, China
| | - Xuan Zhao
- JenKem Technology Co. Ltd., Tianjin 300450, China.
| | - Lei Yin
- Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China.
| |
Collapse
|
2
|
Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release 2025; 381:113641. [PMID: 40120689 DOI: 10.1016/j.jconrel.2025.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDD) are characterized by the progressive loss of neurons and the impairment of cellular functions. Messenger RNA (mRNA) has emerged as a promising therapy for treating NDD, as it can encode missing or dysfunctional proteins and anti-inflammatory cytokines or neuroprotective proteins to halt the progression of these diseases. However, effective mRNA delivery to the central nervous system (CNS) remains a significant challenge due to the limited penetration of the blood-brain barrier (BBB). Lipid nanoparticles (LNPs) offer an efficient solution by encapsulating and protecting mRNA, facilitating transfection and intracellular delivery. This review discusses the pathophysiological mechanisms of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), ischemic stroke, spinal cord injury, and Friedreich's ataxia. Additionally, it explores the potential of LNP-mediated mRNA delivery as a therapeutic strategy for these diseases. Various approaches to overcoming BBB-related challenges and enhancing the delivery and efficacy of mRNA-LNPs are discussed, including non-invasive methods with strong potential for clinical translation. With advancements in artificial intelligence (AI)-guided mRNA and LNP design, targeted delivery, gene editing, and CAR-T cell therapy, mRNA-LNPs could significantly transform the treatment landscape for NDD, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Seyedeh Ghazal Moosavi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Liu L, Kim JH, Li Z, Sun M, Northen T, Tang J, Mcintosh E, Karve S, DeRosa F. PEGylated lipid screening, composition optimization, and structure-activity relationship determination for lipid nanoparticle-mediated mRNA delivery. NANOSCALE 2025. [PMID: 40131321 DOI: 10.1039/d5nr00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as effective carriers for mRNA delivery in vaccine and therapeutic applications, attracting substantial attention since the COVID-19 pandemic. Continued efforts are crucial to optimize LNP composition for improved delivery efficacy and to elucidate the underlying mechanisms driving differences in protein expression. This study systematically screened PEGylated lipids for intramuscular mRNA delivery, followed by optimization of the formulation composition, physicochemical characterization, and investigation of the structure-activity relationship (SAR). Using a model ionizable lipid, we initially evaluated twenty-nine PEGylated lipids from four lipid families (glyceride, phosphoethanolamine (PE), cholesterol, and ceramide), each varying in linker chemistries, tail structures, or PEG molecular weights. 1,2-Dimyristoyl-rac-glycero-3-methoxypolyethylene glycol - 5000 (DMG-PEG5k) was identified as a promising candidate from this screening. Using a design of experiments (DoE) approach, we further optimized the formulation to increase in vivo transfection efficacy, achieving an increase in protein expression over the DMG-PEG2k benchmark. To explore the SAR of the DoE formulations, advanced physicochemical characterization was conducted including Laurdan assay, SAXS, Cryo-TEM, and QCM-D, alongside standard LNP analysis. Among the key factors examined, high mRNA encapsulation efficiency, LNP membrane integrity (especially under acidic conditions), and ordered internal structures were identified as the critical parameters for transfection efficiency. mRNA encapsulation efficiency increased with a lower PEG-lipid fraction. LNP membrane integrity, assessed by the generalized polarization (GP) ratio at pH 7.5 and 4.5 from the Laurdan assay, was strongly affected by the ionizable lipid ratio and, to a lesser extent, the cholesterol ratio. A lower GP7.5/GP4.5 ratio correlated with enhanced protein expression, primarily driven by a higher GP4.5 observed with lower ionizable lipid and higher cholesterol fractions. Overall, balancing the ratios of all LNP components is critical for maximizing LNP functionality. This study presents a systematic evaluation and characterization of LNPs with different PEG-lipid moieties, deepens SAR understanding, and provides valuable guidelines for rationally designing more effective next-generation LNPs.
Collapse
Affiliation(s)
- Lingyun Liu
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Jae-Heon Kim
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Zhongyu Li
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Mengwei Sun
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Trent Northen
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Jackie Tang
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Emma Mcintosh
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Shrirang Karve
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| | - Frank DeRosa
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA.
| |
Collapse
|
4
|
Hourdel L, Lebaz N, Peral F, Ripoll M, Briançon S, Bensaid F, Luthra S, Cogné C. Overview on LNP-mRNA encapsulation unit operation: Mixing technologies, scalability, and influence of formulation & process parameters on physico-chemical characteristics. Int J Pharm 2025; 672:125297. [PMID: 39900125 DOI: 10.1016/j.ijpharm.2025.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Nanoparticles carrying active drug substances have been used since the 70's and have undergone numerous improvements since then. Nowadays, the latest generation of nanoparticles, called lipid nanoparticles (LNPs), is used for different applications such as vaccines and cancer treatments and offer a versatile approach to delivering genetic materials like RNA. LNPs are non-viral delivery vehicles obtained by the self-assembly of lipids during the rapid mixing of an aqueous phase containing mRNA with an organic phase containing lipids. During this process, mRNA is encapsulated within the LNP due to electrostatic interaction with an ionizable lipid. Different methods to produce LNPs are described in the literature and, as of now, continuous methods are mostly used to produce LNP-encapsulated mRNA (LNP-mRNA). T-shaped mixers are commonly used to produce mRNA-LNPs. This technology can operate at two different scales: microfluidic chips which can range from tens to hundreds of microns in size, and millimetric tubing for production scale up. This review intends to describe LNP-mRNA characteristics and their production modes with a special focus on the challenges related to the mixing quality, especially during scale-up.
Collapse
Affiliation(s)
- Laurine Hourdel
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France; Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| | - Noureddine Lebaz
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Florent Peral
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Manon Ripoll
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Stéphanie Briançon
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Fethi Bensaid
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Sumit Luthra
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Claudia Cogné
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
5
|
Fatima M, An T, Hong KJ. Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies. Biomolecules 2025; 15:359. [PMID: 40149895 PMCID: PMC11940278 DOI: 10.3390/biom15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the success of lipid nanoparticles (LNP) in delivering mRNA vaccines for COVID-19, a variety of other formulations have been developed to deliver mRNA vaccines for diverse infections. The meritorious features of nanoparticle-based mRNA delivery strategies, including LNP, polymeric, dendrimers, polysaccharide-based, peptide-derived, carbon and metal-based, DNA nanostructures, hybrid, and extracellular vesicles, have been examined. The impact of these delivery platforms on mRNA vaccine delivery efficacy, protection from enzymatic degradation, cellular uptake, controlled release, and immunogenicity has been discussed in detail. Even with significant developments, there are certain limitations to overcome, including toxicity concerns, limited information about immune pathways, the need to maintain a cold chain, and the necessity of optimizing administration methods. Continuous innovation is essential for improving delivery systems for mRNA vaccines. Future research directions have been proposed to address the existing challenges in mRNA delivery and to expand their potential prophylactic and therapeutic application.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Gao M, Zhong J, Liu X, Zhao Y, Zhu D, Shi X, Xu X, Zhou Q, Xuan W, Zhang Y, Zhou Y, Cheng J. Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver. ACS NANO 2025; 19:5966-5978. [PMID: 39899798 DOI: 10.1021/acsnano.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
Collapse
Affiliation(s)
- Menghua Gao
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jiafeng Zhong
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Xinxin Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dingcheng Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Xuehan Xu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Qin Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjing Xuan
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yaofeng Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jianjun Cheng
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
7
|
Guo Y, Liu M, Tian J, Feng C, Wang Q, Zhao X, Yin L. Unraveling the in vivo pharmacokinetic behavior of mPEG 5-NH 2 polymer in rats by UHPLC-MS/MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124460. [PMID: 39813942 DOI: 10.1016/j.jchromb.2025.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
As an important chemical reagent, methoxy polyethylene glycol amine (mPEG-NH2) is widely used in biomedical field. Unraveling the pharmacokinetic behavior of mPEG-NH2 polymers is essential for revealing the toxicity and efficiency of mPEG-NH2 related drug delivery systems. In this study, a simple analytical assay based on mass spectrometry (MS) was first established and validated for quantification of mPEG5-NH2 in biological matrix. The multiple reaction monitoring (MRM) transitions at m/z 252.2 (precursor ions) → 87.7 (fragment ions) and m/z 371.2 (precursor ions) → 89.2 (fragment ions) were chosen to determine mPEG5-NH2 and OH-PEG8-OH, respectively. The UHPLC-MS/MS assay showed excellent linearity over the range of 0.01-10 μg/mL. Intra-day and inter-day accuracies and precisions of the assay were all within ± 6.44 %. The analytical assay was successfully applied to reveal the in vivo pharmacokinetic behavior of mPEG5-NH2 in rats.
Collapse
Affiliation(s)
- Yingxia Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Meichen Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Jiye Tian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Chunpeng Feng
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China
| | - Qingbin Wang
- JenKem Technology Co. Ltd., Tianjin, 300450, China
| | - Xuan Zhao
- JenKem Technology Co. Ltd., Tianjin, 300450, China.
| | - Lei Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China.
| |
Collapse
|
8
|
Richter K, Reichel A, Vezočnik V. The role of asymmetric flow field-flow fractionation in drug development - From size separation to advanced characterization. J Chromatogr A 2025; 1739:465542. [PMID: 39613510 DOI: 10.1016/j.chroma.2024.465542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
Drug development is a complex multi-stage process that aims to deliver therapeutic products to the market. This process employs different analytical methods to separate and characterise compounds, monitor manufacturing, and validate the final drug products to ensure their safety, quality, and efficacy. However, advancements in modern drug development and discovery have led to new types of the therapeutical products of increasing complexity. As such, the capabilities of some traditional analytical techniques have become limited, and the demand for using advanced analytical techniques like field-flow fractionation (FFF) has been increasing. A special feature offered by the FFF family is a unique way of separation based on the analytes' specific physicochemical properties. As such, FFF is a powerful tool for analysing diverse analytes and complex mixtures. Herein, asymmetric flow field-flow fractionation (AF4) is the most frequently used technique within the FFF family in drug development. Therefore, this review aims to provide a general overview of the usage of AF4 technology in the drug development field.
Collapse
Affiliation(s)
- Klaus Richter
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Angelika Reichel
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Valerija Vezočnik
- Coriolis Pharma Research GmbH, Fraunhoferstraße 18B, 82152 Martinsried, Germany.
| |
Collapse
|
9
|
Goyon A. Keeping up with a Quickly Diversifying Pharmaceutical Landscape. ACS MEASUREMENT SCIENCE AU 2024; 4:615-619. [PMID: 39713029 PMCID: PMC11659996 DOI: 10.1021/acsmeasuresciau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
Small molecules and antibodies have dominated the pharmaceutical landscape for decades. However, limitations associated with therapeutic targets deemed "undruggable" and progress in biology and chemistry have led to the blossoming of drug modalities and therapeutic approaches. In 2023, a high number of 9 oligonucleotide and peptide products were approved by the Food and Drug Administration (FDA), accounting for 16% of all drugs approved. Additionally, for the first time, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene therapy product was approved for the treatment of sickle cell disease. New drug modalities possess a wide range of physicochemical properties and structures, which complicates their analytical characterization. Impurities are formed at each step of the oligonucleotide and peptide solid phase synthesis and during shelf life. Longer chain lengths lead to a higher number of closely related impurities that become increasingly more difficult to separate from the full-length product. Chemical modifications such as phosphorothioates (PS) result in the presence of diastereomers, which often require orthogonal methods for their profiling and strategies to prevent their interference with the separation of achiral impurities. In-vitro produced mRNA and plasmid DNA also present a variety of quality attributes that need to be determined, such as the polyA tail length or capping efficiency. Analytical challenges arise from the variety of drug modality physiochemical properties and attributes, fast turnaround times, and heightened level of characterization needed to enable data-driven decisions early in the drug development process. This perspective provides the author's views on the lessons learned and strategies employed in recent years.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
11
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024; 21:6034-6061. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
12
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
13
|
Schultz D, Münter RD, Masi A, Kempen PJ, Jahnke N, Andresen TL, Simonsen JB, Urquhart AJ. Enhancing RNA encapsulation quantification in lipid nanoparticles: Sustainable alternatives to Triton X-100 in the RiboGreen assay. Eur J Pharm Biopharm 2024; 205:114571. [PMID: 39490428 DOI: 10.1016/j.ejpb.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
To quantify concentration and encapsulation efficiency (EE) of mRNA in lipid nanoparticles (LNPs) the RiboGreen assay is extensively used. As part of this assay, a surfactant is used to release mRNA from LNPs for detection with the RiboGreen dye. So far, the surfactant of choice has been Triton X-100, which is harmful to human health and the environment. Alternatives to Triton X-100 are therefore needed, but surprisingly no such effort has yet been described in the literature. Here we show how three, less harmful, surfactants (Brij 93, Zwittergent 3-14 and Tween 20) compare to Triton X-100 for releasing mRNA from LNPs for detection with the RiboGreen assay. We found that Zwittergent 3-14 and Tween 20 at high concentrations (0.5 %) are at the minimum as effective as Triton X-100 at high concentration (0.5 %) across three different mRNA-LNP formulations. Interestingly, Tween 20 was the most effective at releasing mRNA from LNPs, across all concentration ranges explored (0.0025 %, 0.01 %, 0.1 % and to 0.5 % (v/v)) highlighting its potency at solubilizing the three different LNP formulations. Our results show that Tween 20 can be used as an alternative to Triton X-100 in the RiboGreen assay, resulting in more accurate quantification of the total mRNA concentration and EE%, as well as making the assay more environmentally friendly. Such improvement could potentially increase the likelihood of identifying therapeutically attractive hard-to-solubilize LNP-mRNA formulations that would be discharged when using Triton X-100 due to their apparent low EE values, as well as ensure more accurate mRNA dosing in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- David Schultz
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus D Münter
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alex Masi
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nadine Jahnke
- Department of Non-viral Delivery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
15
|
Jang M, Yeom K, Han J, Fagan E, Park JH. Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infiltration. ACS NANO 2024; 18:24204-24218. [PMID: 39174871 DOI: 10.1021/acsnano.4c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The delivery of mRNA into the lungs is the key to solving infectious and intractable diseases that frequently occur in the lungs. Since inhalation using a nebulizer is the most promising method for mRNA delivery into the lungs, there have been many attempts toward adapting lipid nanoparticles for mRNA inhalation. However, conventional lipid nanoparticles, which have shown great effectiveness for systemic delivery of mRNA and intramuscular vaccination, are not effective for pulmonary delivery due to their structural instability during nebulization and their inability to adapt to the pulmonary microenvironment. To address these issues, we developed an ionizable liposome-mRNA lipocomplex (iLPX). iLPX has a highly ordered lipid bilayer structure, which increases stability during nebulization, and its poly(ethylene glycol)-free composition allows it to infiltrate the low serum environment and the pulmonary surfactant layer in the lungs. We selected an inhalation-optimized iLPX (IH-iLPX) using a multistep screening procedure that mimics the pulmonary delivery process of inhaled nanoparticles. The IH-iLPX showed a higher transfection efficiency in the lungs compared to conventional lipid nanoparticles after inhalation with no observed toxicity in vivo. Furthermore, analysis of lung distribution revealed even protein expression in the deep lungs, with effective delivery to epithelial cells. This study provides insights into the challenges and solutions related to the development of inhaled mRNA pulmonary therapeutics.
Collapse
Affiliation(s)
- Mincheol Jang
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghwan Yeom
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhee Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Erinn Fagan
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Fan Y, Rigas D, Kim LJ, Chang FP, Zang N, McKee K, Kemball CC, Yu Z, Winkler P, Su WC, Jessen P, Hura GL, Chen T, Koenig SG, Nagapudi K, Leung D, Yen CW. Physicochemical and structural insights into lyophilized mRNA-LNP from lyoprotectant and buffer screenings. J Control Release 2024; 373:727-737. [PMID: 39059500 DOI: 10.1016/j.jconrel.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
The surge in RNA therapeutics has revolutionized treatments for infectious diseases like COVID-19 and shows the potential to expand into other therapeutic areas. However, the typical requirement for ultra-cold storage of mRNA-LNP formulations poses significant logistical challenges for global distribution. Lyophilization serves as a potential strategy to extend mRNA-LNP stability while eliminating the need for ultra-cold supply chain logistics. Although recent advancements have demonstrated the promise of lyophilization, the choice of lyoprotectant is predominately focused on sucrose, and there remains a gap in comprehensive evaluation and comparison of lyoprotectants and buffers. Here, we aim to systematically investigate the impact of a diverse range of excipients including oligosaccharides, polymers, amino acids, and various buffers, on the quality and performance of lyophilized mRNA-LNPs. From the screening of 45 mRNA-LNP formulations under various lyoprotectant and buffer conditions for lyophilization, we identified previously unexplored formulation compositions, e.g., polyvinylpyrrolidone (PVP) in Tris or acetate buffers, as promising alternatives to the commonly used oligosaccharides to maintain the physicochemical stability of lyophilized mRNA-LNPs. Further, we delved into how physicochemical and structural properties influence the functionality of lyophilized mRNA-LNPs. Leveraging high-throughput small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), we showed that there is complex interplay between mRNA-LNP structural features and cellular translation efficacy. We also assessed innate immune responses of the screened mRNA-LNPs in human peripheral blood mononuclear cells (PBMCs), and showed minimal alterations of cytokine secretion profiles induced by lyophilized formulations. Our results provide valuable insights into the structure-activity relationship of lyophilized formulations of mRNA-LNP therapeutics, paving the way for rational design of these formulations. This work creates a foundation for a comprehensive understanding of mRNA-LNP properties and in vitro performance change resulting from lyophilization.
Collapse
Affiliation(s)
- Yuchen Fan
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Diamanda Rigas
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lee Joon Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA
| | - Feng-Peng Chang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kristina McKee
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher C Kemball
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhixin Yu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pascal Winkler
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wan-Chih Su
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pierce Jessen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA; Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis Leung
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
17
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
18
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
19
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|