1
|
Jamshidi MB, Hoang DT, Nguyen DN, Niyato D, Warkiani ME. Revolutionizing biological digital twins: Integrating internet of bio-nano things, convolutional neural networks, and federated learning. Comput Biol Med 2025; 189:109970. [PMID: 40101583 DOI: 10.1016/j.compbiomed.2025.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Digital twins (DTs) are advancing biotechnology by providing digital models for drug discovery, digital health applications, and biological assets, including microorganisms. However, the hypothesis posits that implementing micro- and nanoscale DTs, especially for biological entities like bacteria, presents substantial challenges. These challenges stem from the complexities of data extraction, transmission, and computation, along with the necessity for a specialized Internet of Things (IoT) infrastructure. To address these challenges, this article proposes a novel framework that leverages bio-network technologies, including the Internet of Bio-Nano Things (IoBNT), and decentralized deep learning algorithms such as federated learning (FL) and convolutional neural networks (CNN). The methodology involves using CNNs for robust pattern recognition and FL to reduce bandwidth consumption while enhancing security. IoBNT devices are utilized for precise microscopic data acquisition and transmission, which ensures minimal error rates. The results demonstrate a multi-class classification accuracy of 98.7% across 33 bacteria categories, achieving over 99% bandwidth savings. Additionally, IoBNT integration reduces biological data transfer errors by up to 98%, even under worst-case conditions. This framework is further supported by an adaptable, user-friendly dashboard, expanding its applicability across pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Mohammad Behdad Jamshidi
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway, Sydney, 2007, NSW, Australia.
| | - Dinh Thai Hoang
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway, Sydney, 2007, NSW, Australia
| | - Diep N Nguyen
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway, Sydney, 2007, NSW, Australia
| | - Dusit Niyato
- College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Ave, Block N 4, Singapore, 639798, Singapore
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 15 Broadway, Sydney, 2007, NSW, Australia
| |
Collapse
|
2
|
Aiman S, Ahmad A, Malik A, Chen R, Hanif MF, Khan AA, Ansari MA, Farrukh S, Xu G, Shahab M, Huang K. Whole proteome-integrated and vaccinomics-based next generation mRNA vaccine design against Pseudomonas aeruginosa-A hierarchical subtractive proteomics approach. Int J Biol Macromol 2025; 309:142627. [PMID: 40174835 DOI: 10.1016/j.ijbiomac.2025.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a multidrug-resistant opportunistic pathogen responsible for chronic obstructive pulmonary disease (COPD), cystic fibrosis, and ventilator-associated pneumonia (VAP), leading to cancer. Developing an efficacious vaccine remains the most promising strategy for combating P. aeruginosa infections. In this study, we employed an advanced in silico strategy to design a highly efficient and stable mRNA vaccine using immunoinformatics tools. Whole proteome data were utilized to identify highly immunogenic vaccine candidates using subtractive proteomics. Three extracellular proteins were prioritized for T- and linear B-cell epitope prediction. Beta-definsin protein sequence was incorporated as an adjuvant at the N-terminus of the construct. A total of 3 CTL, 3 HTL, and 3 linear B cell highly immunogenic epitopes were combined using specific linkers to design this multi-peptide construct. The 5' and 3' UTR sequences, Kozak sequence with a stop codon, and signal peptides followed by a poly-A tail were incorporated into the above vaccine construct to create our final mRNA vaccine. The vaccines exhibited antigenicity scores >0.88, ensuring high antigenicity with no allergenic or toxic. Physiochemical properties analysis revealed high solubility and thermostability. Three-dimensional structural analysis determined high-quality structures. Vaccine-receptor docking and molecular dynamic simulations demonstrated strong molecular interactions, stable binding affinities, dynamic nature, and structural stability of this vaccine, with significant immunogenic responses of the immune system against the vaccine. The immunological simulation indicates successful cellular and humoral immune responses to defend against P. aeruginosa infection. Validation of the study outcomes necessitates both experimental and clinical testing.
Collapse
Affiliation(s)
- Sara Aiman
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Muhammad Farhan Hanif
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq Ahmed Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Liaobu Hospital of Dongguan City, Dongguan, China.
| |
Collapse
|
3
|
Garbey M, Lesport Q, Kaminski HJ. Construction of patient trajectories to model clinical trial outcomes: Application to Myasthenia Gravis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325663. [PMID: 40321274 PMCID: PMC12047874 DOI: 10.1101/2025.04.11.25325663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Accurate prediction of patient outcomes in clinical trials is crucial for timely assessment of treatment efficacy. This study introduces a novel approach to predict patient response by constructing temporal trajectories from longitudinal clinical data. We aim to extrapolate these trajectories to forecast individual outcomes and identify when new patients align with established response patterns. Utilizing data from the MGTX trial of myasthenia gravis patients, we evaluate the predictability of these trajectories and discuss potential confounding factors. Furthermore, our analysis yields an automatic clustering of patients based on treatment success, revealing potential associations with age and smoking status.
Collapse
|
4
|
Corridore S, Verreault M, Martin H, Delobel T, Carrère C, Idbaih A, Ballesta A. Circumventing glioblastoma resistance to temozolomide through optimal drug combinations designed by systems pharmacology and machine learning. Br J Pharmacol 2025. [PMID: 40229949 DOI: 10.1111/bph.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM), the most frequent and aggressive brain tumour in adults, is associated with a dismal prognostic despite intensive treatment involving surgery, radiotherapy and temozolomide (TMZ)-based chemotherapy. The initial or acquired resistance of GBM to TMZ appeals for precision medicine approaches to the design of novel efficient combination pharmacotherapies. Such investigation needs to account for the overexpression of the O6-methylguanine-DNA methyl-transferase (MGMT) repair enzyme which is responsible for TMZ resistance in patients. EXPERIMENTAL APPROACH A comprehensive approach combining quantitative systems pharmacology (QSP) models and machine learning (ML) was undertaken to design TMZ-based drug combinations circumventing the initial resistance to the alkylating agent. KEY RESULTS A QSP model representing TMZ cellular pharmacokinetics-pharmacodynamics and dysregulated pathways in GBM was developed and validated using multi-type time- and dose-resolved datasets, available in control or MGMT-overexpressing cells. In silico drug screening and subsequent experimental validation identified a strategy to re-sensitise TMZ-resistant cells consisting in combining TMZ with inhibitors of the base excision repair and of homologous recombination. Using ML, functional signatures of response to such optimal multi-agent therapy were derived to assist decision-making in patients. CONCLUSION AND IMPLICATIONS We successfully demonstrated the relevance of combined QSP and ML to design efficient drug combinations re-sensitising glioblastoma cells initially resistant to TMZ. The developed framework may further serve to identify personalised therapies and administration schedules by extending it to account for additional patient-specific altered pathways and whole-body features.
Collapse
Affiliation(s)
- Sergio Corridore
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Maïté Verreault
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Hugo Martin
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
- University of Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS - U 1309, Rennes, France
| | - Thibault Delobel
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| | - Cécile Carrère
- Institut Denis Poisson, Université d'Orléans, CNRS, Orléans, France
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Paris, France
| | - Annabelle Ballesta
- INSERM Unit 1331, Institut Curie, PSL Research University, CBIO-Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team, Saint Cloud, France
| |
Collapse
|
5
|
Shahin MH, Desai P, Terranova N, Guan Y, Helikar T, Lobentanzer S, Liu Q, Lu J, Madhavan S, Mo G, Musuamba FT, Podichetty JT, Shen J, Xie L, Wiens M, Musante CJ. AI-Driven Applications in Clinical Pharmacology and Translational Science: Insights From the ASCPT 2024 AI Preconference. Clin Transl Sci 2025; 18:e70203. [PMID: 40214191 PMCID: PMC11987044 DOI: 10.1111/cts.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
Artificial intelligence (AI) is driving innovation in clinical pharmacology and translational science with tools to advance drug development, clinical trials, and patient care. This review summarizes the key takeaways from the AI preconference at the American Society for Clinical Pharmacology and Therapeutics (ASCPT) 2024 Annual Meeting in Colorado Springs, where experts from academia, industry, and regulatory bodies discussed how AI is streamlining drug discovery, dosing strategies, outcome assessment, and patient care. The theme of the preconference was centered around how AI can empower clinical pharmacologists and translational researchers to make informed decisions and translate research findings into practice. The preconference also looked at the impact of large language models in biomedical research and how these tools are democratizing data analysis and empowering researchers. The application of explainable AI in predicting drug efficacy and safety, and the ethical considerations that should be applied when integrating AI into clinical and biomedical research were also touched upon. By sharing these diverse perspectives and real-world examples, this review shows how AI can be used in clinical pharmacology and translational science to bring efficiency and accelerate drug discovery and development to address patients' unmet clinical needs.
Collapse
Affiliation(s)
| | - Prashant Desai
- Drug Metabolism and Pharmacokinetics, GenentechSouth San FranciscoCaliforniaUSA
| | - Nadia Terranova
- Quantitative Pharmacology, Ares Trading S.A. (an Affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | - Yuanfang Guan
- Gilbert S. Omenn Department of Computational Medicine & BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Tomáš Helikar
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Sebastian Lobentanzer
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Qi Liu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James Lu
- Modeling & Simulation/Clinical Pharmacology, Genentech Research & Early DevelopmentSouth San FranciscoCaliforniaUSA
| | | | - Gary Mo
- Pfizer Research & DevelopmentGrotonConnecticutUSA
| | - Flora T. Musuamba
- Federal Agency for Medicines and Health ProductsBrusselsBelgium
- Clinical Pharmacology and Toxicology Research Unit, University of NamurNamurBelgium
| | | | - Jie Shen
- Clinical Sciences, AbbVieNorth ChicagoIllinoisUSA
| | - Lei Xie
- Department of Computer ScienceHunter College, The City University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in Computer Science, Biology & BiochemistryThe City University of New YorkNew YorkNew YorkUSA
- NeuroscienceWeill Cornell MedicineNew YorkNew YorkUSA
| | | | | |
Collapse
|
6
|
Kimpton LM, Paun LM, Colebank MJ, Volodina V. Challenges and opportunities in uncertainty quantification for healthcare and biological systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240232. [PMID: 40078151 PMCID: PMC11904623 DOI: 10.1098/rsta.2024.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 03/14/2025]
Abstract
Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and digital twins, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
Collapse
Affiliation(s)
- Louise M Kimpton
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - L Mihaela Paun
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
- School of Mathematical Sciences, University of Southampton, Southampton, UK
| | - Mitchel J Colebank
- Department of Biomedical Engineering, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, USA
- Department of Mathematics, University of South Carolina, Columbia, SC, USA
| | - Victoria Volodina
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Li P, Liang X, Luo J, Li J. Omics in acute-on-chronic liver failure. Liver Int 2025; 45:e15634. [PMID: 37288724 DOI: 10.1111/liv.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a critical syndrome that develops in patients with chronic liver disease and is characterized by acute decompensation, single- or multiple-organ failure and high short-term mortality. Over the past few decades, ACLF has been progressively recognized as an independent clinical entity, and several criteria and prognostic scores have been proposed and validated by different scientific societies. However, controversies still exist in some aspects across regions, which mainly involve whether the definition of underlying liver diseases should include cirrhosis and non-cirrhosis. The pathophysiology of ACLF is complicated and remains unclear, although accumulating evidence based on different aetiologies of ACLF shows that it is closely associated with intense systemic inflammation and immune-metabolism disorder, which result in mitochondrial dysfunction and microenvironment imbalance, leading to disease development and organ failure. In-depth insight into the biological pathways involved in the mechanisms of ACLF and potential mechanistic targets that improve patient survival still needs to be investigated. Omics-based analytical techniques, including genomics, transcriptomics, proteomics, metabolomics and microbiomes, have developed rapidly and can offer novel insights into the essential pathophysiologic process of ACLF. In this paper, we briefly reviewed and summarized the current knowledge and recent advances in the definitions, criteria and prognostic assessments of ACLF; we also described the omics techniques and how omics-based analyses have been applied to investigate and characterize the biological mechanisms of ACLF and identify potential predictive biomarkers and therapeutic targets for ACLF. We also outline the challenges, future directions and limitations presented by omics-based analyses in clinical ACLF research.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Sauro HM, Agmon E, Blinov ML, Gennari JH, Hellerstein J, Heydarabadipour A, Hunter P, Jardine BE, May E, Nickerson DP, Smith LP, Bader GD, Bergmann F, Boyle PM, Dräger A, Faeder JR, Feng S, Freire J, Fröhlich F, Glazier JA, Gorochowski TE, Helikar T, Hoops S, Imoukhuede P, Keating SM, Konig M, Laubenbacher R, Loew LM, Lopez CF, Lytton WW, McCulloch A, Mendes P, Myers CJ, Myers JG, Mulugeta L, Niarakis A, van Niekerk DD, Olivier BG, Patrie AA, Quardokus EM, Radde N, Rohwer JM, Sahle S, Schaff JC, Sego TJ, Shin J, Snoep JL, Vadigepalli R, Wiley HS, Waltemath D, Moraru I. From FAIR to CURE: Guidelines for Computational Models of Biological Systems. ARXIV 2025:arXiv:2502.15597v1. [PMID: 40034129 PMCID: PMC11875277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and models are key to progress. For this reason, and recognizing that such models are a very special type of "data", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.
Collapse
Affiliation(s)
- Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
- eScience Institute, University of Washington, Seattle, 98195-5061, WA, USA
| | - Eran Agmon
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - John H Gennari
- Department of Biomedical Informatics & Medical Education, University of Washington, 1959 NE Pacific Street, 98195, Seattle, Washington, USA
| | - Joe Hellerstein
- eScience Institute, University of Washington, Seattle, 98195-5061, WA, USA
| | - Adel Heydarabadipour
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Bartholomew E Jardine
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
| | - Elebeoba May
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 North Orchard Street, 53715, Madison, WI, USA
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Lucian P Smith
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, 160 College St, M5S 3E1, Toronto, Ontario, Canada
| | - Frank Bergmann
- COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, 98195-5061, WA, USA
- eScience Institute, University of Washington, Seattle, 98195-5061, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98195-5061, WA, USA
| | - Andreas Dräger
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Eberhard Karl University of Tübingen, Quantitative Biology Center (QBiC), Ottfried-Müller-Str. 37, 72076, Tübingen, Germany
- Martin Luther University Halle-Wittenberg, Data Analytics and Bioinformatics, Von-Seckendorff-Platz 1, 06120, Halle (Saale), Germany
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, 3500 Fifth Avenue, 15213, Pittsburgh, Pennsylvania, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, 99354, WA, USA
| | - Juliana Freire
- Department of Computer Science and Center for Data Science, New York University, New York, NY, 11201, New York, USA
| | - Fabian Fröhlich
- Dynamics of Living Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - James A Glazier
- Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Street, Bloomington, 47408, Indiana, USA
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 68588-0664, Lincoln NE, USA
| | - Stefan Hoops
- Biocomplexity Institute, University of Virginia, Town Center Four, 3rd Floor, 994 Research Park Boulevard, 22911, Charlottesville, VA, USA
| | - Princess Imoukhuede
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
| | - Sarah M Keating
- Advanced Research Computing Centre, University College London, Philippstraße 13, WC1E 6BT, London, UK
| | - Matthias Konig
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Reinhard Laubenbacher
- Department of Medicine, University of Florida, 1600 SW Archer Rd, 32610-0225, Gainesville, Florida, USA
| | - Leslie M Loew
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - Carlos F Lopez
- Multiscale Modeling Group, Altos Labs, 94065, Redwood City, CA, USA
| | - William W Lytton
- Departments of Physiology & Pharmacology, Neurology, Downstate Health Science University, Brooklyn, 11203, NY, USA
- Department of Neurology, Kings County Hospital, Brooklyn, 11203, NY, USA
| | - Andrew McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, 9500 Gilman Drive, 92093-0412, La Jolla, CA, USA
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - Chris J Myers
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 425 UCB, Boulder, 80309, Colorado, USA
| | - Jerry G Myers
- NASA-John H. Glenn Research Center, MS 110-3, 21000 Brookpark Road, Cleveland, 44135, Ohio, USA
| | - Lealem Mulugeta
- InSilico Labs LLC, InSilico Labs LLC, 77008, Houston, Texas, USA
- Medalist Performance, 77027, Houston, Texas, USA
| | - Anna Niarakis
- Molecular, Cellular and Developmental Biology Unit (MCD), Center of Integrative Biology, University of Toulouse III-Paul Sabatier, 165 Rue Marianne Grunberg-Manago, Toulouse, 31400, France
- Lifeware Group, Inria, Building Alan Turing, 1 Rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
| | - David D van Niekerk
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 North Orchard Street, 53715, Madison, WI, USA
| | - Brett G Olivier
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, Netherlands
| | - Alexander A Patrie
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - Ellen M Quardokus
- Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Street, Bloomington, 47408, Indiana, USA
| | - Nicole Radde
- Institute for Stochastics and Applications, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Johann M Rohwer
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
| | - Sven Sahle
- BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - James C Schaff
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| | - T J Sego
- Department of Medicine, University of Florida, 1600 SW Archer Rd, 32610-0225, Gainesville, Florida, USA
| | - Janis Shin
- Department of Bioengineering, University of Washington, Seattle, 98195-5061, WA, USA
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust St, Philadelphia, 19107, Pennsylvania, USA
| | - H Steve Wiley
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, 99354, WA, USA
| | - Dagmar Waltemath
- Medical Informatics Laboratory, University Medicine Greifswald, D-17489, Greifswald, Germany
| | - Ion Moraru
- Center for Cell Analysis and Modeling, UConn Health, 263 Farmington Avenue, Farmington, 06030-6406, Connecticut, USA
| |
Collapse
|
9
|
Fonseca LL, Böttcher L, Mehrad B, Laubenbacher RC. Optimal control of agent-based models via surrogate modeling. PLoS Comput Biol 2025; 21:e1012138. [PMID: 39808665 PMCID: PMC11790234 DOI: 10.1371/journal.pcbi.1012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/03/2025] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
This paper describes and validates an algorithm to solve optimal control problems for agent-based models (ABMs). For a given ABM and a given optimal control problem, the algorithm derives a surrogate model, typically lower-dimensional, in the form of a system of ordinary differential equations (ODEs), solves the control problem for the surrogate model, and then transfers the solution back to the original ABM. It applies to quite general ABMs and offers several options for the ODE structure, depending on what information about the ABM is to be used. There is a broad range of applications for such an algorithm, since ABMs are used widely in the life sciences, such as ecology, epidemiology, and biomedicine and healthcare, areas where optimal control is an important purpose for modeling, such as for medical digital twin technology.
Collapse
Affiliation(s)
- Luis L. Fonseca
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lucas Böttcher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt am Main, Germany
| | - Borna Mehrad
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Reinhard C. Laubenbacher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
10
|
Zerrouk N, Augé F, Niarakis A. Building a modular and multi-cellular virtual twin of the synovial joint in Rheumatoid Arthritis. NPJ Digit Med 2024; 7:379. [PMID: 39719524 DOI: 10.1038/s41746-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Rheumatoid arthritis is a complex disease marked by joint pain, stiffness, swelling, and chronic synovitis, arising from the dysregulated interaction between synoviocytes and immune cells. Its unclear etiology makes finding a cure challenging. The concept of digital twins, used in engineering, can be applied to healthcare to improve diagnosis and treatment for complex diseases like rheumatoid arthritis. In this work, we pave the path towards a digital twin of the arthritic joint by building a large, modular biochemical reaction map of intra- and intercellular interactions. This network, featuring over 1000 biomolecules, is then converted to one of the largest executable Boolean models for biological systems to date. Validated through existing knowledge and gene expression data, our model is used to explore current treatments and identify new therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Naouel Zerrouk
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, Chilly-Mazarin, France
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, Chilly-Mazarin, France
| | - Anna Niarakis
- GenHotel, Laboratoire Européen de Recherche Pour La Polyarthrite Rhumatoïde, University Paris-Saclay, University Evry, Evry, France.
- Lifeware Group, Inria Saclay, Palaiseau, France.
- University of Toulouse III-Paul Sabatier, Laboratory of Molecular, Cellular and Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse, France.
| |
Collapse
|
11
|
L Rocha H, Aguilar B, Getz M, Shmulevich I, Macklin P. A multiscale model of immune surveillance in micrometastases gives insights on cancer patient digital twins. NPJ Syst Biol Appl 2024; 10:144. [PMID: 39627216 PMCID: PMC11614875 DOI: 10.1038/s41540-024-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Metastasis is the leading cause of death in patients with cancer, driving considerable scientific and clinical interest in immunosurveillance of micrometastases. We investigated this process by creating a multiscale mathematical model to study the interactions between the immune system and the progression of micrometastases in general epithelial tissue. We analyzed the parameter space of the model using high-throughput computing resources to generate over 100,000 virtual patient trajectories. We demonstrated that the model could recapitulate a wide variety of virtual patient trajectories, including uncontrolled growth, partial response, and complete immune response to tumor growth. We classified the virtual patients and identified key patient parameters with the greatest effect on the simulated immunosurveillance. We highlight the lessons derived from this analysis and their impact on the nascent field of cancer patient digital twins (CPDTs). While CPDTs could enable clinicians to systematically dissect the complexity of cancer in each individual patient and inform treatment choices, our work shows that key challenges remain before we can reach this vision. In particular, we show that there remain considerable uncertainties in immune responses, unreliable patient stratification, and unpredictable personalized treatment. Nonetheless, we also show that in spite of these challenges, patient-specific models suggest strategies to increase control of clinically undetectable micrometastases even without complete parameter certainty.
Collapse
Affiliation(s)
- Heber L Rocha
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Michael Getz
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
12
|
Wertheim KY, Chisholm R, Richmond P, Walker D. Multicellular model of neuroblastoma proposes unconventional therapy based on multiple roles of p53. PLoS Comput Biol 2024; 20:e1012648. [PMID: 39715281 PMCID: PMC11723635 DOI: 10.1371/journal.pcbi.1012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/10/2025] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Neuroblastoma is the most common extra-cranial solid tumour in children. Over half of all high-risk cases are expected to succumb to the disease even after chemotherapy, surgery, and immunotherapy. Although the importance of MYCN amplification in this disease is indisputable, the mechanistic details remain enigmatic. Here, we present a multicellular model of neuroblastoma comprising a continuous automaton, discrete cell agents, and a centre-based mechanical model, as well as the simulation results we obtained with it. The continuous automaton represents the tumour microenvironment as a grid-like structure, where each voxel is associated with continuous variables such as the oxygen level therein. Each discrete cell agent is defined by several attributes, including its cell cycle position, mutations, gene expression pattern, and more with behaviours such as cell cycling and cell death being stochastically dependent on these attributes. The centre-based mechanical model represents the properties of these agents as physical objects, describing how they repel each other as soft spheres. By implementing a stochastic simulation algorithm on modern GPUs, we simulated the dynamics of over one million neuroblastoma cells over a period of months. Specifically, we set up 1200 heterogeneous tumours and tracked the MYCN-amplified clone's dynamics in each, revealed the conditions that favour its growth, and tested its responses to 5000 drug combinations. Our results are in agreement with those reported in the literature and add new insights into how the MYCN-amplified clone's reproductive advantage in a tumour, its gene expression profile, the tumour's other clones (with different mutations), and the tumour's microenvironment are inter-related. Based on the results, we formulated a hypothesis, which argues that there are two distinct populations of neuroblastoma cells in the tumour; the p53 protein is pro-survival in one and pro-apoptosis in the other. It follows that alternating between inhibiting MDM2 to restore p53 activity and inhibiting ARF to attenuate p53 activity is a promising, if unorthodox, therapeutic strategy. The multicellular model has the advantages of modularity, high resolution, and scalability, making it a potential foundation for creating digital twins of neuroblastoma patients.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Centre of Excellence for Data Science, Artificial Intelligence, and Modelling, University of Hull, Kingston upon Hull, United Kingdom
- School of Computer Science, University of Hull, Kingston upon Hull, United Kingdom
| | - Robert Chisholm
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul Richmond
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Dawn Walker
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Neves-Zaph S, Kaddi C. Quantitative Systems Pharmacology Models: Potential Tools for Advancing Drug Development for Rare Diseases. Clin Pharmacol Ther 2024; 116:1442-1451. [PMID: 39340225 DOI: 10.1002/cpt.3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Rare diseases, affecting millions globally, present significant drug development challenges. This is due to the limited patient populations and the unique pathophysiology of these diseases, which can make traditional clinical trial designs unfeasible. Quantitative Systems Pharmacology (QSP) models offer a promising approach to expedite drug development, particularly in rare diseases. QSP models provide a mechanistic representation of the disease and drug response in virtual patients that can complement routinely applied empirical modeling and simulation approaches. QSP models can generate digital twins of actual patients and mechanistically simulate the disease progression of rare diseases, accounting for phenotypic heterogeneity. QSP models can also support drug development in various drug modalities, such as gene therapy. Impactful QSP models case studies are presented here to illustrate their value in supporting various aspects of drug development in rare indications. As these QSP model applications continue to mature, there is a growing possibility that they could be more widely integrated into routine drug development steps. This integration could provide a robust framework for addressing some of the inherent challenges in rare disease drug development.
Collapse
Affiliation(s)
- Susana Neves-Zaph
- Translational Disease Modeling, Translational Medicine and Early Development, Sanofi US, Bridgewater, New Jersey, USA
| | - Chanchala Kaddi
- Translational Disease Modeling, Translational Medicine and Early Development, Sanofi US, Bridgewater, New Jersey, USA
| |
Collapse
|
14
|
Narayanan P, Wu T, Shah VH, Curtis BL. Insights into ALD and AUD diagnosis and prognosis: Exploring AI and multimodal data streams. Hepatology 2024; 80:1480-1494. [PMID: 38743008 PMCID: PMC11881074 DOI: 10.1097/hep.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The rapid evolution of artificial intelligence and the widespread embrace of digital technologies have ushered in a new era of clinical research and practice in hepatology. Although its potential is far from realization, these significant strides have generated new opportunities to address existing gaps in the delivery of care for patients with liver disease. In this review, we discuss how artificial intelligence and opportunities for multimodal data integration can improve the diagnosis, prognosis, and management of alcohol-associated liver disease. An emphasis is made on how these approaches will also benefit the detection and management of alcohol use disorder. Our discussion encompasses challenges and limitations, concluding with a glimpse into the promising future of these advancements.
Collapse
Affiliation(s)
- Praveena Narayanan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tiffany Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brenda L. Curtis
- Technology and Translational Research Unit, National Institute on Drug Abuse Intramural Research Program, National Institute of Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Niarakis A, Laubenbacher R, An G, Ilan Y, Fisher J, Flobak Å, Reiche K, Rodríguez Martínez M, Geris L, Ladeira L, Veschini L, Blinov ML, Messina F, Fonseca LL, Ferreira S, Montagud A, Noël V, Marku M, Tsirvouli E, Torres MM, Harris LA, Sego TJ, Cockrell C, Shick AE, Balci H, Salazar A, Rian K, Hemedan AA, Esteban-Medina M, Staumont B, Hernandez-Vargas E, Martis B S, Madrid-Valiente A, Karampelesis P, Sordo Vieira L, Harlapur P, Kulesza A, Nikaein N, Garira W, Malik Sheriff RS, Thakar J, Tran VDT, Carbonell-Caballero J, Safaei S, Valencia A, Zinovyev A, Glazier JA. Immune digital twins for complex human pathologies: applications, limitations, and challenges. NPJ Syst Biol Appl 2024; 10:141. [PMID: 39616158 PMCID: PMC11608242 DOI: 10.1038/s41540-024-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.
Collapse
Affiliation(s)
- Anna Niarakis
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France.
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France.
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Yaron Ilan
- Faculty of Medicine Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olav's University Hospital, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - María Rodríguez Martínez
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Luiz Ladeira
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Lorenzo Veschini
- Faculty of Dentistry Oral & Craniofacial Sciences, King's College London, London, UK
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - I.R.C.C.S., Rome, Italy
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Ferreira
- Mathematics Department and Center of Mathematics, University of Beira Interior, Covilhã, Portugal
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Valencia, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Malvina Marku
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcella M Torres
- Department of Mathematics and Statistics, University of Richmond, Richmond, VA, USA
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T J Sego
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Amanda E Shick
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Hasan Balci
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Albin Salazar
- INRIA Paris/CNRS/École Normale Supérieure/PSL Research University, Paris, France
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre of Systems Biomedicine LCSB, Luxembourg University, Esch-sur-Alzette, Luxembourg
| | - Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Bernard Staumont
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Esteban Hernandez-Vargas
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844-1103, USA
| | | | | | | | | | - Pradyumna Harlapur
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | - Niloofar Nikaein
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70182, Örebro, Sweden
- X-HiDE - Exploring Inflammation in Health and Disease Consortium, Örebro University, Örebro, Sweden
| | - Winston Garira
- Multiscale Mathematical Modelling of Living Systems program (M3-LSP), Kimberley, South Africa
- Department of Mathematical Sciences, Sol Plaatje University, Kimberley, South Africa
- Private Bag X5008, Kimberley, 8300, South Africa
| | - Rahuman S Malik Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, Cambridge, UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Juilee Thakar
- Department of Microbiology & Immunology and Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Soroush Safaei
- Institute of Biomedical Engineering and Technology, Ghent University, Gent, Belgium
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain
| | | | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| |
Collapse
|
16
|
Agmon E. Foundations of a Compositional Systems Biology. ARXIV 2024:arXiv:2408.00942v2. [PMID: 39130201 PMCID: PMC11312625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes to enable integrative multiscale simulations. Whereas traditional models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect these models, asking critical questions about the space between models: What variables should a submodel expose through its interface? How do coupled models connect and translate across scales? How do domain-specific models connect across biological and physical disciplines to drive the synthesis of new knowledge? This approach requires robust software to integrate diverse datasets and submodels, providing researchers with tools to flexibly recombine, iteratively refine, and collaboratively expand their models. This article offers a comprehensive framework to support this vision, including: a conceptual and graphical framework to define interfaces and composition patterns; standardized schemas that facilitate modular data and model assembly; biological templates that integrate detailed submodels that connect molecular processes to the emergence of the cellular interface; and user-friendly software interfaces that empower research communities to construct and improve multiscale models of cellular systems. By addressing these needs, compositional systems biology will foster a unified and scalable approach to understanding complex cellular systems.
Collapse
|
17
|
Thangaraj PM, Benson SH, Oikonomou EK, Asselbergs FW, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. Eur Heart J 2024; 45:ehae619. [PMID: 39322420 PMCID: PMC11638093 DOI: 10.1093/eurheartj/ehae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.
Collapse
Affiliation(s)
- Phyllis M Thangaraj
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Sean H Benson
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Evangelos K Oikonomou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, UK
| | - Rohan Khera
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 47 College St., New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, 100 College St. Fl 9, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St. Fl 6, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Huang Y, Dai H, Xu J, Wei R, Sun L, Guo Y, Guo J, Bian J. Evolution of digital twins in precision health applications: a scoping review study. RESEARCH SQUARE 2024:rs.3.rs-4612942. [PMID: 39149471 PMCID: PMC11326392 DOI: 10.21203/rs.3.rs-4612942/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An increasing amount of research is incorporating the concept of Digital twin (DT) in biomedical and health care applications. This scoping review aims to summarize existing research and identify gaps in the development and use of DTs in the health care domain. The focus of this study lies on summarizing: the different types of DTs, the techniques employed in DT development, the DT applications in health care, and the data resources used for creating DTs. We identified fifty studies, which mainly focused on creating organ- (n=15) and patient-specific twins (n=30). The research predominantly centers on cardiology, endocrinology, orthopedics, and infectious diseases. Only a few studies used real-world datasets for developing their DTs. However, there remain unresolved questions and promising directions that require further exploration. This review provides valuable reference material and insights for researchers on DTs in health care and highlights gaps and unmet needs in this field.
Collapse
Affiliation(s)
- Yu Huang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Hao Dai
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Ruoqi Wei
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Leyang Sun
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Wang H, Arulraj T, Ippolito A, Popel AS. From virtual patients to digital twins in immuno-oncology: lessons learned from mechanistic quantitative systems pharmacology modeling. NPJ Digit Med 2024; 7:189. [PMID: 39014005 PMCID: PMC11252162 DOI: 10.1038/s41746-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine and Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Alsalloum GA, Al Sawaftah NM, Percival KM, Husseini GA. Digital Twins of Biological Systems: A Narrative Review. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:670-677. [PMID: 39184962 PMCID: PMC11342927 DOI: 10.1109/ojemb.2024.3426916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
The concept of Digital Twins (DTs), software models that mimic the behavior and interactions of physical or conceptual objects within their environments, has gained traction in recent years, particularly in medicine and healthcare research. DTs technology emerges as a pivotal tool in disease modeling, integrating diverse data sources to computationally model dynamic biological systems. This narrative review explores potential DT applications in medicine, from defining DTs and their history to constructing DTs, modeling biologically relevant systems, as well as discussing the benefits, risks, and challenges in their application. The influence of DTs extends beyond healthcare and can revolutionize healthcare management, drug development, clinical trials, and various biomedical research fields.
Collapse
Affiliation(s)
- Ghufran A. Alsalloum
- Department of Biosciences and Bioengineering, College of EngineeringAmerican University of SharjahSharjah26666UAE
| | - Nour M. Al Sawaftah
- Department of Material Science and Engineering, College of EngineeringAmerican University of SharjahSharjah26666UAE
| | - Kelly M. Percival
- Department of Chemical and Biological Engineering, College of EngineeringAmerican University of SharjahSharjah26666UAE
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, College of EngineeringAmerican University of SharjahSharjah26666UAE
| |
Collapse
|
21
|
Puniya BL, Verma M, Damiani C, Bakr S, Dräger A. Perspectives on computational modeling of biological systems and the significance of the SysMod community. BIOINFORMATICS ADVANCES 2024; 4:vbae090. [PMID: 38948011 PMCID: PMC11213628 DOI: 10.1093/bioadv/vbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/12/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Motivation In recent years, applying computational modeling to systems biology has caused a substantial surge in both discovery and practical applications and a significant shift in our understanding of the complexity inherent in biological systems. Results In this perspective article, we briefly overview computational modeling in biology, highlighting recent advancements such as multi-scale modeling due to the omics revolution, single-cell technology, and integration of artificial intelligence and machine learning approaches. We also discuss the primary challenges faced: integration, standardization, model complexity, scalability, and interdisciplinary collaboration. Lastly, we highlight the contribution made by the Computational Modeling of Biological Systems (SysMod) Community of Special Interest (COSI) associated with the International Society of Computational Biology (ISCB) in driving progress within this rapidly evolving field through community engagement (via both in person and virtual meetings, social media interactions), webinars, and conferences. Availability and implementation Additional information about SysMod is available at https://sysmod.info.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Meghna Verma
- Systems Medicine, Clinical Pharmacology and Quantitative Pharmacology, R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD 20878, United States
| | - Chiara Damiani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Shaimaa Bakr
- Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA 94305-5479, United States
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
- Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, Tübingen 72076, Germany
- Data Analytics and Bioinformatics, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
22
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A multiscale spatial modeling framework for the germinal center response. Front Immunol 2024; 15:1377303. [PMID: 38881901 PMCID: PMC11179717 DOI: 10.3389/fimmu.2024.1377303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymphoid organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events, including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanistic and applied research questions on the adaptive humoral immune response in the future.
Collapse
Affiliation(s)
- Derek P. Mu
- Montgomery Blair High School, Silver Spring, MD, United States
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Norbert E. Kaminski
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Abdollahi H, Yousefirizi F, Shiri I, Brosch-Lenz J, Mollaheydar E, Fele-Paranj A, Shi K, Zaidi H, Alberts I, Soltani M, Uribe C, Saboury B, Rahmim A. Theranostic digital twins: Concept, framework and roadmap towards personalized radiopharmaceutical therapies. Theranostics 2024; 14:3404-3422. [PMID: 38948052 PMCID: PMC11209714 DOI: 10.7150/thno.93973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Radiopharmaceutical therapy (RPT) is a rapidly developing field of nuclear medicine, with several RPTs already well established in the treatment of several different types of cancers. However, the current approaches to RPTs often follow a somewhat inflexible "one size fits all" paradigm, where patients are administered the same amount of radioactivity per cycle regardless of their individual characteristics and features. This approach fails to consider inter-patient variations in radiopharmacokinetics, radiation biology, and immunological factors, which can significantly impact treatment outcomes. To address this limitation, we propose the development of theranostic digital twins (TDTs) to personalize RPTs based on actual patient data. Our proposed roadmap outlines the steps needed to create and refine TDTs that can optimize radiation dose to tumors while minimizing toxicity to organs at risk. The TDT models incorporate physiologically-based radiopharmacokinetic (PBRPK) models, which are additionally linked to a radiobiological optimizer and an immunological modulator, taking into account factors that influence RPT response. By using TDT models, we envisage the ability to perform virtual clinical trials, selecting therapies towards improved treatment outcomes while minimizing risks associated with secondary effects. This framework could empower practitioners to ultimately develop tailored RPT solutions for subgroups and individual patients, thus improving the precision, accuracy, and efficacy of treatments while minimizing risks to patients. By incorporating TDT models into RPTs, we can pave the way for a new era of precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | | | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Cardiology, University Hospital Bern, Switzerland
| | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Elahe Mollaheydar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Ali Fele-Paranj
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Ian Alberts
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, Canada
| | - Madjid Soltani
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, Canada
| | - Babak Saboury
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
- Department of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Fonseca LL, Böttcher L, Mehrad B, Laubenbacher RC. Surrogate modeling and control of medical digital twins. ARXIV 2024:arXiv:2402.05750v2. [PMID: 38827450 PMCID: PMC11142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The vision of personalized medicine is to identify interventions that maintain or restore a person's health based on their individual biology. Medical digital twins, computational models that integrate a wide range of health-related data about a person and can be dynamically updated, are a key technology that can help guide medical decisions. Such medical digital twin models can be high-dimensional, multi-scale, and stochastic. To be practical for healthcare applications, they often need to be simplified into low-dimensional surrogate models that can be used for optimal design of interventions. This paper introduces surrogate modeling algorithms for the purpose of optimal control applications. As a use case, we focus on agent-based models (ABMs), a common model type in biomedicine for which there are no readily available optimal control algorithms. By deriving surrogate models that are based on systems of ordinary differential equations, we show how optimal control methods can be employed to compute effective interventions, which can then be lifted back to a given ABM. The relevance of the methods introduced here extends beyond medical digital twins to other complex dynamical systems.
Collapse
Affiliation(s)
- Luis L. Fonseca
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Lucas Böttcher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, 60322 Frankfurt am Main, Germany
| | - Borna Mehrad
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Reinhard C. Laubenbacher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Mösch A, Grazioli F, Machart P, Malone B. NeoAgDT: optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population. Bioinformatics 2024; 40:btae205. [PMID: 38614133 PMCID: PMC11076149 DOI: 10.1093/bioinformatics/btae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
MOTIVATION Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity. RESULTS Here, we present NeoAgDT, a two-step approach consisting of: (i) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (ii) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally validated neoantigens over ranking-based approaches in a study of seven patients. AVAILABILITY AND IMPLEMENTATION The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.
Collapse
Affiliation(s)
- Anja Mösch
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Filippo Grazioli
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Pierre Machart
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Brandon Malone
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| |
Collapse
|
26
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
27
|
Toofaninejad E, Rezapour SM, Kalantarion M. Utilizing Digital Twins for the Transformation of Medical Education. JOURNAL OF ADVANCES IN MEDICAL EDUCATION & PROFESSIONALISM 2024; 12:132-133. [PMID: 38660433 PMCID: PMC11036321 DOI: 10.30476/jamp.2023.100264.1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/04/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Ehsan Toofaninejad
- Department of eLearning in Medical Sciences, School of Medical Education and Learning technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Maedeh Rezapour
- Department of Medical Education, School of Medical Education and Learning technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masomeh Kalantarion
- Department of Medical Education, School of Medical Education and Learning technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Liang WS, Beaulieu-Jones B, Smalley S, Snyder M, Goetz LH, Schork NJ. Emerging therapeutic drug monitoring technologies: considerations and opportunities in precision medicine. Front Pharmacol 2024; 15:1348112. [PMID: 38545548 PMCID: PMC10965556 DOI: 10.3389/fphar.2024.1348112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, the development of sensor and wearable technologies have led to their increased adoption in clinical and health monitoring settings. One area that is in early, but promising, stages of development is the use of biosensors for therapeutic drug monitoring (TDM). Traditionally, TDM could only be performed in certified laboratories and was used in specific scenarios to optimize drug dosage based on measurement of plasma/blood drug concentrations. Although TDM has been typically pursued in settings involving medications that are challenging to manage, the basic approach is useful for characterizing drug activity. TDM is based on the idea that there is likely a clear relationship between plasma/blood drug concentration (or concentration in other matrices) and clinical efficacy. However, these relationships may vary across individuals and may be affected by genetic factors, comorbidities, lifestyle, and diet. TDM technologies will be valuable for enabling precision medicine strategies to determine the clinical efficacy of drugs in individuals, as well as optimizing personalized dosing, especially since therapeutic windows may vary inter-individually. In this mini-review, we discuss emerging TDM technologies and their applications, and factors that influence TDM including drug interactions, polypharmacy, and supplement use. We also discuss how using TDM within single subject (N-of-1) and aggregated N-of-1 clinical trial designs provides opportunities to better capture drug response and activity at the individual level. Individualized TDM solutions have the potential to help optimize treatment selection and dosing regimens so that the right drug and right dose may be matched to the right person and in the right context.
Collapse
Affiliation(s)
- Winnie S. Liang
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Brett Beaulieu-Jones
- Net/Bio Inc, Los Angeles, CA, United States
- University of Chicago, Chicago, IL, United States
| | | | - Michael Snyder
- Net/Bio Inc, Los Angeles, CA, United States
- Stanford University, Stanford, CA, United States
| | | | - Nicholas J. Schork
- Net/Bio Inc, Los Angeles, CA, United States
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| |
Collapse
|
29
|
Laubenbacher R, Mehrad B, Shmulevich I, Trayanova N. Digital twins in medicine. NATURE COMPUTATIONAL SCIENCE 2024; 4:184-191. [PMID: 38532133 PMCID: PMC11102043 DOI: 10.1038/s43588-024-00607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
Medical digital twins, which are potentially vital for personalized medicine, have become a recent focus in medical research. Here we present an overview of the state of the art in medical digital twin development, especially in oncology and cardiology, where it is most advanced. We discuss major challenges, such as data integration and privacy, and provide an outlook on future advancements. Emphasizing the importance of this technology in healthcare, we highlight the potential for substantial improvements in patient-specific treatments and diagnostics.
Collapse
Affiliation(s)
- R Laubenbacher
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - B Mehrad
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - N Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Laubenbacher R, Adler F, An G, Castiglione F, Eubank S, Fonseca LL, Glazier J, Helikar T, Jett-Tilton M, Kirschner D, Macklin P, Mehrad B, Moore B, Pasour V, Shmulevich I, Smith A, Voigt I, Yankeelov TE, Ziemssen T. Forum on immune digital twins: a meeting report. NPJ Syst Biol Appl 2024; 10:19. [PMID: 38365857 PMCID: PMC10873299 DOI: 10.1038/s41540-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Medical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure.
Collapse
Affiliation(s)
| | - Fred Adler
- Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gary An
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Filippo Castiglione
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
| | - Stephen Eubank
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - James Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | | | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Beth Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Virginia Pasour
- U.S. Army Research Office, Research Triangle Park, Raleigh, NC, USA
| | | | - Amber Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabel Voigt
- Center of Clinical Neuroscience, Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences, Departments of Biomedical Engineering, Diagnostic Medicine, Oncology, The University of Texas, Austin, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
31
|
Kuo FH, Tudor BH, Gray GM, Ahumada LM, Rehman MA, Watkins SC. Precision Anesthesia in 2050. Anesth Analg 2024; 138:326-336. [PMID: 38215711 DOI: 10.1213/ane.0000000000006688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Over the last few decades, the field of anesthesia has advanced far beyond its humble beginnings. Today's anesthetics are better and safer than ever, thanks to innovations in drugs, monitors, equipment, and patient safety.1-4 At the same time, we remain limited by our herd approach to medicine. Each of our patients is unique, but health care today is based on a one-size-fits-all approach, while our patients grow older and more medically complex every year. By 2050, we believe that precision medicine will play a central role across all medical specialties, including anesthesia. In addition, we expect that health care and consumer technology will continually evolve to improve and simplify the interactions between patients, providers, and the health care system. As demonstrated by 2 hypothetical patient experiences, these advancements will enable more efficient and safe care, earlier and more accurate diagnoses, and truly personalized treatment plans.
Collapse
Affiliation(s)
| | - Brant H Tudor
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Geoffrey M Gray
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Luis M Ahumada
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | | | | |
Collapse
|
32
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A Multiscale Spatial Modeling Framework for the Germinal Center Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577491. [PMID: 38501122 PMCID: PMC10945589 DOI: 10.1101/2024.01.26.577491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymph organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanic and applied research questions in future.
Collapse
|
33
|
Michael CT, Almohri SA, Linderman JJ, Kirschner DE. A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons. FRONTIERS IN SYSTEMS BIOLOGY 2024; 3:1283341. [PMID: 39310676 PMCID: PMC11415237 DOI: 10.3389/fsysb.2023.1283341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Computational models of disease progression have been constructed for a myriad of pathologies. Typically, the conceptual implementation for pathology-related in-silico intervention studies has been ad-hoc and similar in design to experimental studies. We introduce a multi-scale interventional design (MID) framework toward two key goals: tracking of disease dynamics from within-body to patient to population scale; and tracking impact(s) of interventions across these same spatial scales. Our MID framework prioritizes investigation of impact on individual patients within virtual pre-clinical trials, instead of replicating the design of experimental studies. We apply a MID framework to develop, organize, and analyze a cohort of virtual patients for the study of tuberculosis (TB) as an example disease. For this study, we use HostSim: our next-generation whole patient-scale computational model of individuals infected with Mycobacterium tuberculosis. HostSim captures infection within lungs by tracking multiple granulomas, together with dynamics occurring with blood and lymph node compartments, the compartments involved during pulmonary TB. We extend HostSim to include a simple drug intervention as an example of our approach and use our MID framework to quantify the impact of treatment at cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and population scales. Sensitivity analyses allow us to determine which features of virtual patients are the strongest predictors of intervention efficacy across scales. These insights allow us to identify patient-heterogeneous mechanisms that drive outcomes across scales.
Collapse
Affiliation(s)
- Christian T. Michael
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sayed Ahmad Almohri
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Denise E. Kirschner
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Sego TJ. SimService: a lightweight library for building simulation services in Python. Bioinformatics 2024; 40:btae009. [PMID: 38237907 PMCID: PMC10809901 DOI: 10.1093/bioinformatics/btae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
SUMMARY Integrative biological modeling requires software infrastructure to launch, interconnect, and execute simulation software components without loss of functionality. SimService is a software library that enables deploying simulations in integrated applications as memory-isolated services with interactive proxy objects in the Python programming language. SimService supports customizing the interface of proxies so that simulation developers and users alike can tailor generated simulation instances according to model, method, and integrated application. AVAILABILITY AND IMPLEMENTATION SimService is written in Python, is freely available on GitHub under the MIT license at https://github.com/tjsego/simservice, and is available for download via the Python Package Index (package name "simservice") and conda (package name "simservice" on the conda-forge channel).
Collapse
Affiliation(s)
- T J Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610-0225, United States
| |
Collapse
|
35
|
Arsène S, Parès Y, Tixier E, Granjeon-Noriot S, Martin B, Bruezière L, Couty C, Courcelles E, Kahoul R, Pitrat J, Go N, Monteiro C, Kleine-Schultjann J, Jemai S, Pham E, Boissel JP, Kulesza A. In Silico Clinical Trials: Is It Possible? Methods Mol Biol 2024; 2716:51-99. [PMID: 37702936 DOI: 10.1007/978-1-0716-3449-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Modeling and simulation (M&S), including in silico (clinical) trials, helps accelerate drug research and development and reduce costs and have coined the term "model-informed drug development (MIDD)." Data-driven, inferential approaches are now becoming increasingly complemented by emerging complex physiologically and knowledge-based disease (and drug) models, but differ in setup, bottlenecks, data requirements, and applications (also reminiscent of the different scientific communities they arose from). At the same time, and within the MIDD landscape, regulators and drug developers start to embrace in silico trials as a potential tool to refine, reduce, and ultimately replace clinical trials. Effectively, silos between the historically distinct modeling approaches start to break down. Widespread adoption of in silico trials still needs more collaboration between different stakeholders and established precedence use cases in key applications, which is currently impeded by a shattered collection of tools and practices. In order to address these key challenges, efforts to establish best practice workflows need to be undertaken and new collaborative M&S tools devised, and an attempt to provide a coherent set of solutions is provided in this chapter. First, a dedicated workflow for in silico clinical trial (development) life cycle is provided, which takes up general ideas from the systems biology and quantitative systems pharmacology space and which implements specific steps toward regulatory qualification. Then, key characteristics of an in silico trial software platform implementation are given on the example of jinkō.ai (nova's end-to-end in silico clinical trial platform). Considering these enabling scientific and technological advances, future applications of in silico trials to refine, reduce, and replace clinical research are indicated, ranging from synthetic control strategies and digital twins, which overall shows promise to begin a new era of more efficient drug development.
Collapse
|
36
|
Kaizu K, Takahashi K. Technologies for whole-cell modeling: Genome-wide reconstruction of a cell in silico. Dev Growth Differ 2023; 65:554-564. [PMID: 37856476 PMCID: PMC11520977 DOI: 10.1111/dgd.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
With advances in high-throughput, large-scale in vivo measurement and genome modification techniques at the single-nucleotide level, there is an increasing demand for the development of new technologies for the flexible design and control of cellular systems. Computer-aided design is a powerful tool to design new cells. Whole-cell modeling aims to integrate various cellular subsystems, determine their interactions and cooperative mechanisms, and predict comprehensive cellular behaviors by computational simulations on a genome-wide scale. It has been applied to prokaryotes, yeasts, and higher eukaryotic cells, and utilized in a wide range of applications, including production of valuable substances, drug discovery, and controlled differentiation. Whole-cell modeling, consisting of several thousand elements with diverse scales and properties, requires innovative model construction, simulation, and analysis techniques. Furthermore, whole-cell modeling has been extended to multiple scales, including high-resolution modeling at the single-nucleotide and single-amino acid levels and multicellular modeling of tissues and organs. This review presents an overview of the current state of whole-cell modeling, discusses the novel computational and experimental technologies driving it, and introduces further developments toward multihierarchical modeling on a whole-genome scale.
Collapse
|
37
|
Johnson JA, Stein-O’Brien GL, Booth M, Heiland R, Kurtoglu F, Bergman DR, Bucher E, Deshpande A, Forjaz A, Getz M, Godet I, Lyman M, Metzcar J, Mitchell J, Raddatz A, Rocha H, Solorzano J, Sundus A, Wang Y, Gilkes D, Kagohara LT, Kiemen AL, Thompson ED, Wirtz D, Wu PH, Zaidi N, Zheng L, Zimmerman JW, Jaffee EM, Hwan Chang Y, Coussens LM, Gray JW, Heiser LM, Fertig EJ, Macklin P. Digitize your Biology! Modeling multicellular systems through interpretable cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557982. [PMID: 37745323 PMCID: PMC10516032 DOI: 10.1101/2023.09.17.557982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.
Collapse
Affiliation(s)
- Jeanette A.I. Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Genevieve L. Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University. Baltimore, MD USA
| | - Max Booth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Furkan Kurtoglu
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Daniel R. Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elmar Bucher
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - André Forjaz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Ines Godet
- Memorial Sloan Kettering Cancer Center. New York, NY USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
- Department of Informatics, Indiana University. Bloomington, IN USA
| | - Jacob Mitchell
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Human Genetics, Johns Hopkins University. Baltimore, MD USA
| | - Andrew Raddatz
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University. Atlanta, GA USA
| | - Heber Rocha
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Jacobo Solorzano
- Centre de Recherches en Cancerologie de Toulouse. Toulouse, France
| | - Aneequa Sundus
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Yafei Wang
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Danielle Gilkes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Ashley L. Kiemen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
| | | | - Denis Wirtz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
- Department of Pathology, Johns Hopkins University. Baltimore, MD USA
- Department of Materials Science and Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Pei-Hsun Wu
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Elizabeth M. Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University. Portland, OR USA
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Laura M. Heiser
- Department of Biomedical Engineering, Oregon Health & Science University. Portland, OR USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University. Baltimore, MD USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| |
Collapse
|
38
|
Borau C, Wertheim KY, Hervas-Raluy S, Sainz-DeMena D, Walker D, Chisholm R, Richmond P, Varella V, Viceconti M, Montero A, Gregori-Puigjané E, Mestres J, Kasztelnik M, García-Aznar JM. A multiscale orchestrated computational framework to reveal emergent phenomena in neuroblastoma. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107742. [PMID: 37572512 DOI: 10.1016/j.cmpb.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Neuroblastoma is a complex and aggressive type of cancer that affects children. Current treatments involve a combination of surgery, chemotherapy, radiotherapy, and stem cell transplantation. However, treatment outcomes vary due to the heterogeneous nature of the disease. Computational models have been used to analyse data, simulate biological processes, and predict disease progression and treatment outcomes. While continuum cancer models capture the overall behaviour of tumours, and agent-based models represent the complex behaviour of individual cells, multiscale models represent interactions at different organisational levels, providing a more comprehensive understanding of the system. In 2018, the PRIMAGE consortium was formed to build a cloud-based decision support system for neuroblastoma, including a multi-scale model for patient-specific simulations of disease progression. In this work we have developed this multi-scale model that includes data such as patient's tumour geometry, cellularity, vascularization, genetics and type of chemotherapy treatment, and integrated it into an online platform that runs the simulations on a high-performance computation cluster using Onedata and Kubernetes technologies. This infrastructure will allow clinicians to optimise treatment regimens and reduce the number of costly and time-consuming clinical trials. This manuscript outlines the challenging framework's model architecture, data workflow, hypothesis, and resources employed in its development.
Collapse
Affiliation(s)
- C Borau
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain.
| | - K Y Wertheim
- Department of Computer Science and InsigneoInstitute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Centre of Excellence for Data Science, Artificial Intelligence and Modelling and School of Computer Science, University of Hull, Kingston upon Hull, United Kingdom
| | - S Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - D Sainz-DeMena
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - D Walker
- Department of Computer Science and InsigneoInstitute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - R Chisholm
- Department of Computer Science and InsigneoInstitute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - P Richmond
- Department of Computer Science and InsigneoInstitute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - V Varella
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy; Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy; Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A Montero
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - E Gregori-Puigjané
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - J Mestres
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - M Kasztelnik
- ACC Cyfronet, AGH University of Science and Technology, Kraków, Poland
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
39
|
Yang E. Implications of immersive technologies in healthcare sector and its built environment. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1184925. [PMID: 37799269 PMCID: PMC10548380 DOI: 10.3389/fmedt.2023.1184925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives This research focuses on how built environment experts can contribute to the MXR-enabled digital innovation as part of the multidisciplinary team effort to ensure post-pandemic resilience in healthcare built environment. The goal of this research is to help healthcare providers, built environment experts, and policy makers respectively: (1) Advocate the benefits of MXR for innovating health and social care; (2) Spark debate across networks of expertise to create health-promoting environment; and (3) Understand the overriding priorities in making effective pathways to the implementation of MXR. Methods To highlight the novelty of this research, the study relies on two qualitative methodologies: exploratory literature review and semi-structured interviews. Based on the evaluation of prior works and cross-national case studies, hypotheses are formulated from three arenas: (1) Cross-sectional Initiatives for Post-pandemic Resilience; (2) Interoperability and Usability of Next-gen Medicines; and (3) Metaverse and New Forms of Value in Future Healthcare Ecosystems. To verify those hypotheses, empirical findings are derived from in-depth interviews with nine key informants. Results The main findings are summarized under the following three themes: (1) Synergism between Architecture and Technology; (2) Patient Empowerment and Staff Support; and (3) Scalable Health and Wellbeing in Non-hospital and Therapeutic Settings. Firstly, both built environment and healthcare sectors can benefit from the various capabilities of MXR through cross-sectional initiatives, evidence-based practices, and participatory approaches. Secondly, a confluence of knowledge and methods of HCI and HBI can increase the interoperability and usability of MXR for the patient-centered and value-based healthcare models. Thirdly, the MXR-enabled technological regime will largely affect the new forms of value in healthcare premises by fostering more decentralized, preventive, and therapeutic characteristics in the future healthcare ecosystems. Conclusion Whether it's virtual or physical, our healthcare systems have placed great emphasis on the rigor of evidence-based approach linking health outcome to a clinical environment. Henceforth, built environment experts should seek closer ties with the MXR ecosystems for the co-production of scalable health and wellbeing in non-hospital and therapeutic settings. Ultimately, this is to improve resource efficiency in the healthcare sector while considering the transition of health resources towards in silico status by increasing the implementation of MXR.
Collapse
Affiliation(s)
- Eunsil Yang
- Healthcare Facilities, Bartlett School of Sustainable Construction, University College London, London, United Kingdom
| |
Collapse
|
40
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
41
|
Machado TM, Berssaneti FT. Literature review of digital twin in healthcare. Heliyon 2023; 9:e19390. [PMID: 37809792 PMCID: PMC10558347 DOI: 10.1016/j.heliyon.2023.e19390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
This article aims to make a bibliometric literature review using systematic scientific mapping and content analysis of digital twins in healthcare to know the evolution, domain, keywords, content type, and kind and purpose of digital twin's implementation in healthcare, so a consolidation and future improvement of existing knowledge can be made and gaps for new studies can be identified. The increase in publications of digital twins in healthcare is quite recent and it is still concentrated in the domain of technology sources. The subject is majorly concentrated in patient's digital twin group and in precision medicine and aspects, issues and/or policies subgroups, although the publications keywords mirror it only at the group side. Digital twins in healthcare are probably stepping out of the infancy phase. On the other hand, digital twins in hospital group and the device and facilities management subgroups are more mature with all knowledge gathered from the manufacturing sector. There is an absence of some publication's types in general, device and care subgroup and no whole body or hospital digital twin was reported. Based on the presented arguments, guidelines for future research were presented: advance in the creation of general frameworks, in subgroups not as much explored, and in groups and subgroups already explored, but that need more advancement to achieve the main goals of a whole human or hospital digital twin with the main issues resolved.
Collapse
Affiliation(s)
- Tatiana Mallet Machado
- Production Engineering Department, Polytechnic School University of São Paulo, Av. Prof. Almeida Prado, Brazil
| | - Fernando Tobal Berssaneti
- Production Engineering Department, Polytechnic School University of São Paulo, Av. Prof. Almeida Prado, Brazil
| |
Collapse
|
42
|
Sigawi T, Ilan Y. Using Constrained-Disorder Principle-Based Systems to Improve the Performance of Digital Twins in Biological Systems. Biomimetics (Basel) 2023; 8:359. [PMID: 37622964 PMCID: PMC10452845 DOI: 10.3390/biomimetics8040359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Digital twins are computer programs that use real-world data to create simulations that predict the performance of processes, products, and systems. Digital twins may integrate artificial intelligence to improve their outputs. Models for dealing with uncertainties and noise are used to improve the accuracy of digital twins. Most currently used systems aim to reduce noise to improve their outputs. Nevertheless, biological systems are characterized by inherent variability, which is necessary for their proper function. The constrained-disorder principle defines living systems as having a disorder as part of their existence and proper operation while kept within dynamic boundaries. In the present paper, we review the role of noise in complex systems and its use in bioengineering. We describe the use of digital twins for medical applications and current methods for dealing with noise and uncertainties in modeling. The paper presents methods to improve the accuracy and effectiveness of digital twin systems by continuously implementing variability signatures while simultaneously reducing unwanted noise in their inputs and outputs. Accounting for the noisy internal and external environments of complex biological systems is necessary for the future design of improved, more accurate digital twins.
Collapse
Affiliation(s)
| | - Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 12000, Israel;
| |
Collapse
|
43
|
Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci 2023; 44:411-424. [PMID: 37268540 DOI: 10.1016/j.tips.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023]
Abstract
Artificial intelligence (AI)-based predictive models are being used to foster a precision medicine approach to treat complex chronic diseases such as autoimmune and autoinflammatory disorders (AIIDs). In the past few years the first models of systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), and rheumatoid arthritis (RA) have been produced by molecular profiling of patients using omic technologies and integrating the data with AI. These advances have confirmed a complex pathophysiology involving multiple proinflammatory pathways and also provide evidence for shared molecular dysregulation across different AIIDs. I discuss how models are used to stratify patients, assess causality in pathophysiology, design drug candidates in silico, and predict drug efficacy in virtual patients. By relating individual patient characteristics to the predicted properties of millions of drug candidates, these models can improve the management of AIIDs through more personalized treatments.
Collapse
Affiliation(s)
- Philippe Moingeon
- Research and Development, Servier Laboratories, 50 Rue Carnot, 92150 Suresnes, France; French Academy of Pharmacy, 4 Avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
44
|
Shu H, Liang R, Li Z, Goodridge A, Zhang X, Ding H, Nagururu N, Sahu M, Creighton FX, Taylor RH, Munawar A, Unberath M. Twin-S: a digital twin for skull base surgery. Int J Comput Assist Radiol Surg 2023; 18:1077-1084. [PMID: 37160583 PMCID: PMC11110948 DOI: 10.1007/s11548-023-02863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Digital twins are virtual replicas of real-world objects and processes, and they have potential applications in the field of surgical procedures, such as enhancing situational awareness. We introduce Twin-S, a digital twin framework designed specifically for skull base surgeries. METHODS Twin-S is a novel framework that combines high-precision optical tracking and real-time simulation, making it possible to integrate it into image-guided interventions. To guarantee accurate representation, Twin-S employs calibration routines to ensure that the virtual model precisely reflects all real-world processes. Twin-S models and tracks key elements of skull base surgery, including surgical tools, patient anatomy, and surgical cameras. Importantly, Twin-S mirrors real-world drilling and updates the virtual model at frame rate of 28. RESULTS Our evaluation of Twin-S demonstrates its accuracy, with an average error of 1.39 mm during the drilling process. Our study also highlights the benefits of Twin-S, such as its ability to provide augmented surgical views derived from the continuously updated virtual model, thus offering additional situational awareness to the surgeon. CONCLUSION We present Twin-S, a digital twin environment for skull base surgery. Twin-S captures the real-world surgical progresses and updates the virtual model in real time through the use of modern tracking technologies. Future research that integrates vision-based techniques could further increase the accuracy of Twin-S.
Collapse
Affiliation(s)
| | - Ruixing Liang
- Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Medicine, Baltimore, MD, USA
| | - Zhaoshuo Li
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Hao Ding
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Manish Sahu
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
45
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
46
|
Toledo-Marín JQ, Ali T, van Rooij T, Görges M, Wasserman WW. Prediction of Blood Risk Score in Diabetes Using Deep Neural Networks. J Clin Med 2023; 12:jcm12041695. [PMID: 36836230 PMCID: PMC9961355 DOI: 10.3390/jcm12041695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Improving the prediction of blood glucose concentration may improve the quality of life of people living with type 1 diabetes by enabling them to better manage their care. Given the anticipated benefits of such a prediction, numerous methods have been proposed. Rather than attempting to predict glucose concentration, a deep learning framework for prediction is proposed in which prediction is performed using a scale for hypo- and hyper-glycemia risk. Using the blood glucose risk score formula proposed by Kovatchev et al., models with different architectures were trained, including, a recurrent neural network (RNN), a gated recurrent unit (GRU), a long short-term memory (LSTM) network, and an encoder-like convolutional neural network (CNN). The models were trained using the OpenAPS Data Commons data set, comprising 139 individuals, each with tens of thousands of continuous glucose monitor (CGM) data points. The training set was composed of 7% of the data set, while the remaining was used for testing. Performance comparisons between the different architectures are presented and discussed. To evaluate these predictions, performance results are compared with the last measurement (LM) prediction, through a sample-and-hold approach continuing the last known measurement forward. The results obtained are competitive when compared to other deep learning methods. A root mean squared error (RMSE) of 16 mg/dL, 24 mg/dL, and 37 mg/dL were obtained for CNN prediction horizons of 15, 30, and 60 min, respectively. However, no significant improvements were found for the deep learning models compared to LM prediction. Performance was found to be highly dependent on architecture and the prediction horizon. Lastly, a metric to assess model performance by weighing each prediction point error with the corresponding blood glucose risk score is proposed. Two main conclusions are drawn. Firstly, going forward, there is a need to benchmark model performance using LM prediction to enable the comparison between results obtained from different data sets. Secondly, model-agnostic data-driven deep learning models may only be meaningful when combined with mechanistic physiological models; here, it is argued that neural ordinary differential equations may combine the best of both approaches. These findings are based on the OpenAPS Data Commons data set and are to be validated in other independent data sets.
Collapse
Affiliation(s)
- J. Quetzalcóatl Toledo-Marín
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Correspondence:
| | - Taqdir Ali
- Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Tibor van Rooij
- Department of Computer Science, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Matthias Görges
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Wyeth W. Wasserman
- Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
47
|
Saghiri MA. The future of digital twins in precision dentistry. J Oral Biol Craniofac Res 2023; 13:19. [PMID: 36345496 PMCID: PMC9636047 DOI: 10.1016/j.jobcr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mohammad Ali Saghiri
- Corresponding author. Department of Restorative Dentistry, Rutgers School of Dental Medicine, MSB C639A, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
48
|
Sheng B, Wang Z, Qiao Y, Xie SQ, Tao J, Duan C. Detecting latent topics and trends of digital twins in healthcare: A structural topic model-based systematic review. Digit Health 2023; 9:20552076231203672. [PMID: 37846404 PMCID: PMC10576938 DOI: 10.1177/20552076231203672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
Objective Digital twins (DTs) have received widespread attention recently, providing new ideas and possibilities for future healthcare. This review aims to provide a quantitative review to analyze specific study contents, research focus, and trends of DT in healthcare. Simultaneously, this review intends to expand the connotation of "healthcare" into two directions, namely "Disease treatment" and "Health enhancement" to analyze the content within the "DT + healthcare" field thoroughly. Methods A data mining method named Structure Topic Modeling (STM) was used as the analytical tool due to its topic analysis ability and versatility. Google Scholar, Web of Science, and China National Knowledge Infrastructure supplied the material papers in this review. Results A total of 94 high-quality papers published between 2018 and 2022 were gathered and categorized into eight topics, collectively covering the transformative impact across a broader spectrum in healthcare. Three main findings have emerged: (1) papers published in healthcare predominantly concentrate on technology development (artificial intelligence, Internet of Things, etc.) and application scenarios(personalized, precise, and real-time health service); (2) the popularity of research topics is influenced by various factors, including policies, COVID-19, and emerging technologies; and (3) the preference for topics is diverse, with a general inclination toward the attribute of "Health enhancement." Conclusions This review underscores the significance of real-time capability and accuracy in shaping the future of DT, where algorithms and data transmission methods assume central importance in achieving these goals. Moreover, technological advancements, such as omics and Metaverse, have opened up new possibilities for DT in healthcare. These findings contribute to the existing literature by offering quantitative insights and valuable guidance to keep researchers ahead of the curve.
Collapse
Affiliation(s)
- Bo Sheng
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Zheyu Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Yujiao Qiao
- ShanghaiTech University Center for Innovative Teaching and Learning, ShanghaiTech University, Shanghai, China
| | - Sheng Quan Xie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Jing Tao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Chaoqun Duan
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
49
|
Sun T, He X, Li Z. Digital twin in healthcare: Recent updates and challenges. Digit Health 2023; 9:20552076221149651. [PMID: 36636729 PMCID: PMC9830576 DOI: 10.1177/20552076221149651] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
As simulation is playing an increasingly important role in medicine, providing the individual patient with a customised diagnosis and treatment is envisaged as part of future precision medicine. Such customisation will become possible through the emergence of digital twin (DT) technology. The objective of this article is to review the progress of prominent research on DT technology in medicine and discuss the potential applications and future opportunities as well as several challenges remaining in digital healthcare. A review of the literature was conducted using PubMed, Web of Science, Google Scholar, Scopus and related bibliographic resources, in which the following terms and their derivatives were considered during the search: DT, medicine and digital health virtual healthcare. Finally, analyses of the literature yielded 465 pertinent articles, of which we selected 22 for detailed review. We summarised the application examples of DT in medicine and analysed the applications in many fields of medicine. It revealed encouraging results that DT is being increasing applied in medicine. Results from this literature review indicated that DT healthcare, as a key fusion approach of future medicine, will bring the advantages of precision diagnose and personalised treatment into reality.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, People's Republic of China
| | - Xiwang He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, People's Republic of China
| |
Collapse
|
50
|
Rahmim A, Brosch-Lenz J, Fele-Paranj A, Yousefirizi F, Soltani M, Uribe C, Saboury B. Theranostic digital twins for personalized radiopharmaceutical therapies: Reimagining theranostics via computational nuclear oncology. Front Oncol 2022; 12:1062592. [PMID: 36591527 PMCID: PMC9797662 DOI: 10.3389/fonc.2022.1062592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
This work emphasizes that patient data, including images, are not operable (clinically), but that digital twins are. Based on the former, the latter can be created. Subsequently, virtual clinical operations can be performed towards selection of optimal therapies. Digital twins are beginning to emerge in the field of medicine. We suggest that theranostic digital twins (TDTs) are amongst the most natural and feasible flavors of digitals twins. We elaborate on the importance of TDTs in a future where 'one-size-fits-all' therapeutic schemes, as prevalent nowadays, are transcended in radiopharmaceutical therapies (RPTs). Personalized RPTs will be deployed, including optimized intervention parameters. Examples include optimization of injected radioactivities, sites of injection, injection intervals and profiles, and combination therapies. Multi-modal multi-scale images, combined with other data and aided by artificial intelligence (AI) techniques, will be utilized towards routine digital twinning of our patients, and will enable improved deliveries of RPTs and overall healthcare.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Arman Rahmim,
| | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ali Fele-Paranj
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Madjid Soltani
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|