1
|
Wei Z, Zhang Z, Chen Q, Wang C, Fu S, Wang H, Zhang X, Liu X, Zheng H, Wu J, Li Y. Open-transmit and flexible receiver array for high resolution ultrahigh-field fMRI of the human sensorimotor cortex. Commun Biol 2025; 8:482. [PMID: 40121362 PMCID: PMC11929792 DOI: 10.1038/s42003-025-07866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we developed an open-transmit and 24-channel flexible receiver head coil assembly tailored for high-resolution ultrahigh-field functional magnetic resonance imaging (fMRI) of the human somatosensory and motor cortex. Leveraging the increased signal-to-noise ratio (SNR) and spatial resolution of ultrahigh field MRI, we address the technical challenges inherent in fMRI coil design. The open-birdcage transmit coil enhances patient comfort and enables visual task implementation, demonstrating superior performance in transmit efficiency and specific absorption rate distribution compared to conventional coils. Furthermore, the 24-channel flexible receiver head coil offers enhanced SNR and image quality, facilitating sub-millimeter vascular-space-occupancy imaging for precise functional mapping. These advancements provide valuable tools for unraveling the intricacies of somatosensory and motor cortex function. By enriching human brain functional studies, they contribute significantly to our understanding of the mechanisms underlying somatosensory and motor cortex function and may have valuable clinical applications in neurology and neuroscience research.
Collapse
Affiliation(s)
- Zidong Wei
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Zhilin Zhang
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Cuiting Wang
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Shuyue Fu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haifeng Wang
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, University at Buffalo,the State University of New York, Buffalo, NY, USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Hairong Zheng
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Jinglong Wu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ye Li
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China.
| |
Collapse
|
2
|
Xiong Y(S, Donoghue JA, Lundqvist M, Mahnke M, Major AJ, Brown EN, Miller EK, Bastos AM. Propofol-mediated loss of consciousness disrupts predictive routing and local field phase modulation of neural activity. Proc Natl Acad Sci U S A 2024; 121:e2315160121. [PMID: 39374396 PMCID: PMC11494327 DOI: 10.1073/pnas.2315160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Predictive coding is a fundamental function of the cortex. The predictive routing model proposes a neurophysiological implementation for predictive coding. Predictions are fed back from the deep-layer cortex via alpha/beta (8 to 30 Hz) oscillations. They inhibit the gamma (40 to 100 Hz) and spiking that feed sensory inputs forward. Unpredicted inputs arrive in circuits unprepared by alpha/beta, resulting in enhanced gamma and spiking. To test the predictive routing model and its role in consciousness, we collected data from intracranial recordings of macaque monkeys during passive presentation of auditory oddballs before and after propofol-mediated loss of consciousness (LOC). In line with the predictive routing model, alpha/beta oscillations in the awake state served to inhibit the processing of predictable stimuli. Propofol-mediated LOC eliminated alpha/beta modulation by a predictable stimulus in the sensory cortex and alpha/beta coherence between sensory and frontal areas. As a result, oddball stimuli evoked enhanced gamma power, late period (>200 ms from stimulus onset) spiking, and superficial layer sinks in the sensory cortex. LOC also resulted in diminished decodability of pattern-level prediction error signals in the higher-order cortex. Therefore, the auditory cortex was in a disinhibited state during propofol-mediated LOC. However, despite these enhanced feedforward responses in the auditory cortex, there was a loss of differential spiking to oddballs in the higher-order cortex. This may be a consequence of a loss of within-area and interareal spike-field coupling in the alpha/beta and gamma frequency bands. These results provide strong constraints for current theories of consciousness.
Collapse
Affiliation(s)
| | - Jacob A. Donoghue
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm171 77, Sweden
| | - Meredith Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alex James Major
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emery N. Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- The Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA02114
- The Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Earl K. Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - André M. Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN37235
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
3
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
4
|
Bellet ME, Gay M, Bellet J, Jarraya B, Dehaene S, van Kerkoerle T, Panagiotaropoulos TI. Spontaneously emerging internal models of visual sequences combine abstract and event-specific information in the prefrontal cortex. Cell Rep 2024; 43:113952. [PMID: 38483904 DOI: 10.1016/j.celrep.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models that generalize to novel experiences? Here, we show that neuronal populations in macaque ventrolateral prefrontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt task or response requirements, prefrontal populations spontaneously form representations of sequence structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Representations of sequence structure rapidly update following single exposure to a mismatch sequence, while distinct populations represent mismatches for sequences of different complexity. Finally, those representations generalize across sequences following the same repetition structure but comprising different images. These results suggest that prefrontal populations spontaneously encode rich internal models of visual sequences reflecting both content-specific and abstract information.
Collapse
Affiliation(s)
- Marie E Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marion Gay
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Joachim Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Université Paris-Saclay, UVSQ, Versailles, France; Neuromodulation Pole, Foch Hospital, Suresnes, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Department of Neurophysics, Donders Center for Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Center, Rijswijk, the Netherlands
| | | |
Collapse
|
5
|
Zhu Y, Li C, Hendry C, Glass J, Canseco-Gonzalez E, Pitts MA, Dykstra AR. Isolating Neural Signatures of Conscious Speech Perception with a No-Report Sine-Wave Speech Paradigm. J Neurosci 2024; 44:e0145232023. [PMID: 38191569 PMCID: PMC10883607 DOI: 10.1523/jneurosci.0145-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/21/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Identifying neural correlates of conscious perception is a fundamental endeavor of cognitive neuroscience. Most studies so far have focused on visual awareness along with trial-by-trial reports of task-relevant stimuli, which can confound neural measures of perceptual awareness with postperceptual processing. Here, we used a three-phase sine-wave speech paradigm that dissociated between conscious speech perception and task relevance while recording EEG in humans of both sexes. Compared with tokens perceived as noise, physically identical sine-wave speech tokens that were perceived as speech elicited a left-lateralized, near-vertex negativity, which we interpret as a phonological version of a perceptual awareness negativity. This response appeared between 200 and 300 ms after token onset and was not present for frequency-flipped control tokens that were never perceived as speech. In contrast, the P3b elicited by task-irrelevant tokens did not significantly differ when the tokens were perceived as speech versus noise and was only enhanced for tokens that were both perceived as speech and relevant to the task. Our results extend the findings from previous studies on visual awareness and speech perception and suggest that correlates of conscious perception, across types of conscious content, are most likely to be found in midlatency negative-going brain responses in content-specific sensory areas.
Collapse
Affiliation(s)
- Yunkai Zhu
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33143
| | - Charlotte Li
- Department of Psychology, Reed College, Portland, Oregon 97202
| | - Camille Hendry
- Department of Psychology, Reed College, Portland, Oregon 97202
| | - James Glass
- Department of Psychology, Reed College, Portland, Oregon 97202
| | | | - Michael A Pitts
- Department of Psychology, Reed College, Portland, Oregon 97202
| | - Andrew R Dykstra
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
6
|
Kapoor V, Dwarakanath A, Safavi S, Werner J, Besserve M, Panagiotaropoulos TI, Logothetis NK. Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports. Nat Commun 2022; 13:1535. [PMID: 35318323 PMCID: PMC8940963 DOI: 10.1038/s41467-022-28897-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated with post-perceptual processes associated with reporting the contents of consciousness or feedforward signals originating from exogenous stimulus manipulations and relayed via posterior cortical areas. We addressed this debate by simultaneously probing neuronal populations in the rhesus macaque (Macaca mulatta) PFC during a no-report paradigm, capable of instigating internally generated transitions in conscious perception, without changes in visual stimulation. We find that feature-selective prefrontal neurons are modulated concomitantly with subjective perception and perceptual suppression of their preferred stimulus during both externally induced and internally generated changes in conscious perception. Importantly, this enables reliable single-trial, population decoding of conscious contents. Control experiments confirm significant decoding of stimulus contents, even when oculomotor responses, used for inferring perception, are suppressed. These findings suggest that internally generated changes in the contents of conscious visual perception are reliably reflected within the activity of prefrontal populations in the absence of volitional reports or changes in sensory input. The role of the prefrontal cortex in conscious perception is debated because of its involvement in task relevant behaviour, such as subjective perceptual reports. Here, the authors show that prefrontal activity in rhesus macaques correlates with subjective perception and the contents of consciousness can be decoded from prefrontal population activity even without reports.
Collapse
Affiliation(s)
- Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.
| | - Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Max Planck Research School, Tübingen, 72076, Germany
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Michel Besserve
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076, Tübingen, Germany
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,Cognitive Neuroimaging Unit, CEA, DSV/I2BM, INSERM, Universite Paris-Sud, Universite Paris-Saclay, Neurospin Center, 91191, Gif/Yvette, France.
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.,Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
Bellet J, Gay M, Dwarakanath A, Jarraya B, van Kerkoerle T, Dehaene S, Panagiotaropoulos TI. Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing. Neurosci Conscious 2022; 2022:niac005. [PMID: 35223085 PMCID: PMC8868130 DOI: 10.1093/nc/niac005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
The role of the primate prefrontal cortex (PFC) in conscious perception is debated. The global neuronal workspace theory of consciousness predicts that PFC neurons should contain a detailed code of the current conscious contents. Previous research showed that PFC is indeed activated in paradigms of conscious visual perception, including no-report paradigms where no voluntary behavioral report of the percept is given, thus avoiding a conflation of signals related to visual consciousness with signals related to the report. Still, it has been argued that prefrontal modulation could reflect post-perceptual processes that may be present even in the absence of report, such as thinking about the perceived stimulus, therefore reflecting a consequence rather than a direct correlate of conscious experience. Here, we investigate these issues by recording neuronal ensemble activity from the macaque ventrolateral PFC during briefly presented visual stimuli, either in isolated trials in which stimuli were clearly perceived or in sequences of rapid serial visual presentation (RSVP) in which perception and post-perceptual processing were challenged. We report that the identity of each stimulus could be decoded from PFC population activity even in the RSVP condition. The first visual signals could be detected at 60 ms after stimulus onset and information was maximal at 150 ms. However, in the RSVP condition, 200 ms after the onset of a stimulus, the decoding accuracy quickly dropped to chance level and the next stimulus started to be decodable. Interestingly, decoding in the ventrolateral PFC was stronger compared to posterior parietal cortex for both isolated and RSVP stimuli. These results indicate that neuronal populations in the macaque PFC reliably encode visual stimuli even under conditions that have been shown to challenge conscious perception and/or substantially reduce the probability of post-perceptual processing in humans. We discuss whether the observed activation reflects conscious access, phenomenal consciousness, or merely a preconscious bottom-up wave.
Collapse
Affiliation(s)
- Joachim Bellet
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Marion Gay
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Abhilash Dwarakanath
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Theofanis I Panagiotaropoulos
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| |
Collapse
|
8
|
Whyte CJ, Hohwy J, Smith R. An active inference model of conscious access: How cognitive action selection reconciles the results of report and no-report paradigms. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100036. [PMID: 36304590 PMCID: PMC9593308 DOI: 10.1016/j.crneur.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 10/31/2022] Open
Abstract
Cognitive theories of consciousness, such as global workspace theory and higher-order theories, posit that frontoparietal circuits play a crucial role in conscious access. However, recent studies using no-report paradigms have posed a challenge to cognitive theories by demonstrating conscious accessibility in the apparent absence of prefrontal cortex (PFC) activation. To address this challenge, this paper presents a computational model of conscious access, based upon active inference, that treats working memory gating as a cognitive action. We simulate a visual masking task and show that late P3b-like event-related potentials (ERPs), and increased PFC activity, are induced by the working memory demands of self-report generation. When reporting demands are removed, these late ERPs vanish and PFC activity is reduced. These results therefore reproduce, and potentially explain, results from no-report paradigms. However, even without reporting demands, our model shows that simulated PFC activity on visible stimulus trials still crosses the threshold for reportability - maintaining the link between PFC and conscious access. Therefore, our simulations show that evidence provided by no-report paradigms does not necessarily contradict cognitive theories of consciousness.
Collapse
Affiliation(s)
- Christopher J. Whyte
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Corresponding author. MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF, UK.
| | - Jakob Hohwy
- Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, Australia
| | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, OK, USA
| |
Collapse
|
9
|
The predictive global neuronal workspace: A formal active inference model of visual consciousness. Prog Neurobiol 2020; 199:101918. [PMID: 33039416 DOI: 10.1016/j.pneurobio.2020.101918] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
The global neuronal workspace (GNW) model has inspired over two decades of hypothesis-driven research on the neural basis of consciousness. However, recent studies have reported findings that are at odds with empirical predictions of the model. Further, the macro-anatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model - based on Active Inference - that captures central architectural elements of the GNW and is able to address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behavioural results observed in previous studies of inattentional blindness; and 2) the previously introduced four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.
Collapse
|
10
|
Lapate RC, Samaha J, Rokers B, Postle BR, Davidson RJ. Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex. Commun Biol 2020; 3:360. [PMID: 32647260 PMCID: PMC7347936 DOI: 10.1038/s42003-020-1049-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
Metacognitive awareness-the ability to know that one is having a particular experience-is thought to guide optimal behavior, but its neural bases continue to be the subject of vigorous debate. Prior work has identified correlations between perceptual metacognitive ability and the structure and function of lateral prefrontal cortex (LPFC); however, evidence for a causal role of this region in promoting metacognition is controversial. Moreover, whether LPFC function promotes metacognitive awareness of perceptual and emotional features of complex, yet ubiquitous face stimuli is unknown. Here, using model-based analyses following a causal intervention to LPFC in humans, we demonstrate that LPFC function promotes metacognitive awareness of the orientation of faces-although not of their emotional expressions. Collectively, these data support the causal involvement of the prefrontal cortex in metacognitive awareness, and indicate that the role of LPFC in metacognition encompasses perceptual experiences of naturalistic social stimuli.
Collapse
Affiliation(s)
- Regina C Lapate
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bas Rokers
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Bradley R Postle
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Panagiotaropoulos TI, Wang L, Dehaene S. Hierarchical architecture of conscious processing and subjective experience. Cogn Neuropsychol 2020; 37:180-183. [PMID: 32423303 DOI: 10.1080/02643294.2020.1760811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Liping Wang
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, Gif/Yvette, France.,Collège de France, Paris, France
| |
Collapse
|
12
|
Brown R, Lau H, LeDoux JE. Understanding the Higher-Order Approach to Consciousness. Trends Cogn Sci 2019; 23:754-768. [PMID: 31375408 DOI: 10.1016/j.tics.2019.06.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 06/26/2019] [Indexed: 01/28/2023]
Abstract
The higher-order theory (HOT) of consciousness has often been misunderstood by critics. Here, we clarify its position on several issues, and distinguish it from other views, such as the global workspace theory (GWT) and early sensory models (e.g., first-order local recurrency theories). For example, HOT has been criticized for overintellectualizing consciousness. We show that, while higher-order states are cognitively assembled, the requirements are in fact considerably less than often presumed. In this sense, HOT may be viewed as an intermediate position between GWT and early sensory views. We also clarify that most proponents of HOT do not stipulate consciousness as equivalent to metacognition or confidence. Furthermore, compared with other existing theories, HOT can arguably account better for complex everyday experiences, such as emotions and episodic memories. This makes HOT particularly useful as a framework for conceptualizing pathological mental states.
Collapse
Affiliation(s)
- Richard Brown
- Philosophy Program LaGuardia Community College, City University of New York, Long Island City, NY, USA
| | - Hakwan Lau
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Psychology, and State Key Laboratory for Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong, China
| | - Joseph E LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA; Departments of Psychiatry and Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|