1
|
He H, Cheng M, Bao B, Tian Y, Zheng Y, Huo Y, Zhao Z, Xie Z, Yu J, He P. GhCTEF2 encodes a PLS-type PPR protein required for chloroplast development and plastid RNA editing in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112478. [PMID: 40107517 DOI: 10.1016/j.plantsci.2025.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Cotton is a significant cash crop and serves as a crucial raw material for the textile industry. The leaf, which is the site of photosynthesis in cotton plants, directly influences their growth and yield. Pentatricopeptide repeat (PPR) proteins are characterized by tandem 30-40 amino acid motifs. These proteins play a pivotal role in post-transcriptional regulation of organelle gene expression. In this study, we identified GhCTEF2 as a PLS-type PPR protein and determined its subcellular localization within chloroplasts, highlighting its essential involvement in chloroplast development. Virus-induced gene silencing assays revealed that knockdown of the GhCTEF2 gene resulted in macular phenotypes on cotton leaves and significantly reduced photosynthetic efficiency. Additionally, GhCTEF2-silenced plants exhibited incomplete chloroplasts with reduced thylakoids and grana structures. Furthermore, our findings showed that the downregulation of GhCTEF2 reduced the transcription levels of PEP-dependent genes and significantly decreased the content of the chloroplast LHCⅡ-T complex protein. Further studies showed that GhCTEF2 may interact with other editing factors to regulate the RNA editing process of ndhB, accD, and rps18. These findings offer valuable insights into future breeding strategies aimed at enhancing photosynthesis in cotton.
Collapse
Affiliation(s)
- Huan He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxue Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Bao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yanan Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yating Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuzhu Huo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zengqiang Zhao
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zongming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Sloan DB. Can transcriptome size and off-target effects explain the contrasting evolution of mitochondrial vs nuclear RNA editing? J Evol Biol 2025:voaf042. [PMID: 40323724 DOI: 10.1093/jeb/voaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
Mitochondrial RNA editing has evolved independently in numerous eukaryotic lineages, where it generally restores conserved sequences and functional reading frames in mRNA transcripts derived from altered or disrupted mitochondrial protein-coding genes. In contrast to this "restorative" RNA editing in mitochondria, most editing of nuclear mRNAs introduces novel sequence variants and diversifies the proteome. This Perspective addresses the hypothesis that these completely opposite effects of mitochondrial vs. nuclear RNA editing arise from the enormous difference in gene number between the respective genomes. Because mitochondria produce a much smaller transcriptome, they likely create less opportunity for off-target editing, which has been supported by recent experimental work expressing mitochondrial RNA editing machinery in foreign contexts. In addition, there is recent evidence that the size and complexity of RNA targets may slow the kinetics and reduce efficiency of on-target RNA editing. These findings suggest that efficient targeting and a low risk of off-target editing have facilitated the repeated emergence of disrupted mitochondrial genes and associated restorative RNA editing systems via (potentially non-adaptive) evolutionary pathways that are not feasible in larger nuclear transcriptomes due to lack of precision.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Mathieu S, Lesch E, Garcia S, Graindorge S, Schallenberg-Rüdinger M, Hammani K. De novo RNA base editing in plant organelles with engineered synthetic P-type PPR editing factors. Nucleic Acids Res 2025; 53:gkaf279. [PMID: 40207624 PMCID: PMC11983096 DOI: 10.1093/nar/gkaf279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
In plant mitochondria and chloroplasts, cytidine-to-uridine RNA editing is necessary for the production of functional proteins. While natural PLS-type PPR proteins are specialized in this process, synthetic PPR proteins offer significant potential for targeted RNA editing. In this study, we engineered chimeric editing factors by fusing synthetic P-type PPR guides with the DYW cytidine deaminase domain of a moss mitochondrial editing factor, PPR56. These designer PPR editors (dPPRe) elicited efficient and precise de novo RNA editing in Escherichia coli as well as in the chloroplasts and mitochondria of Nicotiana benthamiana. Chloroplast transcriptome-wide analysis of the most efficient dPPRe revealed minimal off-target effects, with only three nontarget C sites edited due to sequence similarity with the intended target. This study introduces a novel and precise method for RNA base editing in plant organelles, paving the way for new approaches in gene regulation applicable to plants and potentially other organisms.
Collapse
Affiliation(s)
- Sébastien Mathieu
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Elena Lesch
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Shahinez Garcia
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, 53115 Bonn, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
4
|
Wang T, Takenaka M. The molecular basis and evolution of the organellar RNA editosome by complementary DYW deaminases in seed plants. PLANT PHYSIOLOGY 2025; 197:kiaf142. [PMID: 40296642 DOI: 10.1093/plphys/kiaf142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 04/30/2025]
Abstract
The DYW deaminase domain catalyzes the conversion of cytidines (C) to uridines (U) in RNA editing of plant organelles. While the DYW subgroup contains a complete DYW deaminase domain at the C-terminus, the E2 and E+ subgroups rely on complementary deaminases, in which catalytic activity depends on interactions with short DYW proteins, such as DYW1, DYW2, and MITOCHONDRIAL EDITING FACTOR 8 (MEF8)/MITOCHONDRIAL EDITING FACTOR 8 SIMILAR (MEF8S). Although orthogonal RNA editing in bacteria by a DYW subgroup pentatricopeptide repeat (PPR) has been reported, attempts to activate the DYW deaminase through molecular complementation in bacteria have been unsuccessful, leaving its molecular basis unresolved. In this study, we reconstituted the simplest editosome in Escherichia coli, composed of PPR56PPRE1E2-CRR4PG and DYW1 alone. Systematical mutational analysis of the PG-box of CHLORORESPIRATORY REDUCTION 4 (CRR4) in bacteria and in planta revealed the critical role of serine, isoleucine, and phenylalanine residues in DYW deaminase complementation and catalysis. CRR4-like PPR proteins, termed the "PG-type" characterized by the PG-box with these 3 key amino acid residues at the C-terminus, are minor in angiosperms but constitute one of the major subgroups in gymnosperms. Putative orthologs of Arabidopsis thaliana DYW1 are present in limited angiosperm species, suggesting that in other species, other short DYW proteins serve as the interaction partners for PG-type PPR proteins. Our findings reveal a minimal functional editosome module, shedding light on the conserved and diverse mechanisms of RNA editing in plant organelles.
Collapse
Affiliation(s)
- Tenghua Wang
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Li W, Zhao M, Liu B, Liu Y, Deng J, Gu Y, Liu M, Cheng W, Ding Z, Li K. Dek570-1, a PPR-DYW protein, is required for maize seed and plant development via modulation of C-to-U RNA editing in mitochondria and chloroplasts. PLANTA 2025; 261:64. [PMID: 39985592 DOI: 10.1007/s00425-025-04634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
MAIN CONCLUSION Maize Dek570-1 affects the expression and function of organellar genes by performing cytidines-to-uridines RNA editing at specific sites of mitochondrial and chloroplast transcripts, thereby regulating seed and plant development. Cytidines-to-uridines (C-to-U) RNA editing at specific sites of mitochondrial and plastid transcripts is crucial for the expression and function of organellar genes, which requires PPR proteins. Here, we report the map-based cloning and characterization of Defective Kernel 570-1 (Dek570-1), which encodes a PPR-DYW protein and is an allele of Emp17. However, compared to the empty pericarp and embryonic lethality of emp17 (W22 background), dek570-1 (Zheng58 background) can produce small but viable seeds despite reducing the size of embryo and endosperm. dek570-1 plants are short and yellowed, but they can reproduce offspring. In mitochondria, loss-of-function of Dek570-1 abolishes the C-to-U editing at nad2-677 and ccmFC-799 sites, and reduces the editing at ccmFC-906 site, consistent with Emp17 deficiency. But unlike the reduced editing of the ccmFC-966 site in emp17, the ccmFC-966 site in dek570-1 is fully edited, and several other editing sites such as ccmFC-87, ccmFC-301, and ccmFC-306 are also found. More noteworthy is that Dek570-1 is not only located in mitochondria like Emp17, but also in chloroplasts. Correspondingly, the editing at rpl20-308 site of dek570-1 chloroplasts was significantly reduced, affecting the expression of some rRNAs, plastid-encoded RNA polymerase (PEP)- and nuclear-encoded single-subunit RNA polymerase (NEP)-dependent genes, thereby reducing chlorophyll accumulation and photosynthetic rate. Together, these results indicate that Dek570-1 is essential for C-to-U editing at several sites in mitochondrial and chloroplast transcripts, as well as for seed and plant development, and that this locus (Zm00001d028422) may have generated some functional evolutionary divergence in maize with different genetic backgrounds.
Collapse
Affiliation(s)
- Wenjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengsha Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yecan Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiaying Deng
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yu Gu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Zhang D, Parth F, da Silva LM, Ha TC, Schambach A, Boch J. Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells. Genome Biol 2025; 26:18. [PMID: 39901278 PMCID: PMC11789416 DOI: 10.1186/s13059-025-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
- Research Institute of Biology and Agriculture, University of Science and Technology, Beijing, 100083, China
| | - Fiona Parth
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Laura Matos da Silva
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
8
|
Manavski N, Abdel‐Salam E, Schwenkert S, Kunz H, Brachmann A, Leister D, Meurer J. Targeted introduction of premature stop codon in plant mitochondrial mRNA by a designer pentatricopeptide repeat protein with C-to-U editing function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17247. [PMID: 39917821 PMCID: PMC11803495 DOI: 10.1111/tpj.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025]
Abstract
RNA editing is a crucial post-transcriptional modification in endosymbiotic plant organelles, predominantly involving C-to-U conversions. Pentatricopeptide repeat (PPR) proteins play a key role in this process. To establish a system for gene expression manipulation in genetically inaccessible mitochondria, we engineered a synthetic PPR protein, dPPR-nad7-DYW, to induce de novo C-to-U editing in the NADH dehydrogenase subunit 7 (nad7) mRNA of Arabidopsis thaliana, thereby creating a premature stop codon. This designer protein, composed of 13 P-type PPR domains, was fused with the DYW-type cytidine deaminase domain from Physcomitrium patens PpPPR_56 and programmed to bind a specific nad7 mRNA segment. In vitro binding assays confirmed the specificity of dPPR-nad7-DYW for its target sequence. When expressed in Arabidopsis plants, dPPR-nad7-DYW achieved up to 85% editing efficiency at the target site, successfully introducing a premature stop codon in nad7 mRNA. This resulted in reduced polysome loading of nad7 transcripts and a phenotype characteristic of mitochondrial complex I dysfunction. RNA-sequencing revealed potential off-target editing events, albeit at lower frequencies. Our study demonstrates the successful application of an editing factor with a synthetic P-type PPR tract targeting a de novo editing site in plant mitochondria, achieving high editing efficiency. This approach opens new avenues for manipulating organellar gene expression and studying mitochondrial gene function in plants and other eukaryotes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Eslam Abdel‐Salam
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Hans‐Henning Kunz
- Plant Biochemistry, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Andreas Brachmann
- Genetics, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| |
Collapse
|
9
|
Chun S, Garcia ET, Rejas M, Hayes ML. A Conserved Lysine in an Ion-Pair with a Catalytic Glutamate Is Critical for U-to-C RNA Editing but Restricts C-to-U RNA Editing. Biochemistry 2025; 64:15-19. [PMID: 39653594 PMCID: PMC11713852 DOI: 10.1021/acs.biochem.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes. The modified RNAs could only be purified from the interphase of an acidic guanidinium thiocyanate-phenol-chloroform experiment. It was projected that in bacteria stable RNA-enzyme cross-links form from a lysyl attack. In this study, RNA editing was examined for dual U-to-C/C-to-U editing enzyme KP6 with conserved lysine residues substituted by alanine. A single lysine was found to be essential for U-to-C editing and, based on the crystal structures of DYW domains, would likely be present in the active site. Crystal structures also suggest that the lysine can potentially form an ion pair with the catalytic glutamate critical for C-to-U RNA editing. Mutation of lysine to alanine greatly stimulated the C-to-U RNA editing by KP6. A ∼319 Da adduct observed on DYW-KP proteins could not be detected on the U-to-C-deficient lysine to alanine point mutant enzymes. This work establishes the critical role for a single lysine in the DYW-KP domain specifically for U-to-C editing activity but also highlights a secondary role for the lysine in modulating C-to-U editing through the formation of an inhibitory ion pair with the catalytic glutamate.
Collapse
Affiliation(s)
- Skellie
O. Chun
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Elvin T. Garcia
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Marcela Rejas
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| | - Michael L. Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
10
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Frink B, Burger M, Yarkoni M, Shevtsov-Tal S, Zer H, Yamaoka S, Ostersetzer-Biran O, Takenaka M. PCIS1, Encoded by a Pentatricopeptide Protein Co-expressed Gene, Is Required for Splicing of Three Mitochondrial nad Transcripts in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:1474-1485. [PMID: 39092566 DOI: 10.1093/pcp/pcae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Group II introns are large catalytic RNAs, which reside mainly within genes encoding respiratory complex I (CI) subunits in angiosperms' mitochondria. Genetic and biochemical analyses led to the identification of many nuclear-encoded factors that facilitate the splicing of the degenerated organellar introns in plants. Here, we describe the analysis of the pentatricopeptide repeat (PPR) co-expressed intron splicing-1 (PCIS1) factor, which was identified in silico by its co-expression pattern with many PPR proteins. PCIS1 is well conserved in land plants but has no sequence similarity with any known protein motifs. PCIS1 mutant lines are arrested in embryogenesis and can be maintained by the temporal expression of the gene under the embryo-specific ABI3 promoter. The pABI3::PCIS1 mutant plants display low germination and stunted growth phenotypes. RNA-sequencing and quantitative RT-PCR analyses of wild-type and mutant plants indicated that PCIS1 is a novel splicing cofactor that is pivotal for the maturation of several nad transcripts in Arabidopsis mitochondria. These phenotypes are tightly associated with respiratory CI defects and altered plant growth. Our data further emphasize the key roles of nuclear-encoded cofactors that regulate the maturation and expression of mitochondrial transcripts for the biogenesis of the oxidative phosphorylation system, and hence for plant physiology. The discovery of novel splicing factors other than typical RNA-binding proteins suggests further complexity of splicing mechanisms in plant mitochondria.
Collapse
Affiliation(s)
- Brody Frink
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm D-89069, Germany
| | - Maya Yarkoni
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat-Ram, Jerusalem 9190401, Israel
| | - Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat-Ram, Jerusalem 9190401, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat-Ram, Jerusalem 9190401, Israel
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat-Ram, Jerusalem 9190401, Israel
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
12
|
Hayes ML, Garcia ET, Chun SO, Selke M. Crosslinking of base-modified RNAs by synthetic DYW-KP base editors implicates an enzymatic lysine as the nitrogen donor for U-to-C RNA editing. J Biol Chem 2024; 300:107454. [PMID: 38852885 PMCID: PMC11332814 DOI: 10.1016/j.jbc.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
Sequence-specific cytidine to uridine (C-to-U) and adenosine to inosine editing tools can alter RNA and DNA sequences and utilize a hydrolytic deamination mechanism requiring an active site zinc ion and a glutamate residue. In plant organelles, DYW-PG domain containing enzymes catalyze C-to-U edits through the canonical deamination mechanism. Proteins developed from consensus sequences of the related DYW-KP domain family catalyze what initially appeared to be uridine to cytidine (U-to-C) edits leading to this investigation into the U-to-C editing mechanism. The synthetic DYW-KP enzyme KP6 was found sufficient for C-to-U editing activity stimulated by the addition of carboxylic acids in vitro. Despite addition of putative amine/amide donors, U-to-C editing by KP6 could not be observed in vitro. C-to-U editing was found not to be concomitant with U-to-C editing, discounting a pyrimidine transaminase mechanism. RNAs containing base modifications were highly enriched in interphase fractions consistent with covalent crosslinks to KP6, KP2, and KP3 proteins. Mass spectrometry of purified KP2 and KP6 proteins revealed secondary peaks with mass shifts of 319 Da. A U-to-C crosslinking mechanism was projected to explain the link between crosslinking, RNA base changes, and the ∼319 Da mass. In this model, an enzymatic lysine attacks C4 of uridine to form a Schiff base RNA-protein conjugate. Sequenced RT-PCR products from the fern Ceratopteris richardii indicate U-to-C base edits do not preserve proteinaceous crosslinks in planta. Hydrolysis of a protonated Schiff base conjugate releasing cytidine is hypothesized to explain the completed pathway in plants.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA.
| | - Elvin T Garcia
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Skellie O Chun
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Baudry K, Monachello D, Castandet B, Majeran W, Lurin C. Dissecting the molecular puzzle of the editosome core in Arabidopsis organelles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112101. [PMID: 38640972 DOI: 10.1016/j.plantsci.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the last decade, the composition of the C-to-U RNA editing complex in embryophyte organelles has turned out to be much more complex than first expected. While PPR proteins were initially thought to act alone, significant evidences have clearly depicted a sophisticated mechanism with numerous protein-protein interaction involving PPR and non-PPR proteins. Moreover, the identification of specific functional partnership between PPRs also suggests that, in addition to the highly specific PPRs directly involved in the RNA target recognition, non-RNA-specific ones are required. Although some of them, such as DYW1 and DYW2, were shown to be the catalytic domains of the editing complex, the molecular function of others, such as NUWA, remains elusive. It was suggested that they might stabilize the complex by acting as a scaffold. We here performed functional complementation of the crr28-2 mutant with truncated CRR28 proteins mimicking PPR without the catalytic domain and show that they exhibit a specific dependency to one of the catalytic proteins DYW1 or DYW2. Moreover, we also characterized the role of the PPR NUWA in the editing reaction and show that it likely acts as a scaffolding factor. NUWA is no longer required for efficient editing of the CLB19 editing sites once this RNA specific PPR is fused to the DYW catalytic domain of its partner DYW2. Altogether, our results strongly support a flexible, evolutive and resilient editing complex in which RNA binding activity, editing activity and stabilization/scaffolding function can be provided by one or more PPRs.
Collapse
Affiliation(s)
- Kevin Baudry
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France.
| | - Dario Monachello
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Wojciech Majeran
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Claire Lurin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France.
| |
Collapse
|
14
|
Thielen M, Gärtner B, Knoop V, Schallenberg-Rüdinger M, Lesch E. Conquering new grounds: plant organellar C-to-U RNA editing factors can be functional in the plant cytosol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:895-915. [PMID: 38753873 DOI: 10.1111/tpj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.
Collapse
Affiliation(s)
- Mirjam Thielen
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Béla Gärtner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
15
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Shen C, Xu H, Huang WZ, Zhao Q, Zhu RL. Is RNA editing truly absent in the complex thalloid liverworts (Marchantiopsida)? Evidence of extensive RNA editing from Cyathodium cavernarum. THE NEW PHYTOLOGIST 2024; 242:2817-2831. [PMID: 38587065 DOI: 10.1111/nph.19750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Xu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiong Zhao
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Tiantong National Station of Forest Ecosystem, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
17
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
18
|
Bayer-Császár E, Jörg A, Härtel B, Brennicke A, Takenaka M. The Gating Domain of MEF28 Is Essential for Editing Two Contiguous Cytidines in nad2 mRNA in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2024; 65:590-601. [PMID: 37530742 DOI: 10.1093/pcp/pcad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
In plant organelles, each C-to-U RNA-editing site is specifically recognized by pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+ or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain-binding site and the RNA-editing site is usually fixed at four bases, increasing the specificity of target-site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+ or CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target-site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA-editing tools based on plant RNA-editing factors.
Collapse
Affiliation(s)
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Barbara Härtel
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Axel Brennicke
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
19
|
Wang Y, Huang ZQ, Tian KD, Li H, Xu C, Xia B, Tan BC. Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids. PLANT COMMUNICATIONS 2024; 5:100836. [PMID: 38327059 PMCID: PMC11121751 DOI: 10.1016/j.xplc.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Kai-Di Tian
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingyujie Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
20
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and may have a role in C-to-U editing of some chloroplast RNA transcripts. PLANT MOLECULAR BIOLOGY 2024; 114:28. [PMID: 38485794 PMCID: PMC10940495 DOI: 10.1007/s11103-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.
Collapse
Affiliation(s)
- Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Tessa M Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
21
|
Hua HY, Santibanez PI, Ngo VT, Hayes ML. RIP-Seq analysis of non-PPR chloroplast editing factors reveals broad RNA interactions and enrichment of less efficiently translated RNAs by OZ1 and ORRM1 complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1528-1542. [PMID: 38088241 PMCID: PMC10922338 DOI: 10.1111/tpj.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/28/2024]
Abstract
C-to-U RNA editing in angiosperm chloroplasts requires a large suite of proteins bound together in the editosome. The editosome is comprised of PPR proteins, RIP/MORFs, OZ proteins, and ORRM proteins that physically interact in high molecular weight complexes. The specific functions of non-PPR editing factors in the editosome are unclear, however, specific subsets of editing sites are affected by absence of non-PPR editing factors. Unlike the PPR components of editosomes that have predictable nucleotide specificities, domains present in non-PPR editing factors make RNA associations difficult to predict. In this study, chloroplast extracts were isolated from juvenile maize seedlings. RNAs were immunoprecipitated using polyclonal antibodies targeting non-PPR editing factors RIP9, OZ1, and ORRM1. RNA libraries from duplicate experiments were compared. RIP9 was associated with most of the non-ribosomal RNA content of chloroplasts, consistent with a general binding function to PPR L-motifs and tethering of large ribonucleoprotein complexes. The breadth of RNA associations was greater than predicted and include mRNAs without predicted editing sites, tRNA sequences, and introns. OZ1 and ORRM1 were associated with a highly similar pool of RNAs that have a bias toward lower translational efficiency values in mature chloroplasts. Lower translational efficiency was also associated with the pool of edited RNAs compared to RNAs without editing sites. The unexpected breadth of interactions by non-PPR editing factors suggests the editosome is large, diverse, and associated with RNAs with lower relative translational efficiency in mature chloroplasts.
Collapse
Affiliation(s)
- Hope Y. Hua
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
| | - Paola I. Santibanez
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
| | - Vinh T. Ngo
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, 90840, USA
| | - Michael L. Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California, 90032, USA
| |
Collapse
|
22
|
Zang J, Zhang T, Zhang Z, Liu J, Chen H. DEFECTIVE KERNEL 56 functions in mitochondrial RNA editing and maize seed development. PLANT PHYSIOLOGY 2024; 194:1593-1610. [PMID: 37956067 DOI: 10.1093/plphys/kiad598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
Lesch E, Stempel MS, Dressnandt V, Oldenkott B, Knoop V, Schallenberg-Rüdinger M. Conservation of the moss RNA editing factor PPR78 despite the loss of its known cytidine-to-uridine editing sites is explained by a hidden extra target. THE PLANT CELL 2024; 36:727-745. [PMID: 38000897 PMCID: PMC10896298 DOI: 10.1093/plcell/koad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Maike Simone Stempel
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Vanessa Dressnandt
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Bastian Oldenkott
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Volker Knoop
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| |
Collapse
|
24
|
Yang Y, Oldenkott B, Ramanathan S, Lesch E, Takenaka M, Schallenberg-Rüdinger M, Knoop V. DYW cytidine deaminase domains have a long-range impact on RNA recognition by the PPR array of chimeric plant C-to-U RNA editing factors and strongly affect target selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:840-854. [PMID: 37565789 DOI: 10.1111/tpj.16412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Oldenkott
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shyam Ramanathan
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
25
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
26
|
Liu D, Li ZA, Li Y, Molloy DP, Huang C. The DYW domain of RARE1 plays an indispensable role in regulating accD-C794 RNA editing in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111751. [PMID: 37263527 DOI: 10.1016/j.plantsci.2023.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The Arabidopsis pentatricopeptide repeat (PPR) proteins, required for accD RNA editing 1 (RARE1) and early chloroplast biogenesis 2 (AtECB2), each contain a DYW domain deemed essential for cytosine deamination at the accD-C794 RNA editing site in chloroplasts. Complementation assays using the rare1 mutant investigate the correlation between these PPRs and their respective DYW domain functions in RNA editing of accD-C794. The results demonstrate that the coding sequence of AtECB2 cannot replace that of RARE1. Moreover, rare1 mutants complemented with DYW-deleted RARE1 failed to recover the RNA editing of accD-C794 even in the presence of the highly similar DYW domain of the AtECB2 protein. These findings indicate that RARE1 and AtECB2 possess divergent roles in RNA editing, with specificity for accD-C794 directly attributable to DYW domain within RARE1. Structural modeling data suggest this functioning pertains to a local α-helical motif that residues slightly N-terminal to the consensus glutamate and CXXCH motif in the DYW domain for cytidine deamination during C-to-U editing by RARE1 that is absent within AtECB2.
Collapse
Affiliation(s)
- Dan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ang Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Center for Molecular Medicine and Cancer Research, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
27
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
28
|
Yang Y, Ritzenhofen K, Otrzonsek J, Xie J, Schallenberg-Rüdinger M, Knoop V. Beyond a PPR-RNA recognition code: Many aspects matter for the multi-targeting properties of RNA editing factor PPR56. PLoS Genet 2023; 19:e1010733. [PMID: 37603555 PMCID: PMC10482289 DOI: 10.1371/journal.pgen.1010733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/06/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023] Open
Abstract
The mitochondrial C-to-U RNA editing factor PPR56 of the moss Physcomitrium patens is an RNA-binding pentatricopeptide repeat protein equipped with a terminal DYW-type cytidine deaminase domain. Transferred into Escherichia coli, PPR56 works faithfully on its two native RNA editing targets, nad3eU230SL and nad4eU272SL, and also converts cytidines into uridines at over 100 off-targets in the bacterial transcriptome. Accordingly, PPR56 is attractive for detailed mechanistic studies in the heterologous bacterial setup, allowing for scoring differential RNA editing activities of many target and protein variants in reasonable time. Here, we report (i) on the effects of numerous individual and combined PPR56 protein and target modifications, (ii) on the spectrum of off-target C-to-U editing in the bacterial background transcriptome for PPR56 and two variants engineered for target re-direction and (iii) on combinations of targets in tandem or separately at the 5'- and 3'-ends of large mRNAs. The latter experimentation finds enhancement of RNA editing at weak targets in many cases, including cox3eU290SF as a new candidate mitogenome target. We conclude that C-to-U RNA editing can be much enhanced by transcript features also outside the region ultimately targeted by PPRs of a plant editing factor, possibly facilitated by its enrichment or scanning along transcripts.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Kira Ritzenhofen
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jessica Otrzonsek
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | - Jingchan Xie
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| | | | - Volker Knoop
- IZMB–Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn, Germany
| |
Collapse
|
29
|
Boyd RD, Hayes ML. A ribonuclease activity linked to DYW1 in vitro is inhibited by RIP/MORF proteins. Sci Rep 2023; 13:10723. [PMID: 37400527 PMCID: PMC10318007 DOI: 10.1038/s41598-023-36969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Organellar C-to-U RNA editing in plants occurs in complexes composed of various classes of nuclear-encoded proteins. DYW-deaminases are zinc metalloenzymes that catalyze hydrolytic deamination required for C-to-U modification editing. Solved crystal structures for DYW-deaminase domains display all structural features consistent with a canonical cytidine deamination mechanism. However, some recombinant DYW-deaminases from plants have been associated with ribonuclease activity in vitro. Direct ribonuclease activity by an editing factor is confounding since it is not required for deamination of cytosine, theoretically would be inimical for mRNA editing, and does not have a clear physiological function in vivo. His-tagged recombinant DYW1 from Arabidopsis thaliana (rAtDYW1) was expressed and purified using immobilized metal affinity chromatography (IMAC). Fluorescently labeled RNA oligonucleotides were incubated with recombinant AtDYW1 under different conditions. Percent relative cleavage of RNA probes was recorded at multiple time points from triplicate reactions. The effects of treatment with zinc chelators EDTA and 1, 10-phenanthroline were examined for rAtDYW1. Recombinant His-tagged RNA editing factors AtRIP2, ZmRIP9, AtRIP9, AtOZ1, AtCRR4, and AtORRM1 were expressed in E. coli and purified. Ribonuclease activity was assayed for rAtDYW1 in the presence of different editing factors. Lastly, the effects on nuclease activity in the presence of nucleotides and modified nucleosides were investigated. RNA cleavage observed in this study was linked to the recombinant editing factor rAtDYW1 in vitro. The cleavage reaction is sensitive to high concentrations of zinc chelators, indicating a role for zinc ions for activity. The addition of equal molar concentrations of recombinant RIP/MORF proteins reduced cleavage activity associated with rAtDYW1. However, addition of equal molar concentrations of purified recombinant editing complex proteins AtCRR4, AtORRM1, and AtOZ1 did not strongly inhibit ribonuclease activity on RNAs lacking an AtCRR4 cis-element. Though AtCRR4 inhibited AtDYW1 activity for oligonucleotides with a cognate cis-element. The observation that editing factors limit ribonuclease activity of rAtDYW1 in vitro, suggests that nuclease activities are limited to RNAs in absence of native editing complex partners. Purified rAtDYW1 was associated with the hydrolysis of RNA in vitro, and activity was specifically inhibited by RNA editing factors.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA, 90032, USA.
| |
Collapse
|
30
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
31
|
Toma-Fukai S, Sawada Y, Maeda A, Shimizu H, Shikanai T, Takenaka M, Shimizu T. Structural insight into the activation of an Arabidopsis organellar C-to-U RNA editing enzyme by active site complementation. THE PLANT CELL 2023; 35:1888-1900. [PMID: 36342219 PMCID: PMC10226597 DOI: 10.1093/plcell/koac318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding pentatricopeptide repeat (PPR) proteins catalyze hundreds of cytidine to uridine RNA editing events in plant organelles; these editing events are essential for proper gene expression. More than half of the PPR-type RNA editing factors, however, lack the DYW cytidine deaminase domain. Genetic analyses have suggested that their cytidine deaminase activity arises by association with a family of DYW1-like proteins that contain an N-terminally truncated DYW domain, but their molecular mechanism has been unclear. Here, we report the crystal structure of the Arabidopsis thaliana DYW1 deaminase domain at 1.8 Å resolution. DYW1 has a cytidine deaminase fold lacking the PG box. The internal insertion within the deaminase fold shows an α-helical fold instead of the β-finger reported for the gating domain of the A. thaliana ORGANELLE TRANSCRIPT PROCESSING 86. The substrate-binding pocket is incompletely formed and appears to be complemented in the complex by the E2 domain and the PG box of the interacting PPR protein. In vivo RNA editing assays corroborate the activation model for DYW1 deaminase. Our study demonstrates the common activation mechanism of the DYW1-like proteins by molecular complementation of the DYW domain and reconstitution of the substrate-binding pocket.
Collapse
Affiliation(s)
- Sachiko Toma-Fukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuto Sawada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Maeda
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hikaru Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Zumkeller S, Knoop V. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases. BMC Ecol Evol 2023; 23:5. [PMID: 36915058 PMCID: PMC10012718 DOI: 10.1186/s12862-023-02108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
33
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and is required for C-to-U editing of chloroplast RNA transcripts. RESEARCH SQUARE 2023:rs.3.rs-2574001. [PMID: 36865278 PMCID: PMC9980218 DOI: 10.21203/rs.3.rs-2574001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 homologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. We examined the function of ISE2 and IPI1 in chloroplast RNA processing in N. benthamiana. A combination of deep sequencing and Sanger sequencing revealed C-to-U editing at 41 sites in 18 transcripts, with 34 sites conserved in the closely related N. tabacum. Virus induced gene silencing of NbISE2 or NbIPI1 led to defective C-to-U revealed that they have overlapping roles at editing a site in the rpoB transcript but have distinct roles in editing other transcripts. This finding contrasts with maize ppr103 mutants that showed no defects in editing. The results indicate that NbISE2 and NbIPI1 are important for C-to-U editing in N. benthamiana chloroplasts, and they may function in a complex to edit specific sites while having antagonistic effects on editing others. That NbIPI1, carrying a DYW domain, is involved in organelle C-to-U RNA editing supports previous work showing that this domain catalyzes RNA editing.
Collapse
Affiliation(s)
- Tyra N. McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mohammad F. Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Tessa M. Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| |
Collapse
|
34
|
Li J, Wang K, Yang Y, Lu Y, Cui K, Ji Y, Ma L, Cheng K, Ostersetzer-Biran O, Li F, Qu G, Zhu B, Fu D, Luo Y, Zhu H. SlRIP1b is a global organellar RNA editing factor, required for normal fruit development in tomato plants. THE NEW PHYTOLOGIST 2023; 237:1188-1203. [PMID: 36345265 DOI: 10.1111/nph.18594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
RNA editing in plant organelles involves numerous C-U conversions, which often restore evolutionarily conserved codons and may generate new translation initiation and termination codons. These RNA maturation events rely on a subset of nuclear-encoded protein cofactors. Here, we provide evidence of the role of SlRIP1b on RNA editing of mitochondrial transcripts in tomato (Solanum lycopersicum) plants. SlRIP1b is a RIP/MORF protein that was originally identified as an interacting partner of the organellar editing factor SlORRM4. Mutants of SlRIP1b, obtained by CRISPR/Cas9 strategy, exhibited abnormal carpel development and grew into fruit with more locules. RNA-sequencing revealed that SlRIP1b affects the C-U editing of numerous mitochondrial pre-RNA transcripts and in particular altered RNA editing of various cytochrome c maturation (CCM)-related genes. The slrip1b mutants display increased H2 O2 and aberrant mitochondrial morphologies, which are associated with defects in cytochrome c biosynthesis and assembly of respiratory complex III. Taken together, our results indicate that SlRIP1b is a global editing factor that plays a key role in CCM and oxidative phosphorylation system biogenesis during fruit development in tomato plants. These data provide important insights into the molecular roles of organellar RNA editing factors during fruit development.
Collapse
Affiliation(s)
- Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongfang Yang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kaicheng Cui
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Ji
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Feng Li
- Key Lab of Horticultural Plant Biology (MOE), College of Horticultural and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
35
|
Liu L, Wang Y, Tian Y, Song S, Wu Z, Ding X, Zheng H, Huang Y, Liu S, Dong X, Wan J, Liu L. Isolation and Characterization of SPOTTED LEAF42 Encoding a Porphobilinogen Deaminase in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:403. [PMID: 36679117 PMCID: PMC9866984 DOI: 10.3390/plants12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The formation and development of chloroplasts play a vital role in the breeding of high-yield rice (Oryza sativa L.). Porphobilinogen deaminases (PBGDs) act in the early stage of chlorophyll and heme biosynthesis. However, the role of PBGDs in chloroplast development and chlorophyll production remains elusive in rice. Here, we identified the spotted leaf 42 (spl42) mutant, which exhibited a reddish-brown spotted leaf phenotype. The mutant showed a significantly lower chlorophyll content, abnormal thylakoid morphology, and elevated activities of reactive oxygen species (ROS)-scavenging enzymes. Consistently, multiple genes related to chloroplast development and chlorophyll biosynthesis were significantly down-regulated, whereas many genes involved in leaf senescence, ROS production, and defense responses were upregulated in the spl42 mutant. Map-based cloning revealed that SPL42 encodes a PBGD. A C-to-T base substitution occurred in spl42, resulting in an amino acid change and significantly reduced PBGD enzyme activity. SPL42 targets to the chloroplast and interacts with the multiple organelle RNA editing factors (MORFs) OsMORF8-1 and OsMORF8-2 to affect RNA editing. The identification and characterization of spl42 helps in elucidating the molecular mechanisms associated with chlorophyll synthesis and RNA editing in rice.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewan Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Ding
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Wang Y, Li H, Huang ZQ, Ma B, Yang YZ, Xiu ZH, Wang L, Tan BC. Maize PPR-E proteins mediate RNA C-to-U editing in mitochondria by recruiting the trans deaminase PCW1. THE PLANT CELL 2023; 35:529-551. [PMID: 36200865 PMCID: PMC9806569 DOI: 10.1093/plcell/koac298] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/11/2022] [Indexed: 05/24/2023]
Abstract
RNA C-to-U editing in organelles is essential for plant growth and development; however, the underlying mechanism is not fully understood. Here, we report that pentatricopeptide repeat (PPR)-E subclass proteins carry out RNA C-to-U editing by recruiting the trans deaminase PPR motifs, coiled-coil, and DYW domain-containing protein 1 (PCW1) in maize (Zea mays) mitochondria. Loss-of-function of bZIP and coiled-coil domain-containing PPR 1 (bCCP1) or PCW1 arrests seed development in maize. bCCP1 encodes a bZIP and coiled-coil domain-containing PPR protein, and PCW1 encodes an atypical PPR-DYW protein. bCCP1 is required for editing at 66 sites in mitochondria and PCW1 is required for editing at 102 sites, including the 66 sites that require bCCP1. The PCW1-mediated editing sites are exclusively associated with PPR-E proteins. bCCP1 interacts with PCW1 and the PPR-E protein Empty pericarp7 (EMP7). Two multiple organellar RNA editing factor (MORF) proteins, ZmMORF1 and ZmMORF8, interact with PCW1, EMP7, and bCCP1. ZmMORF8 enhanced the EMP7-PCW1 interaction in a yeast three-hybrid assay. C-to-U editing at the ccmFN-1553 site in maize required EMP7, bCCP1, and PCW1. These results suggest that PPR-E proteins function in RNA editing by recruiting the trans deaminase PCW1 and bCCP1, and MORF1/8 assist this recruitment through protein-protein interactions.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bing Ma
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhi-Hui Xiu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
37
|
Jung L, Schleicher S, Alsaied Taha F, Takenaka M, Binder S. The MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4) is essential for the accumulation of dicistronic rpl5-cob mRNAs in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:375-386. [PMID: 36468791 DOI: 10.1111/tpj.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis thaliana genome harbors more than 450 nuclear genes encoding pentatricopeptide repeat (PPR) proteins that operate in the RNA metabolism of mitochondria and/or plastids. To date, the molecular function of many PPR proteins is still unknown. Here we analyzed the nucleus-encoded gene At4g19440 coding for a P-type PPR protein. Knockout of this gene interferes with normal embryo development and seed maturation. Two experimental approaches were applied to overcome lethality and to investigate the outcome of At4g19440 knockout in adult plants. These studies revealed changes in the abundance of several mitochondria-encoded transcripts. In particular, steady-state levels of dicistronic rpl5-cob RNAs were markedly reduced, whereas levels of mature ccmC and rpl2-mttB transcripts were clearly increased. Predictions according to the one repeat to one nucleotide code for PPR proteins indicate binding of the At4g19440 protein to a previously detected small RNA at the 3' termini of the dicistronic rpl5-cob transcripts. This potential interaction indicates a function of this protein in 3' end formation and stabilization of these RNA species, whereas the increase in the levels of the ccmC mRNA along with other mitochondria-encoded RNAs seems to be a secondary effect of At4g19440 knockout. Since the inactivation of At4g19440 influences the stability of several mitochondrial RNAs we call this gene MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4). This factor will be an interesting subject to study opposing effects of a single nucleus-encoded protein on mitochondrial transcript levels.
Collapse
Affiliation(s)
- Lisa Jung
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Fatema Alsaied Taha
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Mizuki Takenaka
- Plant Molecular Genetics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| |
Collapse
|
38
|
Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells. Cells 2022; 11:cells11223529. [PMID: 36428958 PMCID: PMC9688318 DOI: 10.3390/cells11223529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
RNAs play many essential roles in gene expression and are involved in various human diseases. Although genome editing technologies have been established, the engineering of sequence-specific RNA-binding proteins that manipulate particular cellular RNA molecules is immature, in contrast to nucleotide-based RNA manipulation technology, such as siRNA- and RNA-targeting CRISPR/Cas. Here, we demonstrate a versatile RNA manipulation technology using pentatricopeptide-repeat (PPR)-motif-containing proteins. First, we developed a rapid construction and evaluation method for PPR-based designer sequence-specific RNA-binding proteins. This system has enabled the steady construction of dozens of functional designer PPR proteins targeting long 18 nt RNA, which targets a single specific RNA in the mammalian transcriptome. Furthermore, the cellular functionality of the designer PPR proteins was first demonstrated by the control of alternative splicing of either a reporter gene or an endogenous CHK1 mRNA. Our results present a versatile protein-based RNA manipulation technology using PPR proteins that facilitates the understanding of unknown RNA functions and the creation of gene circuits and has potential for use in future therapeutics.
Collapse
|
39
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
40
|
GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria. Proc Natl Acad Sci U S A 2022; 119:e2210978119. [PMID: 36122211 PMCID: PMC9522420 DOI: 10.1073/pnas.2210978119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins. GRP23 is targeted to mitochondria, plastids, and nuclei. Analysis of the grp23 mutants rescued by embryo-specific complementation shows decreased editing efficiency at 352 sites in mitochondria and 6 sites in plastids, with a predominant specificity for sites edited by the PPR-E and PPR-DYW proteins. GRP23 interacts with atypical PPR-DYW proteins (MEF8, MEF8S, DYW2, and DYW4) and MORF proteins (MORF1 and MORF8), whereas the four PPR-DYWs interact with the two MORFs. These interactions may increase the stability of the GRP23-MORF-atypical PPR-DYW complex. Furthermore, analysis of mef8N△64aamef8s double mutants shows that MEF8/MEF8S are required for the editing of the PPR-E protein-targeted sites in mitochondria. GRP23 could enhance the interaction between PPR-E and MEF8/MEF8S and form a homodimer or heterodimer with NUWA. Genetic complementation analysis shows that the C-terminal domains of GRP23 and NUWA possess a similar function, probably in the interaction with the MORFs. NUWA also interacts with atypical PPR-DYWs in yeast. Both GRP23 and NUWA interact with the atypical PPR-DYWs, suggesting that the PPR-E proteins recruit MEF8/MEF8S, whereas the PPR-E+ proteins specifically recruit DYW2 as the trans deaminase, and then GRP23, NUWA, and MORFs facilitate and/or stabilize the E or E+-type editosome formation.
Collapse
|
41
|
Huang KY, Kan SL, Shen TT, Gong P, Feng YY, Du H, Zhao YP, Wan T, Wang XQ, Ran JH. A Comprehensive Evolutionary Study of Chloroplast RNA Editing in Gymnosperms: A Novel Type of G-to-A RNA Editing Is Common in Gymnosperms. Int J Mol Sci 2022; 23:ijms231810844. [PMID: 36142757 PMCID: PMC9505161 DOI: 10.3390/ijms231810844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Pin Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
42
|
U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun Biol 2022; 5:968. [PMID: 36109586 PMCID: PMC9478123 DOI: 10.1038/s42003-022-03927-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Programmable RNA editing offers significant therapeutic potential for a wide range of genetic diseases. Currently, several deaminase enzymes, including ADAR and APOBEC, can perform programmable adenosine-to-inosine or cytidine-to-uridine RNA correction. However, enzymes to perform guanosine-to-adenosine and uridine-to-cytidine (U-to-C) editing are still lacking to complete the set of transition reactions. It is believed that the DYW:KP proteins, specific to seedless plants, catalyze the U-to-C reactions in mitochondria and chloroplasts. In this study, we designed seven DYW:KP domains based on consensus sequences and fused them to a designer RNA-binding pentatricopeptide repeat (PPR) domain. We show that three of these PPR-DYW:KP proteins edit targeted uridine to cytidine in bacteria and human cells. In addition, we show that these proteins have a 5′ but not apparent 3′ preference for neighboring nucleotides. Our results establish the DYW:KP aminase domain as a potential candidate for the development of a U-to-C editing tool in human cells. DYW:KP domains, designed on proteins found in the mitochondria and chloroplasts of seedless plants, are fused to a designer RNA-binding pentatricopeptide repeat (PPR) domain to edit targeted uridine to cytidine in bacteria and human cells.
Collapse
|
43
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|
44
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
45
|
Maeda A, Takenaka S, Wang T, Frink B, Shikanai T, Takenaka M. DYW deaminase domain has a distinct preference for neighboring nucleotides of the target RNA editing sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:756-767. [PMID: 35652245 DOI: 10.1111/tpj.15850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
C-to-U RNA editing sites in plant organelles show a strong bias for neighboring nucleotides. The nucleotide upstream of the target cytidine is typically C or U, whereas A and G are less common and rare, respectively. In pentatricopeptide repeat (PPR)-type RNA editing factors, the PPR domain specifically binds to the 5' sequence of target cytidines, whereas the DYW domain catalyzes the C-to-U deamination. We comprehensively analyzed the effects of neighboring nucleotides of the target cytidines using an Escherichia coli orthogonal system. Physcomitrium PPR56 efficiently edited target cytidines when the nucleotide upstream was U or C, whereas it barely edited when the position was G or the nucleotide downstream was C. This preference pattern, which corresponds well with the observed nucleotide bias for neighboring nucleotides in plant organelles, was altered when the DYW domain of OTP86 or DYW1 was adopted. The PPR56 chimeric proteins edited the target sites even when the -1 position was G. Our results suggest that the DYW domain possesses a distinct preference for the neighboring nucleotides of the target sites, thus contributing to target selection in addition to the existing selection determined by the PPR domain.
Collapse
Affiliation(s)
- Ayako Maeda
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sachi Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tenghua Wang
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Brody Frink
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
46
|
Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2121177119. [PMID: 35561225 DOI: 10.1073/pnas.2121177119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe mitochondrial genomes of land plants encode genes for cellular energy production and agriculturally important traits, but modification of the genomes is still difficult. Targeted base editing is one of the best ways to modify genes and intergenic regions and thus understand their functions, without drastically changing genome structure. In this study, we succeeded in creating plantlets of the model plant Arabidopsis thaliana, in which all of the many copies of the mitochondrial genomes in each cell had a targeted C:G base pair converted to a T:A pair. Introduced mutations were stably inherited by the next generation. This method will help to unravel the mysteries of plant mitochondrial genomes and may also serve as a basis for increasing crop yields.
Collapse
|
47
|
Yang D, Cao SK, Yang H, Liu R, Sun F, Wang L, Wang M, Tan BC. DEK48 Is Required for RNA Editing at Multiple Mitochondrial Sites and Seed Development in Maize. Int J Mol Sci 2022; 23:ijms23063064. [PMID: 35328485 PMCID: PMC8952262 DOI: 10.3390/ijms23063064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, C-to-U RNA editing can be critical to normal functions of mitochondrion-encoded proteins. Mitochondrial C-to-U RNA editing is facilitated by many factors from diverse protein families, of which the pentatricopeptide repeat (PPR) proteins play an important role. Owing to their large number and frequent embryo lethality in mutants, functions of many PPRs remain unknown. In this study, we characterized a mitochondrion-localized DYW-type PPR protein, DEK48, functioning in the C-to-U RNA editing at multiple mitochondrial transcripts in maize. Null mutation of Dek48 severely arrests embryo and endosperm development, causing a defective kernel (dek) phenotype, named dek48. DEK48 loss of function abolishes the C-to-U editing at nad3-185, -215, and nad4-376, -977 sites and decreases the editing at 11 other sites, resulting in the alteration of the corresponding amino acids. Consequently, the absence of editing caused reduced assembly and activity of complex I in dek48. Interestingly, we identified a point mutation in dek48-3 causing a deletion of the Tryptophan (W) residue in the DYW motif that abolishes the editing function. In sum, this study reveals the function of DEK48 in the C-to-U editing in mitochondrial transcripts and seed development in maize, and it demonstrates a critical role of the W residue in the DYW triplet motif of DEK48 for the C-to-U editing function in vivo.
Collapse
|
48
|
Yang J, Yang X, Su T, Hu Z, Zhang M. The Development of Mitochondrial Gene Editing Tools and Their Possible Roles in Crop Improvement for Future Agriculture. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100019. [PMID: 36619350 PMCID: PMC9744482 DOI: 10.1002/ggn2.202100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 01/11/2023]
Abstract
We are living in the era of genome editing. Nowadays, targeted editing of the plant nuclear DNA is prevalent in basic biological research and crop improvement since its first establishment a decade ago. However, achieving the same accomplishment for the plant mitochondrial genome has long been deemed impossible. Recently, the pioneer studies on editing plant mitogenome have been done using the mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) in rice, rapeseed, and Arabidopsis. It is well documented that mitochondria play essential roles in plant development and stress tolerance, particularly, in cytoplasmic male sterility widely used in production of hybrids. The success of mitochondrial genome editing enables studying the fundamentals of mitochondrial genome. Furthermore, mitochondrial RNA editing (mostly by nuclear-encoded pentatricopeptide repeat (PPR) proteins) in a sequence-specific manner can simultaneously change the production of translatable mitochondrial mRNA. Moreover, direct editing of the nuclear-encoding mitochondria-targeted factors required for plant mitochondrial genome dynamics and recombination may facilitate genetic manipulation of plant mitochondria. Here, the present state of knowledge on editing the plant mitochondrial genome is reviewed.
Collapse
Affiliation(s)
- Jinghua Yang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Xiaodong Yang
- Departments of Biology and Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tongbing Su
- Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Zhongyuan Hu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Mingfang Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
49
|
Bernath-Levin K, Schmidberger J, Honkanen S, Gutmann B, Sun YK, Pullakhandam A, Colas des Francs-Small C, Bond CS, Small I. Cofactor-independent RNA editing by a synthetic S-type PPR protein. Synth Biol (Oxf) 2022; 7:ysab034. [PMID: 35128071 PMCID: PMC8809517 DOI: 10.1093/synbio/ysab034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are attractive tools for RNA processing in synthetic biology applications given their modular structure and ease of design. Several distinct types of motifs have been described from natural PPR proteins, but almost all work so far with synthetic PPR proteins has focused on the most widespread P-type motifs. We have investigated synthetic PPR proteins based on tandem repeats of the more compact S-type PPR motif found in plant organellar RNA editing factors and particularly prevalent in the lycophyte Selaginella. With the aid of a novel plate-based screening method, we show that synthetic S-type PPR proteins are easy to design and bind with high affinity and specificity and are functional in a wide range of pH, salt and temperature conditions. We find that they outperform a synthetic P-type PPR scaffold in many situations. We designed an S-type editing factor to edit an RNA target in E. coli and demonstrate that it edits effectively without requiring any additional cofactors to be added to the system. These qualities make S-type PPR scaffolds ideal for developing new RNA processing tools.
Collapse
Affiliation(s)
- Kalia Bernath-Levin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Jason Schmidberger
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Yueming Kelly Sun
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
50
|
OTP970 Is Required for RNA Editing of Chloroplast ndhB Transcripts in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13010139. [PMID: 35052479 PMCID: PMC8774829 DOI: 10.3390/genes13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.
Collapse
|