1
|
Chen S, Triki M, Pinto Carneiro S, Merkel OM. A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer. NANOSCALE 2025; 17:6604-6619. [PMID: 39838780 PMCID: PMC11751667 DOI: 10.1039/d4nr03471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da via a ring-opening reaction. The resulting C14-PEI has a critical micelle concentration (CMC) of approximately 20.86 ± 0.15 mg L-1, indicating its ability to form stable micelles at low concentrations. C14-PEI efficiently encapsulates mRNA into micelleplexes through electrostatic interactions. When the mass ratio is 8 (w/w 8), the C14-PEI formulation exhibits conducive properties, which showed encapsulation efficiency of eGFP mRNA at 99% and led to a 130-fold increase in eGFP expression in A549 cells compared to untreated cells, demonstrating the robust delivery and expression capability of the micelleplexes. Importantly, toxicity tests using intracellular reduction of a tetrazolium salt revealed no significant cytotoxicity, underscoring the biocompatibility of C14-PEI. C14-PEI also shows high efficiency in co-encapsulating Cas9 mRNA and sgRNA, as confirmed by agarose gel electrophoresis. At an sgRNA to Cas9 mRNA molar ratio of 10, the micelleplexes successfully mediate the cutting of mutated KRAS with an indel efficiency exceeding 60%, as determined by the T7 Endonuclease I (T7EI) assay. Droplet digital polymerase chain reaction (ddPCR) further demonstrates that the gene editing efficiency, measured by edited gene copies, is 48.5% in the w/w 4 group and 37.8% in the w/w 8 group. Treatment with C14-PEI micelleplexes containing Cas9 mRNA and sgRNA targeting the KRAS G12S mutation significantly impairs the migration capability of A549 cells and increases apoptosis rates. These findings suggest that C14-PEI effectively disrupts KRAS signalling pathways, leading to reduced tumor cell proliferation and enhanced cell death.
Collapse
Affiliation(s)
- Siyu Chen
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| | - Mariem Triki
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| | - Simone Pinto Carneiro
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| | - Olivia Monika Merkel
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| |
Collapse
|
2
|
Chen S, Pinto Carneiro S, Merkel OM. Anionic polymer coating for enhanced delivery of Cas9 mRNA and sgRNA nanoplexes. Biomater Sci 2025; 13:659-676. [PMID: 39687993 PMCID: PMC11650648 DOI: 10.1039/d4bm01290a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Polymeric carriers have long been recognized as some of the most effective and promising systems for nucleic acid delivery. In this study, we utilized an anionic di-block co-polymer, PEG-PLE, to enhance the performance of lipid-modified PEI (C14-PEI) nanoplexes for delivering Cas9 mRNA and sgRNA targeting KRAS G12S mutations in lung cancer cells. Our results demonstrated that PEG-PLE, when combined with C14-PEI at a weight-to-weight ratio of 0.2, produced nanoplexes with a size of approximately 140 nm, a polydispersity index (PDI) of 0.08, and a zeta potential of around -1 mV. The PEG-PLE/C14-PEI nanoplexes at this ratio were observed to be both non-cytotoxic and effective in encapsulating Cas9 mRNA and sgRNA. Confocal microscopy imaging revealed efficient endosomal escape and intracellular distribution of the RNAs. Uptake pathway inhibition studies indicated that the internalization of PEG-PLE/C14-PEI primarily involves scavenger receptors and clathrin-mediated endocytosis. Compared to C14-PEI formulations, PEG-PLE/C14-PEI demonstrated a significant increase in luciferase mRNA expression and gene editing efficiency, as confirmed by T7EI and ddPCR, in A549 cells. Sanger sequencing identified insertions and/or deletions around the PAM sequence, with a total of 69% indels observed. Post-transfection, the KRAS-ERK pathway was downregulated, resulting in significant increases in cell apoptosis and inhibition of cell migration. Taken together, this study reveals a new and promising formulation for CRISPR delivery as potential lung cancer treatment.
Collapse
Affiliation(s)
- Siyu Chen
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| | - Simone Pinto Carneiro
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.
| |
Collapse
|
3
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
4
|
Fritsche S, Reinfurt A, Fronek F, Steiger MG. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. Fungal Biol Biotechnol 2024; 11:10. [PMID: 39103967 DOI: 10.1186/s40694-024-00180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.
Collapse
Affiliation(s)
- Susanne Fritsche
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Aline Reinfurt
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Felix Fronek
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Matthias G Steiger
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria.
| |
Collapse
|
5
|
Bekaert B, Boel A, Rybouchkin A, Cosemans G, Declercq S, Chuva de Sousa Lopes SM, Parrington J, Stoop D, Coucke P, Menten B, Heindryckx B. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. J Assist Reprod Genet 2024; 41:1605-1617. [PMID: 38557805 PMCID: PMC11224219 DOI: 10.1007/s10815-024-03095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Unpredictable genetic modifications and chromosomal aberrations following CRISPR/Cas9 administration hamper the efficacy of germline editing. Repair events triggered by double-strand DNA breaks (DSBs) besides non-homologous end joining and repair template-driven homology-directed repair have been insufficiently investigated in mouse. In this work, we are the first to investigate the precise repair mechanisms triggered by parental-specific DSB induction in mouse for paternal mutational correction in the context of an infertility-related mutation. METHODS We aimed to correct a paternal 22-nucleotide deletion in Plcz1, associated with lack of fertilisation in vitro, by administrating CRISPR/Cas9 components during intracytoplasmic injection of Plcz1-null sperm in wild-type oocytes combined with assisted oocyte activation. Through targeted next-generation sequencing, 77 injected embryos and 26 blastomeres from seven injected embryos were investigated. In addition, low-pass whole genome sequencing was successfully performed on 17 injected embryo samples. RESULTS Repair mechanisms induced by two different CRISPR/Cas9 guide RNA (gRNA) designs were investigated. In 13.73% (7/51; gRNA 1) and 19.05% (4/21; gRNA 2) of the targeted embryos, only the wild-type allele was observed, of which the majority (85.71%; 6/7) showed integrity of the targeted chromosome. Remarkably, for both designs, only in one of these embryos (1/7; gRNA 1 and 1/4; gRNA2) could repair template use be detected. This suggests that alternative repair events have occurred. Next, various genetic events within the same embryo were detected after single-cell analysis of four embryos. CONCLUSION Our results suggest the occurrence of mosaicism and complex repair events after CRISPR/Cas9 DSB induction where chromosomal integrity is predominantly contained.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Rybouchkin
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S Declercq
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - J Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - D Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - P Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
7
|
Bekaert B, Boel A, Cosemans G, De Witte L, Menten B, Heindryckx B. CRISPR/Cas gene editing in the human germline. Semin Cell Dev Biol 2022; 131:93-107. [PMID: 35305903 DOI: 10.1016/j.semcdb.2022.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
The ease and efficacy of CRISPR/Cas9 germline gene editing in animal models paved the way to human germline gene editing (HGGE), by which permanent changes can be introduced into the embryo. Distinct genes can be knocked out to examine their function during embryonic development. Alternatively, specific sequences can be introduced which can be applied to correct disease-causing mutations. To date, it has been shown that the success of HGGE is dependent on various experimental parameters and that various hurdles (i.e. loss-of-heterozygosity and mosaicism) need to be overcome before clinical applications should be considered. Due to the shortage of human germline material and the ethical constraints concerning HGGE, alternative models such as stem cells have been evaluated as well, in terms of their predictive value on the genetic outcome for HGGE approaches. This review will give an overview of the state of the art of HGGE in oocytes and embryos, and its accompanying challenges.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - A Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - L De Witte
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Fan M, Berkhout B, Herrera-Carrillo E. A combinatorial CRISPR-Cas12a attack on HIV DNA. Mol Ther Methods Clin Dev 2022; 25:43-51. [PMID: 35356755 PMCID: PMC8933334 DOI: 10.1016/j.omtm.2022.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
CRISPR-Cas12a is an alternative class 2 gene editing tool that may cause less off-target effects than the original Cas9 system. We have previously demonstrated that Cas12a attack with a single CRISPR RNA (crRNA) can neutralize all infectious HIV in an infected T cell line in cell culture. However, we demonstrated that HIV escapes from most crRNAs by acquisition of a mutation in the crRNA target sequence, thus providing resistance against Cas12a attack. Here, we tested the antiviral activity of seven dual crRNA combinations and analyzed the HIV proviral genomes for mutations at the target sites. We demonstrated that dual crRNA combinations exhibit more robust antiviral activity than a single crRNA attack and, more important, that the dual-crRNA therapy can prevent virus escape in long-term cultures. We confirmed the absence of any replication-competent virus in these apparently cured cultures. Surprisingly, we did not detect excision of the HIV sequences located between two Cas12a cleavage sites. Instead, we observed almost exclusively HIV inactivation by "hypermutation," that is, the introduction of indel mutations at both target sites due to the error-prone cellular DNA repair machinery.
Collapse
Affiliation(s)
- Minghui Fan
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Genome editing using preassembled CRISPR-Cas9 ribonucleoprotein complexes in Fusarium graminearum. PLoS One 2022; 17:e0268855. [PMID: 35657788 PMCID: PMC9165886 DOI: 10.1371/journal.pone.0268855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has greatly facilitated the genetic analysis of fungal pathogens. The head blight fungus, Fusarium graminearum, causes destructive losses of economically important cereal crops. The recent development of the CRISPR-Cas9 system for use with F. graminearum has enabled more efficient genome editing. In this study, we described a CRISPR-Cas9-based genome-editing tool for the direct delivery of preassembled Cas9 ribonucleoproteins (RNPs) into the protoplasts of F. graminearum. The use of RNPs significantly increased both the number of transformants and percentage of transformants in which the target gene was successfully replaced with a selectable marker. We showed that a single double-strand DNA break mediated by the Cas9 ribonucleoprotein was sufficient for gene deletion. In addition, short-homology recombination required only 50 base pair regions flanking the target gene. The high efficiency of Cas9 RNPs enables large-scale functional analysis, the identification of essential genes, and gene deletion that is difficult with conventional methods. We expect that our approach will accelerate genetic studies of F. graminearum.
Collapse
|
10
|
Sansbury BM, Hewes AM, Tharp OM, Masciarelli SB, Kaouser S, Kmiec EB. Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas. Sci Rep 2022; 12:8132. [PMID: 35581233 PMCID: PMC9114366 DOI: 10.1038/s41598-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Gene correction is often referred to as the gold standard for precise gene editing and while CRISPR-Cas systems continue to expand the toolbox for clinically relevant genetic repair, mechanistic hurdles still hinder widespread implementation. One of the most prominent challenges to precise CRISPR-directed point mutation repair centers on the prevalence of on-site mutagenesis, wherein insertions and deletions appear at the targeted site following correction. Here, we introduce a pathway model for Homology Directed Correction, specifically point mutation repair, which enables a foundational analysis of genetic tools and factors influencing precise gene editing. To do this, we modified an in vitro gene editing system which utilizes a cell-free extract, CRISPR-Cas RNP and donor DNA template to catalyze point mutation repair. We successfully direct correction of four unique point mutations which include two unique nucleotide mutations at two separate targeted sites and visualize the repair profiles resulting from these reactions. This extension of the cell-free gene editing system to model point mutation repair may provide insight for understanding the factors influencing precise point mutation correction.
Collapse
Affiliation(s)
- Brett M Sansbury
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Amanda M Hewes
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Olivia M Tharp
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Sophia B Masciarelli
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Salma Kaouser
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.
| |
Collapse
|
11
|
Banas K, Modarai S, Rivera-Torres N, Yoo BC, Bialk PA, Barrett C, Batish M, Kmiec EB. Exon skipping induced by CRISPR-directed gene editing regulates the response to chemotherapy in non-small cell lung carcinoma cells. Gene Ther 2022; 29:357-367. [PMID: 35314779 PMCID: PMC9203268 DOI: 10.1038/s41434-022-00324-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.
Collapse
Affiliation(s)
- Kelly Banas
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | | | | | | | - Pawel A Bialk
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | - Connor Barrett
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Newark, DE, USA.
| |
Collapse
|
12
|
Shalaby KE, Aouida M, Gupta V, Ghanem SS, El-Agnaf OMA. Rapid Assessment of CRISPR Transfection Efficiency and Enrichment of CRISPR Induced Mutations Using a Dual-Fluorescent Stable Reporter System. Front Genome Ed 2022; 4:854866. [PMID: 35386234 PMCID: PMC8978543 DOI: 10.3389/fgeed.2022.854866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
The nuclease activity of the CRISPR-Cas9 system relies on the delivery of a CRISPR-associated protein 9 (Cas9) and a single guide RNA (sgRNA) against the target gene. CRISPR components are typically delivered to cells as either a Cas9/sgRNA ribonucleoprotein (RNP) complex or a plasmid encoding a Cas9 protein along with a sequence-specific sgRNA. Multiple transfection reagents are known to deliver CRISPR-Cas9 components, and delivery vectors are being developed for different purposes by several groups. Here, we repurposed a dual-fluorescence (RFP-GFP-GFP) reporter system to quantify the uptake level of the functional CRISPR-Cas9 components into cells and compare the efficiency of CRISPR delivery vectors. Using this system, we developed a novel and rapid cell-based microplate reader assay that makes possible real-time, rapid, and high throughput quantification of CRISPR nuclease activity. Cells stably expressing this dual-fluorescent reporter construct facilitated a direct quantification of the level of the internalized and functional CRISPR-Cas9 molecules into the cells without the need of co-transfecting fluorescently labeled reporter molecules. Additionally, targeting a reporter gene integrated into the genome recapitulates endogenous gene targeting. Thus, this reporter could be used to optimize various transfection conditions of CRISPR components, to evaluate and compare the efficiency of transfection agents, and to enrich cells containing desired CRISPR-induced mutations.
Collapse
Affiliation(s)
- Karim E. Shalaby
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S. Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- *Correspondence: Mustapha Aouida, ; Omar M. A. El-Agnaf,
| |
Collapse
|
13
|
How Various Drug Delivery Methods Could Aid in the Translation of Genome Prime Editing Technologies. Genet Res (Camb) 2022; 2022:7301825. [PMID: 35283690 PMCID: PMC8885240 DOI: 10.1155/2022/7301825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
Drug delivery systems can be engineered to enhance the localization of therapeutics in specific tissues in response to externally applied stimuli and/or local environmental changes. In recent decades, efforts to improve drug delivery techniques at both nano- and macroscale have led to a new era of therapeutic efficacy. Such technological advancements resulted in improved drug delivery systems regularly entering the clinical setting. However, these delivery innovations are unfortunately not always readily applied to newly developed technologies. One of these new and exciting technologies that has been overlooked by drug delivery scientists is prime editing. Prime editing is a novel genome editing technology that exhibits the plug-and-play capability of CRISPR/Cas9 editors while avoiding double-strand DNA breaks throughout the entire process. This article focuses on describing the potential advantages and disadvantages of selecting nanomedicine technologies along with prime editing capabilities for the delivery of cargo.
Collapse
|
14
|
Roy RK, Debashree I, Srivastava S, Rishi N, Srivastava A. CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction,
Detection, and Overcoming Strategies. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210708150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CRISPR/Cas9 technology is a highly flexible RNA-guided endonuclease (RGEN)
based gene-editing tool that has transformed the field of genomics, gene therapy, and genome/
epigenome imaging. Its wide range of applications provides immense scope for understanding
as well as manipulating genetic/epigenetic elements. However, the RGEN is prone to
off-target mutagenesis that leads to deleterious effects. This review details the molecular and cellular
mechanisms underlying the off-target activity, various available detection tools and prediction
methodology ranging from sequencing to machine learning approaches, and the strategies to
overcome/minimise off-targets. A coherent and concise method increasing target precision would
prove indispensable to concrete manipulation and interpretation of genome editing results that
can revolutionise therapeutics, including clarity in genome regulatory mechanisms during development.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ipsita Debashree
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| |
Collapse
|
15
|
Carlsen FM, Johansen IE, Yang Z, Liu Y, Westberg IN, Kieu NP, Jørgensen B, Lenman M, Andreasson E, Nielsen KL, Blennow A, Petersen BL. Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA Efficiency Design by Utilizing Protoplast (Research). Front Genome Ed 2022; 3:795644. [PMID: 35128523 PMCID: PMC8811252 DOI: 10.3389/fgeed.2021.795644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3–2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6–10 gRNAs were designed to target regions comprising the 5′ and the 3′ end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP’s targeting the 5′ end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3′ end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3′ end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.
Collapse
Affiliation(s)
- Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Kartoffel Mel Centralen Amba, Brande, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Liu
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ida Nøhr Westberg
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bent Larsen Petersen,
| |
Collapse
|
16
|
Akella S, Ma X, Bacova R, Harmer ZP, Kolackova M, Wen X, Wright DA, Spalding MH, Weeks DP, Cerutti H. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:2637-2655. [PMID: 34618092 PMCID: PMC8644747 DOI: 10.1093/plphys/kiab418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 05/20/2023]
Abstract
Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.
Collapse
Affiliation(s)
- Soujanya Akella
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Xinrong Ma
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Romana Bacova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zachary P Harmer
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Xiaoxue Wen
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - David A Wright
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
17
|
Sioson VA, Kim M, Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed Eng Lett 2021; 11:217-233. [PMID: 34350049 PMCID: PMC8316527 DOI: 10.1007/s13534-021-00199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The CRISPR-based genome editing technology has opened extremely useful strategies in biological research and clinical therapeutics, thus attracting great attention with tremendous progress in the past decade. Despite its robust potential in personalized and precision medicine, the CRISPR-based gene editing has been limited by inefficient in vivo delivery to the target cells and by safety concerns of viral vectors for clinical setting. In this review, recent advances in tailored nanoparticles as a means of non-viral delivery vector for CRISPR/Cas systems are thoroughly discussed. Unique characteristics of the nanoparticles including controllable size, surface tunability, and low immune response lead considerable potential of CRISPR-based gene editing as a translational medicine. We will present an overall view on essential elements in CRISPR/Cas systems and the nanoparticle-based delivery carriers including advantages and challenges. Perspectives to advance the current limitations are also discussed toward bench-to-bedside translation in engineering aspects.
Collapse
Affiliation(s)
- Victor Aaron Sioson
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Minjong Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Jinmyoung Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
18
|
Gumerson JD, Alsufyani A, Yu W, Lei J, Sun X, Dong L, Wu Z, Li T. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther 2021; 29:81-93. [PMID: 34257417 PMCID: PMC8856954 DOI: 10.1038/s41434-021-00258-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGRORF15, through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGRORF15 protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGRORF15 in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGRORF15 mutations in vivo.
Collapse
Affiliation(s)
- Jessica D Gumerson
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, USA.
| | - Amal Alsufyani
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, USA.,King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Montgomery College, Rockville, MD, USA
| | - Wenhan Yu
- Ocular Gene Therapy Core, National Eye Institute, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, Bethesda, MD, USA
| | - Xun Sun
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, Bethesda, MD, USA
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, Bethesda, MD, USA
| | - Tiansen Li
- Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, Bethesda, MD, USA.
| |
Collapse
|
19
|
Shen L, Estrada AH, Meurs KM, Sleeper M, Vulpe C, Martyniuk CJ, Pacak CA. A review of the underlying genetics and emerging therapies for canine cardiomyopathies. J Vet Cardiol 2021; 40:2-14. [PMID: 34147413 DOI: 10.1016/j.jvc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Cardiomyopathies such as dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are common in large breed dogs and carry an overall poor prognosis. Research shows that these diseases have strong breed predilections, and selective breeding has historically been recommended to reduce the disease prevalence in affected breeds. Treatment of these diseases is typically palliative and aimed at slowing disease progression and managing clinical signs of heart failure as they develop. The discovery of specific genetic mutations underlying cardiomyopathies, such as the striatin mutation in Boxer arrhythmogenic right ventricular cardiomyopathy and the pyruvate dehydrogenase kinase 4 and titin mutations in Doberman Pinschers, has strengthened our ability to screen and selectively breed individuals in an attempt to produce unaffected offspring. The discovery of these disease-linked mutations has also opened avenues for the development of gene therapies, including gene transfer and genome-editing approaches. This review article discusses the known genetics of cardiomyopathies in dogs, reviews existing gene therapy strategies and the status of their development in canines, and discusses ongoing challenges in the clinical translation of these technologies for treating heart disease. While challenges remain in using these emerging technologies, the exponential growth of the gene therapy field holds great promise for future clinical applications.
Collapse
Affiliation(s)
- L Shen
- Program for Applied Research and Development in Genomic Medicine, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - A H Estrada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - K M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - M Sleeper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - C Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C A Pacak
- Department of Neurology, College of Medicine, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
20
|
Hendel SJ, Shoulders MD. Directed evolution in mammalian cells. Nat Methods 2021; 18:346-357. [PMID: 33828274 DOI: 10.1038/s41592-021-01090-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Directed evolution experiments are typically carried out using in vitro systems, bacteria, or yeast-even when the goal is to probe or modulate mammalian biology. Performing directed evolution in systems that do not match the intended mammalian environment severely constrains the scope and functionality of the targets that can be evolved. We review new platforms that are now making it possible to use the mammalian cell itself as the setting for directed evolution and present an overview of frontier challenges and high-impact targets for this approach.
Collapse
Affiliation(s)
- Samuel J Hendel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Bloh K, Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int J Mol Sci 2021; 22:3834. [PMID: 33917142 PMCID: PMC8067812 DOI: 10.3390/ijms22083834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The mechanism of action of ssODN-directed gene editing has been a topic of discussion within the field of CRISPR gene editing since its inception. Multiple comparable, but distinct, pathways have been discovered for DNA repair both with and without a repair template oligonucleotide. We have previously described the ExACT pathway for oligo-driven DNA repair, which consisted of a two-step DNA synthesis-driven repair catalyzed by the simultaneous binding of the repair oligonucleotide (ssODN) upstream and downstream of the double-strand break. In order to better elucidate the mechanism of ExACT-based repair, we have challenged the assumptions of the pathway with those outlines in other similar non-ssODN-based DNA repair mechanisms. This more comprehensive iteration of the ExACT pathway better described the many different ways where DNA repair can occur in the presence of a repair oligonucleotide after CRISPR cleavage, as well as how these previously distinct pathways can overlap and lead to even more unique repair outcomes.
Collapse
Affiliation(s)
- Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19710, USA
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
| |
Collapse
|
22
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
23
|
Bloh K, Kanchana R, Bialk P, Banas K, Zhang Z, Yoo BC, Kmiec EB. Deconvolution of Complex DNA Repair (DECODR): Establishing a Novel Deconvolution Algorithm for Comprehensive Analysis of CRISPR-Edited Sanger Sequencing Data. CRISPR J 2021; 4:120-131. [PMID: 33571043 PMCID: PMC7898406 DOI: 10.1089/crispr.2020.0022] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During CRISPR-directed gene editing, multiple gene repair mechanisms interact to produce a wide and largely unpredictable variety of sequence changes across an edited population of cells. Shortcomings inherent to previously available proposal-based insertion and deletion (indel) analysis software necessitated the development of a more comprehensive tool that could detect a larger range and variety of indels while maintaining the ease of use of tools currently available. To that end, we developed Deconvolution of Complex DNA Repair (DECODR). DECODR can detect indels formed from single or multi-guide CRISPR experiments without a limit on indel size. The software is accurate in determining the identities and positions of inserted and deleted bases in DNA extracts from both clonally expanded and bulk cell populations. The accurate identification and output of any potential indel allows for DECODR analysis to be executed in experiments utilizing potentially any configuration of donor DNA sequences, CRISPR-Cas, and endogenous DNA repair pathways.
Collapse
Affiliation(s)
- Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
- Department of Medical and Molecular Sciences, College of Health Sciences University of Delaware, Newark, Delaware, USA
| | - Rohan Kanchana
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
| | - Kelly Banas
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
- Department of Medical and Molecular Sciences, College of Health Sciences University of Delaware, Newark, Delaware, USA
| | - Zugui Zhang
- Value Institute, ChristianaCare, Newark, Delaware, USA
| | - Byung-Chun Yoo
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, Newark, Delaware, USA
- Department of Medical and Molecular Sciences, College of Health Sciences University of Delaware, Newark, Delaware, USA
| |
Collapse
|
24
|
Kivrak E, Pauzaite T, Copeland NA, Hardy JG, Kara P, Firlak M, Yardimci AI, Yilmaz S, Palaz F, Ozsoz M. Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. BIOSENSORS-BASEL 2021; 11:bios11010017. [PMID: 33429883 PMCID: PMC7827051 DOI: 10.3390/bios11010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/22/2023]
Abstract
The CRISPR-Cas9 system has facilitated the genetic modification of various model organisms and cell lines. The outcomes of any CRISPR-Cas9 assay should be investigated to ensure/improve the precision of genome engineering. In this study, carbon nanotube-modified disposable pencil graphite electrodes (CNT/PGEs) were used to develop a label-free electrochemical nanogenosensor for the detection of point mutations generated in the genome by using the CRISPR-Cas9 system. Carbodiimide chemistry was used to immobilize the 5'-aminohexyl-linked inosine-substituted probe on the surface of the sensor. After hybridization between the target sequence and probe at the sensor surface, guanine oxidation signals were monitored using differential pulse voltammetry (DPV). Optimization of the sensitivity of the nanogenoassay resulted in a lower detection limit of 213.7 nM. The nanogenosensor was highly specific for the detection of the precisely edited DNA sequence. This method allows for a rapid and easy investigation of the products of CRISPR-based gene editing and can be further developed to an array system for multiplex detection of different-gene editing outcomes.
Collapse
Affiliation(s)
- Ezgi Kivrak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Tekle Pauzaite
- Department of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK; (T.P.); (N.A.C.)
| | - Nikki A. Copeland
- Department of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK; (T.P.); (N.A.C.)
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK; (J.G.H.); (M.F.)
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
| | - Pinar Kara
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
- Correspondence: (P.K.); (M.O.)
| | - Melike Firlak
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK; (J.G.H.); (M.F.)
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
| | - Atike I. Yardimci
- Department of Chemical Engineering, Izmir Institute of Technology, İzmir 35430, Turkey; (A.I.Y.); (S.Y.)
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, İzmir 35430, Turkey; (A.I.Y.); (S.Y.)
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Mehmet Ozsoz
- Faculty of Engineering, Near East University, Lefkoşa 99138, Turkey
- Correspondence: (P.K.); (M.O.)
| |
Collapse
|
25
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
26
|
Félix AJ, Solé A, Noé V, Ciudad CJ. Gene Correction of Point Mutations Using PolyPurine Reverse Hoogsteen Hairpins Technology. Front Genome Ed 2020; 2:583577. [PMID: 34713221 PMCID: PMC8525393 DOI: 10.3389/fgeed.2020.583577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Monogenic disorders are often the result of single point mutations in specific genes, leading to the production of non-functional proteins. Different blood disorders such as ß-thalassemia, sickle cell disease, hereditary spherocytosis, Fanconi anemia, and Hemophilia A and B are usually caused by point mutations. Gene editing tools including TALENs, ZFNs, or CRISPR/Cas platforms have been developed to correct mutations responsible for different diseases. However, alternative molecular tools such as triplex-forming oligonucleotides and their derivatives (e.g., peptide nucleic acids), not relying on nuclease activity, have also demonstrated their ability to correct mutations in the DNA. Here, we review the Repair-PolyPurine Reverse Hoogsteen hairpins (PPRHs) technology, which can represent an alternative gene editing tool within this field. Repair-PPRHs are non-modified single-stranded DNA molecules formed by two polypurine mirror repeat sequences linked by a five-thymidine bridge, followed by an extended sequence at one end of the molecule which is homologous to the DNA sequence to be repaired but containing the corrected nucleotide. The two polypurine arms of the PPRH are bound by intramolecular reverse-Hoogsteen bonds between the purines, thus forming a hairpin structure. This hairpin core binds to polypyrimidine tracts located relatively near the target mutation in the dsDNA in a sequence-specific manner by Watson-Crick bonds, thus producing a triplex structure which stimulates recombination. This technology has been successfully employed to repair a collection of mutants of the dhfr and aprt genes within their endogenous loci in mammalian cells and could be suitable for the correction of mutations responsible for blood disorders.
Collapse
|
27
|
Ren H, Xiao W, Qin X, Cai G, Chen H, Hua Z, Cheng C, Li X, Hua W, Xiao H, Zhang L, Dai J, Zheng X, Zhu Z, Qian C, Yao J, Bi Y. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs. Commun Biol 2020; 3:612. [PMID: 33097765 PMCID: PMC7584575 DOI: 10.1038/s42003-020-01348-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN), associated with the “double muscling” phenotype, affects muscle growth and fat deposition in animals, whereas how MSTN affects adipogenesis remains to be discovered. Here we show that MSTN can act through the MEF2C/miR222/SCD5 cascade to regulate fatty acid metabolism. We generated MSTN-knockout (KO) cloned Meishan pigs, which exhibits typical double muscling trait. We then sequenced transcriptome of subcutaneous fat tissues of wild-type (WT) and MSTN-KO pigs, and intersected the differentially expressed mRNAs and miRNAs to predict that stearoyl-CoA desaturase 5 (SCD5) is targeted by miR222. Transcription factor binding prediction showed that myogenic transcription factor 2C (MEF2C) potentially binds to the miR222 promoter. We hypothesized that MSTN-KO upregulates MEF2C and consequently increases the miR222 expression, which in turn targets SCD5 to suppress its translation. Biochemical, molecular and cellular experiments verified the existence of the cascade. This novel molecular pathway sheds light on new targets for genetic improvements in pigs. Ren, Xiao et al. identify a mechanism by which myostatin regulates adipogenesis, using myostatin-knockout pigs. Myostatin deficiency upregulates MEF2C that binds to the promoter of miR222. miR222 in turn downregulates stearoyl-CoA desaturase 5. This study provides potential targets that can be engineered to generate a new pig variety that has high leanness while maintaining its high intramuscular fat content.
Collapse
Affiliation(s)
- Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Wei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Xingliang Qin
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Gangzhi Cai
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hao Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Cheng Cheng
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinglei Li
- Wuhan Bioacme Biotechnology Co., Ltd., 430000, Wuhan, China
| | - Wenjun Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Jiali Dai
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinmin Zheng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Chong Qian
- Beijing Center for Physical and Chemical Analysis, 100094, Beijing, China
| | - Jie Yao
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China.
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China.
| |
Collapse
|
28
|
Hewes AM, Sansbury BM, Kmiec EB. The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template. Genes (Basel) 2020; 11:genes11101160. [PMID: 33008045 PMCID: PMC7599521 DOI: 10.3390/genes11101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral genomes. By democratizing this activity into human cells, it is possible to knock out specific genes to disable their function and repair errors. The latter of these activities requires the participation of a single-stranded donor DNA template that provides the genetic information to execute correction in a process referred to as homology directed repair (HDR). Here, we utilized an established cell-free extract system to determine the influence that the donor DNA template length has on the diversity of products from CRISPR-directed gene editing. This model system enables us to view all outcomes of this reaction and reveals that donor template length can influence the efficiency of the reaction and the categories of error-prone products that accompany it. A careful measurement of the products revealed a category of error-prone events that contained the corrected template along with insertions and deletions (indels). Our data provides foundational information for those whose aim is to translate CRISPR/Cas from bench to bedside.
Collapse
Affiliation(s)
- Amanda M. Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
| | - Brett M. Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE 19713, USA; (A.M.H.); (B.M.S.)
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-(0)302-623-0628
| |
Collapse
|
29
|
Perspectives on Molecular Diagnostic Testing for the COVID-19 Pandemic in Delaware. Dela J Public Health 2020; 6:20-24. [PMID: 34467103 PMCID: PMC8389828 DOI: 10.32481/djph.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The United States has quickly transitioned into one of the epicenters for the coronavirus pandemic. Limitations for rapid testing for the virus responsible for the pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the single most important barrier for early detection and prevention of future outbreaks. Combining innovative molecular biology techniques, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas nuclease systems and next generation sequencing (NGS) may prove to be an effective solution to establish a high-throughput diagnostic and genomic surveillance workflow for COVID-19 in the State of Delaware. Integrating key expertise across the medical institutions in Delaware, including ChristianaCare and Nemours/Alfred I. duPont Hospital for Children, is one potential solution for overcoming current barriers and driving a successful implementation of these techniques.
Collapse
|
30
|
Hewes AM, Sansbury BM, Barth S, Tarcic G, Kmiec EB. gRNA Sequence Heterology Tolerance Catalyzed by CRISPR/Cas in an In Vitro Homology-Directed Repair Reaction. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:568-579. [PMID: 32330873 PMCID: PMC7177190 DOI: 10.1016/j.omtn.2020.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
CRISPR and associated Cas nucleases are genetic engineering tools revolutionizing innovative approaches to cancer and inherited diseases. CRISPR-directed gene editing relies heavily on proper DNA sequence alignment between the guide RNA (gRNA)/CRISPR complex and its genomic target. Accurate hybridization of complementary DNA initiates gene editing in human cells, but inherent gRNA sequence variation that could influence the gene editing reaction has been clearly established among diverse genetic populations. As this technology advances toward clinical implementation, it will be essential to assess what degree of gRNA variation generates unwanted and erroneous CRISPR activity. With the use of a system in which a cell-free extract catalyzes nonhomologous end joining (NHEJ) and homology-directed repair (HDR), it is possible to observe a more representative population of all forms of gene editing outcomes. In this manuscript, we demonstrate CRISPR/Cas complexation at heterologous binding sites that facilitate precise and error-prone HDR. The tolerance of mispairing between the gRNA and target site of the DNA to enable HDR is surprisingly high and greatly influenced by polarity of the donor DNA strand in the reaction. These results suggest that some collateral genomic activity could occur at unintended sites in CRISPR-directed gene editing in human cells.
Collapse
Affiliation(s)
- Amanda M Hewes
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Brett M Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Shaul Barth
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Gabi Tarcic
- Novellus, Jerusalem Bio-Park, 1(st) Kiryat Hadassah, Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel, 9112001
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|