1
|
Li YF, Geng HX, Hong X, Kong FZ, Yu RC. Strong interannual variation of green tides in the southern Yellow Sea: Crucial factors and implications on management strategies. MARINE POLLUTION BULLETIN 2025; 216:117989. [PMID: 40262322 DOI: 10.1016/j.marpolbul.2025.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
In the Southern Yellow Sea (SYS), recurrent large-scale green tides of Ulva prolifera have been recorded since 2007, and nori cultivation rafts in Subei Shoal are generally considered as the major source of floating green algae. The control measures in Subei Shoal, however, didn't solve the problem, and the magnitude of green tides (as indicated by the coverage area of floating green algae) exhibited strong interannual variation. In this study, the dynamics of green tides in the SYS were analyzed using the data of remote sensing from 2017 to 2023, and the factors closely related to the magnitude of green tides were analyzed. The green tides were basically divided into initiation phase, development phase, and dissipation phase. The increased coverage of floating green algae at the early-development stage had strong positive correlation with magnitudes of green tides, and the precipitation in April, west wind in May, and nori cultivation area were crucial factors affecting the magnitudes of green tides. The study highlights strong impacts of weather conditions on the early development of green tides, and addresses the importance of integrated monitoring and early-warning besides source control measures in Subei Shoal.
Collapse
Affiliation(s)
- Yi-Fan Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; Department of Marine Science Data Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Xia Geng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Xin Hong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
2
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Li BH, Gong JC, Li CX, Liu T, Hu JW, Li PF, Liu CY, Yang GP. Regulation of seawater dissolved carbon pools by environmental changes in Ulva prolifera originating sites: A new perspective on the contribution of U. prolifera to the seawater carbon sink function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124679. [PMID: 39116923 DOI: 10.1016/j.envpol.2024.124679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 μmol m-2 s-1), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 μmol L-1). The results showed that moderate light (108 μmol m-2 s-1), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ13C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO3- and CO2 concentrations. Enhanced light intensity of 108 μmol m-2 s-1 could shift the carbon fixation pathway of U. prolifera towards the C4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.
Collapse
Affiliation(s)
- Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Cheng-Xuan Li
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tao Liu
- College for Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing-Wen Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pei-Feng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Sun J, Dai W, Zhao S, Liu J, Zhang J, Xu J, He P. Response to the CO 2 concentrating mechanisms and transcriptional time series analysis of Ulva prolifera under inorganic carbon limitation. HARMFUL ALGAE 2024; 139:102727. [PMID: 39567081 DOI: 10.1016/j.hal.2024.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Ulva prolifera is a dominant species in green tides and has been affecting marine ecosystem for many years. Due to the low availability of CO2 in the environment, U. prolifera utilizes the CO2 concentrating mechanisms (CCMs) to increase intracellular inorganic carbon concentration. However, the transcriptional response mechanism and temporal changes of U. prolifera CCMs based on transcriptomics have not been thoroughly described. Therefore, we induced U. prolifera CCMs in a low CO2 environment to explore the dynamic regulation of CCMs expression under inadequate inorganic carbon supply. The results showed that inorganic carbon limitation increased the inorganic carbon affinity of U. prolifera, upregulating CCMs. The first 24 h of inorganic carbon environmental changes were the most active period for U. prolifera's expression regulation. U. prolifera gradually achieved a new steady state by regulating metabolic processes such as nucleic acids, energy, and ethylene-activated signaling pathways. In the carbon fixation system of U. prolifera, there are characteristics of both biophysical and biochemical CCMs. After 24 h of inorganic carbon limitation, the biophysical CCMs becomes more effective under conditions of inorganic carbon depletion. This study aids in exploring the CCMs of U. prolifera and their evolution in response to environmental changes.
Collapse
Affiliation(s)
- Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Zhao
- Ocean College, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
5
|
Liu Q, Cui R, Du Y, Shen J, Jin C, Zhou X. Differential effects of petroleum hydrocarbons on the growing development and physiological characteristics of Ulva species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53291-53303. [PMID: 39186204 DOI: 10.1007/s11356-024-34782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
To compare the different effects of petroleum hydrocarbons on intertidal Ulva macroalgae, three dominant Ulva species (U. prolifera, U. linza, and U. lactuca) were exposed to two water-accommodated fractions (WAFs) of 0# diesel oil and crude oil at three concentration levels. The results indicated that two WAFs had significant concentration effects on the physiological characteristics of Ulva, the toxicity of 0# diesel oil was greater than crude oil, and crude oil had hormesis effect. Exposure of high WAFs concentrations, the growth, pigment, carbohydrate, and protein contents of Ulva were inhibited, while the antioxidant system was activated. In addition, the integrated biomarker response (IBR) indicated that U. prolifera had higher resistance to WAFs than U. linza and U. lactuca. Considering that U. prolifera is the main species of green tide in the Yellow Sea (YS) of China, the comparative effects of WAFs on different development stages of U. prolifera were also explored. The results showed that spore was the most sensitive to WAFs, while adult thalli was the most tolerant. The increased resistance of U. prolifera thalli and the hormesis effect triggered by crude oil may influence the outbreak scale of green tides. This study provides a new perspective for understanding the formation of green tides in the YS.
Collapse
Affiliation(s)
- Qing Liu
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruifei Cui
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuxin Du
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Junjie Shen
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Cuili Jin
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaojian Zhou
- Marine Science and Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
6
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Gu W, Wu S, Liu X, Wang L, Wang X, Qiu Q, Wang G. Algal-bacterial consortium promotes carbon sink formation in saline environment. J Adv Res 2024; 60:111-125. [PMID: 37597746 PMCID: PMC11156706 DOI: 10.1016/j.jare.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The level of atmospheric CO2 has continuously been increasing and the resulting greenhouse effects are receiving attention globally. Carbon removal from the atmosphere occurs naturally in various ecosystems. Among them, saline environments contribute significantly to the global carbon cycle. Carbonate deposits in the sediments of salt lakes are omnipresent, and the biological effects, especially driven by halophilic microalgae and bacteria, on carbonate formation remain to be elucidated. OBJECTIVES The present study aims to characterize the carbonates formed in saline environments and demonstrate the mechanisms underlying biological-driven CO2 removal via microalgal-bacterial consortium. METHODS The carbonates naturally formed in saline environments were collected and analyzed. Two saline representative organisms, the photosynthetic microalga Dunaliella salina and its mutualistic halophilic bacteria Nesterenkonia sp. were isolated from the inhabiting saline environment and co-cultivated to study their biological effects on carbonates precipitation and isotopic composition. During this process, electrochemical parameters and Ca2+ flux, and expression of genes related to CaCO3 formation were analyzed. Genome sequencing and metagenomic analysis were conducted to provide molecular evidence. RESULTS The results showed that natural saline sediments are enriched with CaCO3 and enrichment of genes related to photosynthesis and ureolysis. The co-cultivation stimulated 54.54% increase in CaCO3 precipitation and significantly promoted the absorption of external CO2 by 49.63%. A pH gradient was formed between the bacteria and algae culture, creating 150.22 mV of electronic potential, which might promote Ca2+ movement toward D. salina cells. Based on the results of lab-scale induction and 13C analysis, a theoretical calculation indicates a non-negligible amount of 0.16 and 2.3 Tg C/year carbon sequestration in China and global saline lakes, respectively. CONCLUSION The combined effects of these two typical representative species have contributed to the carbon sequestration in saline environments, by promoting Ca2+ influx and increase of pH via microalgal and bacterial metabolic processes.
Collapse
Affiliation(s)
- Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Songcui Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xuehua Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xulei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qi Qiu
- Tianjin Changlu Hangu Saltern Co., LTD, 300480, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
8
|
da Roza PA, Muller H, Sullivan GJ, Walker RSK, Goold HD, Willows RD, Palenik B, Paulsen IT. Chromosome-scale assembly of the streamlined picoeukaryote Picochlorum sp. SENEW3 genome reveals Rabl-like chromatin structure and potential for C 4 photosynthesis. Microb Genom 2024; 10. [PMID: 38625719 DOI: 10.1099/mgen.0.001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Genome sequencing and assembly of the photosynthetic picoeukaryotic Picochlorum sp. SENEW3 revealed a compact genome with a reduced gene set, few repetitive sequences, and an organized Rabl-like chromatin structure. Hi-C chromosome conformation capture revealed evidence of possible chromosomal translocations, as well as putative centromere locations. Maintenance of a relatively few selenoproteins, as compared to similarly sized marine picoprasinophytes Mamiellales, and broad halotolerance compared to others in Trebouxiophyceae, suggests evolutionary adaptation to variable salinity environments. Such adaptation may have driven size and genome minimization and have been enabled by the retention of a high number of membrane transporters. Identification of required pathway genes for both CAM and C4 photosynthetic carbon fixation, known to exist in the marine mamiellale pico-prasinophytes and seaweed Ulva, but few other chlorophyte species, further highlights the unique adaptations of this robust alga. This high-quality assembly provides a significant advance in the resources available for genomic investigations of this and other photosynthetic picoeukaryotes.
Collapse
Affiliation(s)
- Patrick A da Roza
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Héloïse Muller
- Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, 75005 Paris, France
| | - Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Roy S K Walker
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Hugh D Goold
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia
| | - Robert D Willows
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Geng Y, Xing R, Zhang H, Nan G, Chen L, Yu Z, Liu C, Li H. Inhibitory effect and mechanism of algicidal bacteria on Chaetomorpha valida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169850. [PMID: 38185176 DOI: 10.1016/j.scitotenv.2023.169850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Chaetomorpha valida, filamentous green tide algae, poses a significant threat to both aquatic ecosystems and aquaculture. Vibrio alginolyticus Y20 is a new algicidal bacterium with an algicidal effect on C. valida. This study aimed to investigate the physiological and molecular responses of C. valida to exposure to V. alginolyticus Y20. The inhibitory effect of V. alginolyticus Y20 on C. valida was content dependent, with the lowest inhibitory content being 3 × 105 CFU mL-1. The microscopic results revealed that C. valida experienced severe morphological damage under the influence of V. alginolyticus Y20, with a dispersion of intracellular pigments. V. alginolyticus Y20 caused the decrease in chlorophyll-a content and Fv/Fm in C. valida. At the molecular level, V. alginolyticus Y20 downregulated the expression of genes related to photosynthetic pigment synthesis, light capture, and electron transport. Furthermore, V. alginolyticus Y20 induced oxidative damage to algal cells. The production of reactive oxygen species significantly increased after 11 days of exposure. Malondialdehyde content significantly increased, and the cell membranes were severely damaged by lipid peroxidation. The content of superoxide dismutase and peroxidase also markedly increased, whereas catalase content decreased significantly. Additionally, peroxisomes were inhibited due to the downregulation of PEX expression, leading to irreversible oxidative damage to algal cells. Our findings provided a new theoretical basis for exploring the interaction between algicidal bacteria and green tide algae at the molecular level.
Collapse
Affiliation(s)
- Yaqi Geng
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Ronglian Xing
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Guoning Nan
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lihong Chen
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Zhen Yu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chuyao Liu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Huili Li
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
10
|
Zhao H, Liu X, Jiang T, Cai C, Gu K, Liu Y, He P. Activated abscisic acid pathway and C4 pathway, inhibited cell cycle progression, responses of Ulva prolifera to short term high temperature elucidated by multi-omics. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105796. [PMID: 36371952 DOI: 10.1016/j.marenvres.2022.105796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The annual outbreak of green tides since 2007 has destroyed coastal waters' ecological environment and caused substantial economic losses. Ulva prolifera, known as the dominant species of green tides, is influenced by temperatures. Omics-based technology was used to analyze U. prolifera under 12 h of treatment at 30 °C in the work. High temperature has the following advantages, e.g., activating the abscisic acid signaling pathway, improving the heat tolerance of U. prolifera, up-regulating metabolites such as glycolipids, glyceroyl, and glutamic acid to maintain the stability and fluidity of cells, and reducing the stimulatory effect of external stress on cells. The key genes and proteins of the tricarboxylic acid cycle, glycolysis, and pentose phosphorylation pathways were inhibited; however, the key enzyme pyruvate phospho-dikinase of the C4 pathway was up-regulated. The C4 pathway was activated in U. prolifera in response to high-temperature stress and may play a key role in photosynthesis. Besides, U. prolifera metabolizing amino acids was active. High temperature inhibited genes and proteins related to DNA replication and cell cycle in the transcriptome and proteome as well as the growth and reproduction of U. prolifera.
Collapse
Affiliation(s)
- Hui Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Xuanhong Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Ting Jiang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Chuner Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China.
| | - Kai Gu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Yuling Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China.
| |
Collapse
|
11
|
Wang Z, Fang Z, Liang J, Song X. Assessment of global habitat suitability and risk of ocean green tides. HARMFUL ALGAE 2022; 119:102324. [PMID: 36344196 DOI: 10.1016/j.hal.2022.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Green tides, which are widespread problems, are harmful issues that affect the protection of ocean ecosystems and natural resources. Scientific assessment and prevention of the green tides are essential for sustainable planning and the utilization of maritime traffic, tourism, and industry. However, the suitable or risk habitats and their dominant factors of green tides from global perspective are unknown. Here, this study proposed a novel framework to show the habitat suitability and risk of ocean green tides by considering marine environmental factors (i.e., sea surface temperature, sea surface salinity, solar irradiance, chlorophyll-a concentration, and sea surface wind). Through global remote sensing images and marine environmental factor data, this study found that (1) suitable and at-risk green tides areas are located in the north and south temperate zones; (2) marine physical factors are expected to weaken the green tide risk globally and enhance the green tide risk in coastal areas; (3) the green tides in the North Atlantic Ocean and the West Pacific Ocean are dominated by environmental factors and physical factors, respectively; and (4) when reducing carbon to promote sustainability, more potentially suitable green tide areas may appear at high latitudes. The results demonstrate the at-risk location and future trend of green tides, which are helpful for sustainable planning of ocean ecosystems.
Collapse
Affiliation(s)
- Zhongyuan Wang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Zhixiang Fang
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China.
| | - Jianfeng Liang
- Institution: National Marine Data and Information Service, Tianjin, China
| | - Xiao Song
- Institution: National Marine Data and Information Service, Tianjin, China
| |
Collapse
|
12
|
Molecular Response of Ulva prolifera to Short-Term High Light Stress Revealed by a Multi-Omics Approach. BIOLOGY 2022; 11:biology11111563. [PMID: 36358264 PMCID: PMC9687821 DOI: 10.3390/biology11111563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
The main algal species of Ulva prolifera green tide in the coastal areas of China are four species, but after reaching the coast of Qingdao, U. prolifera becomes the dominant species, where the light intensity is one of the most important influencing factors. In order to explore the effects of short-term high light stress on the internal molecular level of cells and its coping mechanism, the transcriptome, proteome, metabolome, and lipid data of U. prolifera were collected. The algae were cultivated in high light environment conditions (400 μmol·m−2·s−1) for 12 h and measured, and the data with greater relative difference (p < 0.05) were selected, then analyzed with the KEGG pathway. The results showed that the high light stress inhibited the assimilation of U. prolifera, destroyed the cell structure, and arrested its growth and development. Cells entered the emergency defense state, the TCA cycle was weakened, and the energy consumption processes such as DNA activation, RNA transcription, protein synthesis and degradation, and lipid alienation were inhibited. A gradual increase in the proportion of the C4 pathway was recorded. This study showed that U. prolifera can reduce the reactive oxygen species produced by high light stress, inhibit respiration, and reduce the generation of NADPH. At the same time, the C3 pathway began to change to the C4 pathway which consumed more energy. Moreover, this research provides the basis for the study of algae coping with high light stress.
Collapse
|
13
|
Wen Q, Yang W, Li J, Liu J, Zhao S, Gao S, Zhang J, He P. Characterization of complete chloroplast genome of Ulva torta (Mertens) Trevisan, 1841. Mitochondrial DNA B Resour 2022; 7:1041-1043. [PMID: 35756455 PMCID: PMC9225768 DOI: 10.1080/23802359.2022.2081943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Ulva torta (Mertens) Trevisan, 1841 was a global temperate widespread species. Green tide blooms caused by the green algae of the Ulva species occurred frequently in China. As a newly discovered species in the green tide bloom area, it was necessary to explore the relationship between U. torta and other green algae of the Ulva species. The complete chloroplast genome of U. torta was 105,423 bp in size. A total of 100 genes were annotated in the genome, containing 70 protein-coding genes, 27 transfer RNA (tRNA) genes, and three rRNA genes. The chloroplast genome had high AT content (74.76%). Phylogenetic analysis showed U. torta was clustered with Ulva meridionalis. This work could be useful for studying the evolution and genetic diversity of U. torta.
Collapse
Affiliation(s)
- Qinlin Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Weiming Yang
- Haiyan County Aquaculture Techniques Station of Zhejiang Province, Haiyan, China
| | - Jingshi Li
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao Hebei, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Song Gao
- North China Sea Marine Forecasting Center, State Oceanic Administration, Qingdao, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, Tuohy MG, Makatsoris C, Zhao X, Thakur VK, Gupta VK. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-26. [PMID: 35250414 PMCID: PMC8889523 DOI: 10.1007/s11101-022-09805-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algal biomass is a promising feedstock for sustainable production of a range of value-added compounds and products including food, feed, fuel. To further augment the commercial value of algal metabolites, efficient valorization methods and biorefining channels are essential. Algal extracts are ideal sources of biotechnologically viable compounds loaded with anti-microbial, anti-oxidative, anti-inflammatory, anti-cancerous and several therapeutic and restorative properties. Emerging technologies in biomass valorisation tend to reduce the significant cost burden in large scale operations precisely associated with the pre-treatment, downstream processing and waste management processes. In order to enhance the economic feasibility of algal products in the global market, comprehensive extraction of multi-algal product biorefinery is envisaged as an assuring strategy. Algal biorefinery has inspired the technologists with novel prospectives especially in waste recovery, carbon concentration/sequestration and complete utilisation of the value-added products in a sustainable closed-loop methodology. This review critically examines the latest trends in the algal biomass valorisation and the expansive feedstock potentials in a biorefinery perspective. The recent scope dynamics of algal biomass utilisation such as bio-surfactants, oleochemicals, bio-stimulants and carbon mitigation have also been discussed. The existing challenges in algal biomass valorisation, current knowledge gaps and bottlenecks towards commercialisation of algal technologies are discussed. This review is a comprehensive presentation of the road map of algal biomass valorisation techniques towards biorefinery technology. The global market view of the algal products, future research directions and emerging opportunities are reviewed.
Collapse
Affiliation(s)
- V. S. Uma
- Radiological and Environmental Safety Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research (IGCAR), Govt of India, Kalpakkam, Tamil Nadu India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO USA
| | - Monika Sharma
- Department of Botany, Sri Avadh Raj Singh Smarak Degree College, Gonda, UP India
| | - Miao Guo
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, Ryan Institute and MaREI, National University of Ireland, H91 TK33 Galway, Ireland
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Xiaobin Zhao
- Future Business Cambridge, Cambond Limited, Centre Kings Hedges Road, Cambridge, CB4 2HY UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), 248007 Dehradun, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| |
Collapse
|
15
|
Pan Z, Yu Y, Chen Y, Yu C, Xu N, Li Y. Combined effects of biomass density and low-nighttime temperature on the competition for growth and physiological performance of Gracilariopsis lemaneiformis and Ulva prolifera. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Bioelectricity generation from live marine photosynthetic macroalgae. Biosens Bioelectron 2022; 198:113824. [PMID: 34864244 DOI: 10.1016/j.bios.2021.113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Bio-photoelectrochemical cells (BPECs) utilizing unicellular photosynthetic microorganisms have been studied, however similar harvesting of electrons from more evolved intact photosynthetic organisms has not been previously reported. In this study, we describe for the first time BPECs containing intact live marine macroalgae (seaweeds) in natural seawater or saline buffer. The BPECs produce electrical currents of >50 mA/cm2, from both light-dependent (photosynthesis) and light-independent processes. These values are significantly greater than the current densities that have been reported for single-cell microorganisms. The photocurrent is inhibited by the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating that the source of light-driven electrons is from photosynthetic water oxidation. The current is mediated to the external anode via NADPH and possibly other reduced molecules. We show that intact macroalgae cultures can be used in large-scale BPECs containing seawater, to produce bias-free photocurrents, paving the way for the future development of low-cost energy solar energy conversion technologies using BPECs.
Collapse
|
17
|
Sun X, Dong Z, Zhang W, Sun X, Hou C, Liu Y, Zhang C, Wang L, Wang Y, Zhao J, Chen L. Seasonal and spatial variations in nutrients under the influence of natural and anthropogenic factors in coastal waters of the northern Yellow Sea, China. MARINE POLLUTION BULLETIN 2022; 175:113171. [PMID: 34844749 DOI: 10.1016/j.marpolbul.2021.113171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Analysis of the common and most influential natural and anthropogenic activities on the spatiotemporal variation in nutrients at a multiannual scale is important. Eleven cruises from 2015 to 2017 were carried out to better elucidate the seasonal and spatial variations in nutrients, as well as the impact factors on dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicate (DSi). Both nutrient concentrations and forms showed similar and significant seasonal variations over the 3 years, and were closely related to the biomass and species of phytoplankton. Terrestrial inputs had significant effects on the spatial distribution of nutrients throughout the year, especially in the surface water, which showed DIN > DIP>DSi. In summer, shellfish aquaculture and hypoxia jointly affected the spatial distribution of nutrients. The bottom water nutrient concentrations in the aquaculture area were 1.1-2.3 times higher than those outside of the aquaculture area. Seasonal hypoxia can increase the release of DSi and NH4+ from the sediment to the water. In summary, anthropogenic activities and physical conditions jointly influenced the nutrient distributions.
Collapse
Affiliation(s)
- Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Wenjing Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaohong Sun
- Shandong University at Weihai, Marine College, Wenhai, Shandong 264209, PR China
| | - Chaowei Hou
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chen Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Lei Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Lingxin Chen
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, P.R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| |
Collapse
|
18
|
Miao X, Xiao J, Fan S, Zang Y, Zhang X, Wang Z. Assessing Herbivorous Impacts of Apohale sp. on the Ulva prolifera Green Tide in China. FRONTIERS IN PLANT SCIENCE 2021; 12:795560. [PMID: 34975983 PMCID: PMC8715085 DOI: 10.3389/fpls.2021.795560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 06/03/2023]
Abstract
An epiphytic gammarid species, Apohyale sp. , was abundant in the floating Ulva prolifera (U. prolifera), which forms large-scale green tides in the Yellow Sea (YSGT). Field observation and laboratory experiments were subsequently conducted to study the species identity, abundance, and grazing effects on the floating algal biomass. The abundance of Apohyale sp. showed great spatial variation and varied from 0.03 to 1.47 inds g-1 in the YSGT. In average, each gram of Apohyale sp. body mass can consume 0.43 and 0.60 g algal mass of U. prolifera per day, and the grazing rates varied among the algae cultured with different nutritional seawaters. It was estimated that grazing of Apohale sp. could efficiently reduce ~0.4 and 16.6% of the algal growth rates in Rudong and Qingdao, respectively. The U. prolifera fragments resulting from gnawing of Apohyale sp. had a higher growth rate and similar photosynthetic activities compared to the floating algae, indicating probably positive feedback on the floating algal biomass. This research corroborated the significant impact of Apohyale sp. on the floating algal mass of YSGT through the top-down control. However, further research is needed to understand the population dynamics of these primary predators and hence their correlation with the expansion or decline of YSGT, especially under the complex food webs in the southern Yellow Sea.
Collapse
Affiliation(s)
- Xiaoxiang Miao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jie Xiao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shiliang Fan
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zongling Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
19
|
Xiao J, Wang Z, Liu D, Fu M, Yuan C, Yan T. Harmful macroalgal blooms (HMBs) in China's coastal water: Green and golden tides. HARMFUL ALGAE 2021; 107:102061. [PMID: 34456020 DOI: 10.1016/j.hal.2021.102061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/23/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Harmful macroalgal blooms (HMBs) have been increasing along China's coasts, causing significant social impacts and economic losses. Besides extensive eutrophication sustaining coastal seaweed tides, the stimuli and dynamics of macroalgal blooms in China are quite complex and require comprehensive studies. This review summarizes the distinct genesis, development and drifting patterns of three HMBs that have persistently occurred in China's coastal waters during recent years: transregional green tides of drifting Ulva prolifera in the Yellow Sea (YS), local green tides of multiple suspended seaweeds in the Bohai Sea and large-scale golden tides of pelagic Sargassum horneri in the YS and East China Sea. While specific containment measures have been developed and implemented to effectively suppress large-scale green tides in the YS, the origin and blooming mechanism of golden tides remain unclear due to lack of field research. With the broad occurrence of HMBs and their increased accumulation on beaches and coastal waters, it is necessary to investigate the blooming mechanism and ecological impacts of these HMBs, especially with the growing stresses of climate change and anthropogenic disturbances.
Collapse
Affiliation(s)
- Jie Xiao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Dongyan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Mingzhu Fu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory of Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chao Yuan
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tian Yan
- Laboratory of Marine Ecology and Environmental Science, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
20
|
Miao X, Xiao J, Xu Q, Fan S, Wang Z, Wang X, Zhang X. Distribution and species diversity of the floating green macroalgae and micro-propagules in the Subei Shoal, southwestern Yellow Sea. PeerJ 2020; 8:e10538. [PMID: 33362976 PMCID: PMC7749999 DOI: 10.7717/peerj.10538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Massive floating green macroalgae have formed harmful green tides in the Yellow Sea since 2007. To study the early development and the associated environmental factors for the green tide, a field survey was carried out in the Subei Shoal, southwestern Yellow Sea. Multiple species were identified in both floating green macroalgae and micro-propagules , while their abundances showed distinct spatial variations. The floating macroalgal biomass was widespread in the northern Subei Shoal and most abundant at 34°N. Ulva prolifera dominated (91.2% in average) the floating macroalgae, and the majority (88.5%) of U. prolifera was the ‘floating type’. In comparison, the micro-propagules were most abundant around the aquaculture rafts, and decreased significantly with the distance to the rafts. The dominant species of micro-propagules was U. linza (48.5%), followed by U. prolifera (35.1%). Their distinct distribution patterns and species diversity suggested little direct contribution of micro-propagules for the floating macroalgae. The spatial variation of the floating macroalgae was probably a combined result from the biomass source and environmental factors, while the abundance of micro-propagules was closely associated with the rafts. A positive correlation between the floating macroalgae and DO was observed and suggested active photosynthesis of the initial biomass in Subei Shoal. This study revealed specific distributional pattern and relationships among the floating macroalgae, micro-propagules and the environmental factors in the source region, which helps understanding the early blooming dynamics of the green tides in Yellow Sea.
Collapse
Affiliation(s)
- Xiaoxiang Miao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jie Xiao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shiliang Fan
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zongling Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
21
|
Ji Y, Gao K. Effects of climate change factors on marine macroalgae: A review. ADVANCES IN MARINE BIOLOGY 2020; 88:91-136. [PMID: 34119047 DOI: 10.1016/bs.amb.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine macroalgae, the main primary producers in coastal waters, play important roles in the fishery industry and global carbon cycles. With progressive ocean global changes, however, they are increasingly exposed to enhanced levels of multiple environmental drivers, such as ocean acidification, warming, heatwaves, UV radiation and deoxygenation. While most macroalgae have developed physiological strategies against variations of these drivers, their eco-physiological responses to each or combinations of the drivers differ spatiotemporally and species-specifically. Many freshwater macroalgae are tolerant of pH drop and its diel fluctuations and capable of acclimating to changes in carbonate chemistry. However, calcifying species, such as coralline algae, are very sensitive to acidification of seawater, which reduces their calcification, and additionally, temperature rise and UV further decrease their physiological performance. Except for these calcifying species, both economically important and harmful macroalgae can benefit from elevated CO2 concentrations and moderate temperature rise, which might be responsible for increasing events of harmful macroalgal blooms including green macroalgal blooms caused by Ulva spp. and golden tides caused by Sargassum spp. Upper intertidal macroalgae, especially those tolerant of dehydration during low tide, increase their photosynthesis under elevated CO2 concentrations during the initial dehydration period, however, these species might be endangered by heatwaves, which can expose them to high temperature levels above their thermal windows' upper limit. On the other hand, since macroalgae are distributed in shallow waters, they are inevitably exposed to solar UV radiation. The effects of UV radiation, depending on weather conditions and species, can be harmful as well as beneficial to many species. Moderate levels of UV-A (315-400nm) can enhance photosynthesis of green, brown and red algae, while UV-B (280-315nm) mainly show inhibitory impacts. Although little has been documented on the combined effects of elevated CO2, temperature or heatwaves with UV radiation, exposures to heatwaves during midday under high levels of UV radiation can be detrimental to most species, especially to their microscopic stages which are less tolerant of climate change induced stress. In parallel, reduced availability of dissolved O2 in coastal water along with eutrophication might favour the macroalgae's carboxylation process by suppressing their oxygenation or photorespiration. In this review, we analyse effects of climate change-relevant drivers individually and/or jointly on different macroalgal groups and different life cycle stages based on the literatures surveyed, and provide perspectives for future studies.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|