1
|
Garland KL, Hay EM, Field DJ, Evans AR. Common developmental origins of beak shapes and evolution in theropods. iScience 2025; 28:112246. [PMID: 40235591 PMCID: PMC11999624 DOI: 10.1016/j.isci.2025.112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Vertebrate beaks show a remarkable diversity of forms, epitomized by birds and non-avian theropods. Few studies have investigated how underlying developmental processes influence beak shape. The power cascade is a model of growth describing the log-log linear relationship of the beak radius with distance from the tip. We measured beak and toothed snout shapes in 127 species across 120 families of extant birds and extinct non-avian theropods and found that 95% followed the power cascade model. Ancestral state estimation suggests that the power cascade constitutes a fundamental growth pattern of the theropod rostrum, and perhaps all vertebrate rostra. The morphospace defined by the power cascade shows how bird beak shape explores the geometries associated with ecological specializations while adhering to the growth model. We show that the power cascade influences the macroevolutionary exploration of rostrum morphospace, enabling extant birds to inhabit all components of Earth's biosphere.
Collapse
Affiliation(s)
| | - Eleanor M. Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Daniel J. Field
- Department of Earth Sciences & Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Miller CV, Bright JA, Wang X, Zheng X, Pittman M. Synthetic analysis of trophic diversity and evolution in Enantiornithes with new insights from Bohaiornithidae. eLife 2024; 12:RP89871. [PMID: 38687200 PMCID: PMC11060716 DOI: 10.7554/elife.89871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.
Collapse
Affiliation(s)
| | - Jen A Bright
- School of Natural Sciences, University of HullHullUnited Kingdom
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi UniversityLinyiChina
- Shandong Tianyu Museum of NatureShandongChina
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi UniversityLinyiChina
- Shandong Tianyu Museum of NatureShandongChina
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Tse YT, Miller CV, Pittman M. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol Evol 2024; 24:39. [PMID: 38622512 PMCID: PMC11020771 DOI: 10.1186/s12862-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.
Collapse
Affiliation(s)
- Yuen Ting Tse
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Abstract
The field of comparative biomechanics examines how form, mechanical properties and environmental interactions shape the function of biological structures. Biomechanics has advanced by leaps and bounds as rapid technological progress opens up new research horizons. In this Review, I describe how our understanding of the avian bill, a morphologically diverse multifunctional appendage, has been transformed by employing a biomechanical perspective. Across functions from feeding to excavating hollows in trees and as a vocal apparatus, the study of the bill spans both solid and fluid biomechanics, rendering it useful to understand general principles across disciplines. The different shapes of the bill across bird species result in functional and mechanical trade-offs, thus representing a microcosm of many broader form-function questions. Using examples from diverse studies, I discuss how research into bird bills has been shaped over recent decades, and its influence on our understanding of avian ecology and evolution. Next, I examine how bill material properties and geometry influence performance in dietary and non-dietary contexts, simultaneously imposing trade-offs on other functions. Following an examination of the interactions of bills with fluids and their role as part of the vocal apparatus, I end with a discussion of the sensory biomechanics of the bill, focusing specifically on the bill-tip mechanosensory organ. With these case studies, I highlight how this burgeoning and consequential field represents a roadmap for our understanding of the function and evolution of biological structures.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Quantitative investigation of pengornithid enantiornithine diet reveals macrocarnivorous ecology evolved in birds by Early Cretaceous. iScience 2023; 26:106211. [PMID: 36923002 PMCID: PMC10009206 DOI: 10.1016/j.isci.2023.106211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The diet of Mesozoic birds is poorly known, limiting evolutionary understanding of birds' roles in modern ecosystems. Pengornithidae is one of the best understood families of Mesozoic birds, hypothesized to eat insects or only small amounts of meat. We investigate these hypotheses with four lines of evidence: estimated body mass, claw traditional morphometrics, jaw mechanical advantage, and jaw finite element analysis. Owing to limited data, the diets of Eopengornis and Chiappeavis remain obscure. Pengornis, Parapengornis, and Yuanchuavis show adaptations for vertebrate carnivory. Pengornis also has talons similar to living raptorial birds like caracaras that capture and kill large prey, which represents the earliest known adaptation for macrocarnivory in a bird. This supports the appearance of this ecology ∼35 million years earlier than previously thought. These findings greatly increase the niche breadth known for Early Cretaceous birds, and shift the prevailing view that Mesozoic birds mainly occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, the University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Jen A. Bright
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
6
|
Pittman M, Bell PR, Miller CV, Enriquez NJ, Wang X, Zheng X, Tsang LR, Tse YT, Landes M, Kaye TG. Exceptional preservation and foot structure reveal ecological transitions and lifestyles of early theropod flyers. Nat Commun 2022; 13:7684. [PMID: 36539437 PMCID: PMC9768147 DOI: 10.1038/s41467-022-35039-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Morphology of keratinised toe pads and foot scales, hinging of foot joints and claw shape and size all inform the grasping ability, cursoriality and feeding mode of living birds. Presented here is morphological evidence from the fossil feet of early theropod flyers. Foot soft tissues and joint articulations are qualitatively assessed using laser-stimulated fluorescence. Pedal claw shape and size are quantitatively analysed using traditional morphometrics. We interpret these foot data among existing evidence to better understand the evolutionary ecology of early theropod flyers. Jurassic flyers like Anchiornis and Archaeopteryx show adaptations suggestive of relatively ground-dwelling lifestyles. Early Cretaceous flyers then diversify into more aerial lifestyles, including generalists like Confuciusornis and specialists like the climbing Fortunguavis. Some early birds, like the Late Jurassic Berlin Archaeopteryx and Early Cretaceous Sapeornis, show complex ecologies seemingly unique among sampled modern birds. As a non-bird flyer, finding affinities of Microraptor to a more specialised raptorial lifestyle is unexpected. Its hawk-like characteristics are rare among known theropod flyers of the time suggesting that some non-bird flyers perform specialised roles filled by birds today. We demonstrate diverse ecological profiles among early theropod flyers, changing as flight developed, and some non-bird flyers have more complex ecological roles.
Collapse
Affiliation(s)
- Michael Pittman
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Phil R. Bell
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Case Vincent Miller
- grid.194645.b0000000121742757Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Nathan J. Enriquez
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia
| | - Xiaoli Wang
- grid.410747.10000 0004 1763 3680Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005 China ,Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300 China
| | - Xiaoting Zheng
- grid.410747.10000 0004 1763 3680Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005 China ,Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300 China
| | - Leah R. Tsang
- grid.1020.30000 0004 1936 7371School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia ,grid.438303.f0000 0004 0470 8815Ornithology Collection, Australian Museum, William Street, Sydney, NSW 2010 Australia
| | - Yuen Ting Tse
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Michael Landes
- grid.17063.330000 0001 2157 2938Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Thomas G. Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ 85650 USA
| |
Collapse
|
7
|
Marcé-Nogué J. One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review. PeerJ 2022; 10:e13890. [PMID: 35966920 PMCID: PMC9373974 DOI: 10.7717/peerj.13890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Finite element analysis (FEA) is no longer a new technique in the fields of palaeontology, anthropology, and evolutionary biology. It is nowadays a well-established technique within the virtual functional-morphology toolkit. However, almost all the works published in these fields have only applied the most basic FEA tools i.e., linear materials in static structural problems. Linear and static approximations are commonly used because they are computationally less expensive, and the error associated with these assumptions can be accepted. Nonetheless, nonlinearities are natural to be used in biomechanical models especially when modelling soft tissues, establish contacts between separated bones or the inclusion of buckling results. The aim of this review is to, firstly, highlight the usefulness of non-linearities and secondly, showcase these FEA tool to researchers that work in functional morphology and biomechanics, as non-linearities can improve their FEA models by widening the possible applications and topics that currently are not used in palaeontology and anthropology.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Mechanical Engineering, Universitat Rovira i Virgili Tarragona, Tarragona, Catalonia, Spain
- Institut Català de Paleontologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
8
|
Miller CV, Pittman M, Wang X, Zheng X, Bright JA. Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies. BMC Biol 2022; 20:101. [PMID: 35550084 PMCID: PMC9097364 DOI: 10.1186/s12915-022-01294-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birds are key indicator species in extant ecosystems, and thus we would expect extinct birds to provide insights into the nature of ancient ecosystems. However, many aspects of extinct bird ecology, particularly their diet, remain obscure. One group of particular interest is the bizarre toothed and long-snouted longipterygid birds. Longipterygidae is the most well-understood family of enantiornithine birds, the dominant birds of the Cretaceous period. However, as with most Mesozoic birds, their diet remains entirely speculative. RESULTS To improve our understanding of longipterygids, we investigated four proxies in extant birds to determine diagnostic traits for birds with a given diet: body mass, claw morphometrics, jaw mechanical advantage, and jaw strength via finite element analysis. Body mass of birds tended to correspond to the size of their main food source, with both carnivores and herbivores splitting into two subsets by mass: invertivores or vertivores for carnivores, and granivores + nectarivores or folivores + frugivores for herbivores. Using claw morphometrics, we successfully distinguished ground birds, non-raptorial perching birds, and raptorial birds from one another. We were unable to replicate past results isolating subtypes of raptorial behaviour. Mechanical advantage was able to distinguish herbivorous diets with particularly high values of functional indices, and so is useful for identifying these specific diets in fossil taxa, but overall did a poor job of reflecting diet. Finite element analysis effectively separated birds with hard and/or tough diets from those eating foods which are neither, though could not distinguish hard and tough diets from one another. We reconstructed each of these proxies in longipterygids as well, and after synthesising the four lines of evidence, we find all members of the family but Shengjingornis (whose diet remains inconclusive) most likely to be invertivores or generalist feeders, with raptorial behaviour likely in Longipteryx and Rapaxavis. CONCLUSIONS This study provides a 20% increase in quantitatively supported fossil bird diets, triples the number of diets reconstructed in enantiornithine species, and serves as an important first step in quantitatively investigating the origins of the trophic diversity of living birds. These findings are consistent with past hypotheses that Mesozoic birds occupied low trophic levels.
Collapse
Affiliation(s)
- Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Jen A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
9
|
Ma W, Pittman M, Butler RJ, Lautenschlager S. Macroevolutionary trends in theropod dinosaur feeding mechanics. Curr Biol 2021; 32:677-686.e3. [PMID: 34919807 DOI: 10.1016/j.cub.2021.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Theropod dinosaurs underwent some of the most remarkable dietary changes in vertebrate evolutionary history, shifting from ancestral carnivory1-3 to hypercarnivory4,5 and omnivory/herbivory,6-9 with some taxa eventually reverting to carnivory.10-12 The mandible is an important tool for food acquisition in vertebrates and reflects adaptations to feeding modes and diets.13,14 The morphofunctional modifications accompanying the dietary changes in theropod dinosaurs are not well understood because most of the previous studies focused solely on the cranium and/or were phylogenetically limited in scope,12,15-21 while studies that include multiple clades are usually based on linear measurements and/or discrete osteological characters.8,22 Given the potential relationship between macroevolutionary change and ontogenetic pattern,23 we explore whether functional morphological patterns observed in theropod mandibular evolution show similarities to the ontogenetic trajectory. Here, we use finite element analysis to study the mandibles of non-avialan coelurosaurian theropods and demonstrate how feeding mechanics vary between dietary groups and major clades. We reveal an overall reduction in feeding-induced stresses along all theropod lineages through time. This is facilitated by a post-dentary expansion and the development of a downturned dentary in herbivores and an upturned dentary in carnivores likely via the "curved bone effect." We also observed the same reduction in feeding-induced stress in an ontogenetic series of jaws of the tyrannosaurids Tarbosaurus and Tyrannosaurus, which is best attributed to bone functional adaptation. This suggests that this common tendency for structural strengthening of the theropod mandible through time, irrespective of diet, is linked to "functional peramorphosis" of bone functional adaptations acquired during ontogeny.
Collapse
Affiliation(s)
- Waisum Ma
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Barlow LA, Pittman M, Butcher A, Martill DM, Kaye TG. Laser-stimulated fluorescence reveals unseen details in fossils from the Upper Jurassic Solnhofen Limestones. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211601. [PMID: 34950496 PMCID: PMC8692964 DOI: 10.1098/rsos.211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Laser-stimulated fluorescence (LSF) has seen increased use in palaeontological investigations in recent years. The method uses the high flux of laser light of visible wavelengths to reveal details sometimes missed by traditional long-wave ultraviolet (UV) methods using a lamp. In this study, we compare the results of LSF with UV-A-generated fluorescence on a range of fossils from the Upper Jurassic Solnhofen Limestone Konservat-Lagerstätte of Bavaria, Germany. The methodology follows previous protocols of LSF with modifications made to enhance laser beam intensity, namely keeping the laser at a constant distance from the specimen, using a camera track. Our experiments show that along with making surface details more vivid than UV-A or revealing them for the first time, LSF has the additional value of revealing shallow subsurface specimen detail. Fossil decapods from the Solnhofen Limestone reveal full body outlines, even under the matrix, along with details of segmentation within the appendages such as limbs and antennae. The results indicate that LSF can be used on invertebrate fossils along with vertebrates and may often surpass the information provided by traditional UV methods.
Collapse
Affiliation(s)
- Luke A. Barlow
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Building, Portsmouth, UK
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anthony Butcher
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Building, Portsmouth, UK
| | - David M. Martill
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Building, Portsmouth, UK
| | - Thomas G. Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ 85650, USA
| |
Collapse
|
11
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
12
|
Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol 2021; 4:547. [PMID: 33986452 PMCID: PMC8119460 DOI: 10.1038/s42003-021-02067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| |
Collapse
|
13
|
Mayr G, Kaye TG, Pittman M, Saitta ET, Pott C. Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding. Sci Rep 2020; 10:19035. [PMID: 33149245 PMCID: PMC7643104 DOI: 10.1038/s41598-020-76078-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022] Open
Abstract
We address the identity of putative ovarian follicles in Early Cretaceous bird fossils from the Jehol Biota (China), whose identification has previously been challenged. For the first time, we present a link to the botanical fossil record, showing that the "follicles" of some enantiornithine fossils resemble plant propagules from the Jehol Biota, which belong to Carpolithes multiseminalis. The botanical affinities of this "form-taxon" are currently unresolved, but we note that C. multiseminalis propagules resemble propagules associated with cone-like organs described as Strobilites taxusoides, which in turn are possibly associated with sterile foliage allocated to Liaoningcladus. Laser-Stimulated Fluorescence imaging furthermore reveals different intensities of fluorescence of "follicles" associated with a skeleton of the confuciusornithid Eoconfuciusornis zhengi, with a non-fluorescent circular micro-pattern indicating carbonaceous (or originally carbonaceous) matter. This is inconsistent with the interpretation of these structures as ovarian follicles. We therefore reaffirm that the "follicles" represent ingested food items, and even though the exact nature of the Eoconfuciusornis stomach contents remains elusive, at least some enantiornithines ingested plant propagules.
Collapse
Affiliation(s)
- Gerald Mayr
- Ornithological Section, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Drive, Sierra Vista, Arizona, 85650, USA
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Division of Earth and Planetary Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Evan T Saitta
- Integrative Research Center, Life Sciences Section, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Christian Pott
- LWL-Museum of Natural History, Westphalian State Museum with Planetarium, Sentruper Straße 285, 48161, Münster, Germany
| |
Collapse
|