1
|
Grassi S, Vaiano F, Dimitrova A, Vullo C, Croce EB, Rossi R, Arena V, Strano Rossi S, Campuzano O, Brugada R, Oliva A. Fatal intoxications and inherited cardiac disorders in the young: where to draw the line? Int J Legal Med 2025; 139:1081-1091. [PMID: 39937272 PMCID: PMC12003541 DOI: 10.1007/s00414-025-03439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Sudden cardiac death represents a significant public health concern and is one of the leading causes of early mortality worldwide. The escalating use of illicit drugs, approximately 269 million people in 2018, represents a growing public health. Some of these drugs are stimulants that may have multiple effects on the cardiovascular system including the cardiac rhythm, then substance abuse increases the risk of sudden death. For instance, drugs like cocaine and methamphetamine, may be responsible for myocardial infarction as well as occlusive coronary thrombosis with acute infarction. The consequences of such occurrences are far-reaching, with considerable effects not only on the victims but also on their families. Sudden cardiac death presents considerable forensic diagnostic challenges, particularly in the presence of high but non-lethal drug levels increasing the possibility of a genetic predisposition to malignant arrhythmogenic events. Our review aims to discuss the complex relationship between illicit drugs and congenital cardiac disorders, stressing the forensic issues deriving from their interaction and from the differential diagnosis. Indeed, especially when a non-lethal dose of illicit drug in presence of ambiguous microscopic findings is reported, being able to discriminate between a toxic sudden death (entailing criminal implications for the drug dealer) and a natural sudden death is a forensic issue of upmost importance.
Collapse
Affiliation(s)
- Simone Grassi
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
- FT-LAB Forensic Toxicology Laboratory, Department of Health Science, University of Florence, Florence, Italy
| | - Fabio Vaiano
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
- FT-LAB Forensic Toxicology Laboratory, Department of Health Science, University of Florence, Florence, Italy
| | - Alexandra Dimitrova
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy.
- FT-LAB Forensic Toxicology Laboratory, Department of Health Science, University of Florence, Florence, Italy.
| | - Chiara Vullo
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
| | - Emma Beatrice Croce
- Forensic Medical Sciences, Department of Health Science, University of Florence, Florence, Italy
- FT-LAB Forensic Toxicology Laboratory, Department of Health Science, University of Florence, Florence, Italy
| | - Riccardo Rossi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sabina Strano Rossi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Institut d'Investigacions Biomèdiques de Girona (IDIBGI), University of Girona - Cardiovascular Genetics Center, University of Girona, Girona, Spain
| | - Ramon Brugada
- Medical Science Department, School of Medicine, Institut d'Investigacions Biomèdiques de Girona (IDIBGI), University of Girona - Cardiovascular Genetics Center, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Antonio Oliva
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Almaamari A, Sultan M, Zhang T, Qaed E, Wu S, Qiao R, Duan Y, Ding S, Liu G, Su S. Sigma-1 Receptor Specific Biological Functions, Protective Role, and Therapeutic Potential in Cardiovascular Diseases. Cardiovasc Toxicol 2025; 25:614-630. [PMID: 39937319 DOI: 10.1007/s12012-025-09975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for efficient and cost-effective treatments to decrease the risk of CVD. The sigma-1 receptor (S1R) plays a role in the development of cardiac hypertrophy, heart failure, ventricular remodeling, and various other cardiac diseases. Preclinical studies have shown that S1R activation has considerable beneficial effects on the cardiovascular system, and this knowledge might contribute to informing clinical trials associated with the prevention and treatment of CVDs. Therefore, the objective of this review was to investigate the mechanisms of S1R in CVD and how modulation of pathways contributes to cardiovascular protection to facilitate the development of new therapeutic agents targeting the cardiovascular system.
Collapse
Affiliation(s)
- Ahmed Almaamari
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Marwa Sultan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tao Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Eskandar Qaed
- Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shang Wu
- Breast Cancer Center, The Fourth Hospital, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Ruoqi Qiao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yuxin Duan
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Shanshan Ding
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Suwen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Ramli FF, Rejeki PS, Ibrahim N'I, Abdullayeva G, Halim S. A Mechanistic Review on Toxicity Effects of Methamphetamine. Int J Med Sci 2025; 22:482-507. [PMID: 39898237 PMCID: PMC11783064 DOI: 10.7150/ijms.99159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025] Open
Abstract
Persistent methamphetamine use causes many toxic effects in various organs, including the brain, heart, liver, kidney and eyes. The extent of its toxicity depends on numerous pharmacological factors, including route of administration, dose, genetic polymorphism related to drug metabolism and polysubstance abuse. Several molecular pathways have been proposed to activate oxidative stress, inflammation and apoptosis: B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl2/caspase-3, nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1), protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70S6K, trace amine-associated receptor 1 (TAAR1)/cAMP/lysyl oxidase, Sigmar1/ cAMP response element-binding protein (CREB)/mitochondrial fission-1 protein (Fis1), NADPH-Oxidase-2 (NOX-2), renal autophagy pathway, vascular endothelial growth factor (VEGF)/phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS), Nupr1/Chop/P53/PUMA/Beclin1 and Toll-like receptor (TLR)4/MyD88/TRAF6 pathways. The activation promotes pathological changes, including the disruption of the blood-brain barrier, myocardial infarction, cardiomyopathy, acute liver failure, acute kidney injury, chronic kidney disease, keratitis, retinopathy and vision loss. This review revisits the pharmacological profiles of methamphetamine and its effects on the brain, heart, liver, eyes, kidneys and endothelium. Understanding the mechanisms of methamphetamine toxicity is essential in developing treatment strategies to reverse or attenuate the progress of methamphetamine-associated organ damage.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Gulnar Abdullayeva
- Old Road Campus Research Building, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, 11 Izzat Nabiyev Str., AZ1073, Baku, Azerbaijan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, OX3 7TY, UK
| | - Shariff Halim
- Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang, Kampus Bertam, 13200 Pulau Pinang, Malaysia
| |
Collapse
|
4
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
5
|
Xu ZZ, Zhou J, Duan K, Li XT, Chang S, Huang W, Lu Q, Tao J, Xie WB. Blocking Sigmar1 exacerbates methamphetamine-induced hypertension. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167284. [PMID: 38851304 DOI: 10.1016/j.bbadis.2024.167284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIM Methamphetamine (METH) chronic exposure is an important risk factor for hypertension development. However, the mechanisms behind METH-induced hypertension remain unclear. Therefore, we aimed to reveal the potential mechanisms underlying METH-induced hypertension. METHODS AND RESULTS We structured the mouse hypertension model by METH, and observed that METH-treated mice have presented vascular remodeling (large-and small-size arteries) with collagen deposit around the vessel and increasing blood pressure (BP) and Sigma1 receptor (Sigmar1) in vascular tissue. We hypothesized that Sigmar1 is crucial in METH-induced hypertension and vascular remodeling. Sigmar1 knockout (KO) mice and antagonist (BD1047) pretreated mice exposed to METH for six-week showed higher BP and more collagen deposited around vessels than wild-type (WT) mice exposed to METH for six-week, in contrast, mice pretreated with Sigmar1 agonist (PRE-084) had unchanged BP and perivascular collagen despite the six-week METH exposure. Furthermore, we found that METH exposure induced vascular smooth muscle cells (VSMCs) and mesenchymal stem cells to differentiate into the myofibroblast-like cell and secrete collagen into surrounding vessels. Mechanically, Sigmar1 can suppress the COL1A1 expression by blocking the classical fibrotic TGF-β/Smad2/3 signaling pathway in METH-exposed VSMCs and mesenchymal stem cells. CONCLUSION Our results suggest that Sigmar1 is involved in METH-induced hypertension and vascular fibrosis by blocking the activation of the TGF-β/Smad2/3 signaling pathway. Accordingly, Sigmar1 may be a novel therapeutic target for METH-induced hypertension and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Blood Pressure/drug effects
- Collagen/metabolism
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/genetics
- Mesenchymal Stem Cells/metabolism
- Methamphetamine/adverse effects
- Methamphetamine/toxicity
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Receptors, sigma/metabolism
- Receptors, sigma/genetics
- Sigma-1 Receptor
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Ting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng Chang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wanshan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qiujun Lu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jing Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
6
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Gutierrez-Mercado YK, Ku-Centurion M, Gonzalez-Gonzalez RA, Portilla-de Buen E, Echavarria R. The Sigma-1 Receptor Exacerbates Cardiac Dysfunction Induced by Obstructive Nephropathy: A Role for Sexual Dimorphism. Biomedicines 2024; 12:1908. [PMID: 39200372 PMCID: PMC11351121 DOI: 10.3390/biomedicines12081908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
The Sigma-1 Receptor (Sigmar1) is a stress-activated chaperone and a promising target for pharmacological modulation due to its ability to induce multiple cellular responses. Yet, it is unknown how Sigmar1 is involved in cardiorenal syndrome type 4 (CRS4) in which renal damage results in cardiac dysfunction. This study explored the role of Sigmar1 and its ligands in a CRS4 model induced by unilateral ureteral obstruction (UUO) in male and female C57BL/6 mice. We evaluated renal and cardiac dysfunction markers, Sigmar1 expression, and cardiac remodeling through time (7, 12, and 21 days) and after chronically administering the Sigmar1 agonists PRE-084 (1 mg/kg/day) and SA4503 (1 mg/kg/day), and the antagonist haloperidol (2 mg/kg/day), for 21 days after UUO using colorimetric analysis, RT-qPCR, histology, immunohistochemistry, enzyme-linked immunosorbent assay, RNA-seq, and bioinformatics. We found that obstructive nephropathy induces Sigmar1 expression in the kidneys and heart, and that Sigmar1 stimulation with its agonists PRE-084 and SA4503 aggravates cardiac dysfunction and remodeling in both sexes. Still, their effects are significantly more potent in males. Our findings reveal essential differences associated with sex in the development of CRS4 and should be considered when contemplating Sigmar1 as a pharmacological target.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (F.J.M.-G.); (A.G.M.-D.)
| | - Yanet Karina Gutierrez-Mercado
- Departamento de Clinicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan 47620, Jalisco, Mexico;
| | - Marco Ku-Centurion
- Unidad de Biotecnologia Medica y Farmaceutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Ricardo Arturo Gonzalez-Gonzalez
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Eliseo Portilla-de Buen
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico; (R.A.G.-G.); (E.P.-d.B.)
| | - Raquel Echavarria
- Consejo Nacional de Humanidades, Ciencias y Tecnologias (CONAHCYT)—Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
8
|
Ali S, Al-Yafeai Z, Hossain MI, Bhuiyan MS, Duhan S, Aishwarya R, Goeders NE, Bhuiyan MMR, Conrad SA, Vanchiere JA, Orr AW, Kevil CG, Bhuiyan MAN. Trends in peripheral artery disease and critical limb ischemia hospitalizations among cocaine and methamphetamine users in the United States: a nationwide study. Front Cardiovasc Med 2024; 11:1412867. [PMID: 39022622 PMCID: PMC11251891 DOI: 10.3389/fcvm.2024.1412867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Background Peripheral artery disease (PAD) is on the rise worldwide, ranking as the third leading cause of atherosclerosis-related morbidity; much less is known about its trends in hospitalizations among methamphetamine and cocaine users. Objectives We aim to evaluate the overall trend in the prevalence of hospital admission for PAD with or without the use of stimulant abuse (methamphetamine and cocaine) across the United States. Additionally, we evaluated the PAD-related hospitalizations trend stratified by age, race, sex, and geographic location. Methods We used the National Inpatient Sample (NIS) database from 2008 to 2020. The Cochran Armitage trend test was used to compare the trend between groups. Multivariate logistic regression was used to examine adjusted odds for PAD and CLI hospitalizations among methamphetamine and cocaine users. Results Between 2008 and 2020, PAD-related hospitalizations showed an increasing trend in Hispanics, African Americans, and western states, while a decreasing trend in southern and Midwestern states (p-trend <0.05). Among methamphetamine users, an overall increasing trend was observed in men, women, western, southern, and midwestern states (p-trend <0.05). However, among cocaine users, PAD-related hospitalization increased significantly for White, African American, age group >64 years, southern and western states (p-trend <0.05). Overall, CLI-related hospitalizations showed an encouraging decreasing trend in men and women, age group >64 years, and CLI-related amputations declined for women, White patient population, age group >40, and all regions (p-trend <0.05). However, among methamphetamine users, a significantly increasing trend in CLI-related hospitalization was seen in men, women, White & Hispanic population, age group 26-45, western, southern, and midwestern regions. Conclusions There was an increasing trend in PAD-related hospitalizations among methamphetamine and cocaine users for both males and females. Although an overall decreasing trend in CLI-related hospitalization was observed for both genders, an up-trend in CLI was seen among methamphetamine users. The upward trends were more prominent for White, Hispanic & African Americans, and southern and western states, highlighting racial and geographic variations over the study period.
Collapse
Affiliation(s)
- Shafaqat Ali
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Zaki Al-Yafeai
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Md. Ismail Hossain
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Sanchit Duhan
- Department of Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nicholas E. Goeders
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Steven A. Conrad
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Pediatrics, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - John A. Vanchiere
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Pediatrics, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| |
Collapse
|
9
|
Al-Yafeai Z, Ali S, Brown J, Venkataraj M, Bhuiyan MS, Mosa Faisal AS, Densmore K, Goeders NE, Bailey SR, Conrad SA, Vanchiere JA, Orr AW, Kevil CG, Nobel Bhuiyan MA. Cardiomyopathy-Associated Hospital Admissions Among Methamphetamine Users: Geographical and Social Disparities. JACC. ADVANCES 2024; 3:100840. [PMID: 39130045 PMCID: PMC11312042 DOI: 10.1016/j.jacadv.2024.100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 08/13/2024]
Abstract
Background Methamphetamine is an emerging drug threat. The disparity in cardiomyopathy-associated hospital admissions among methamphetamine users (CAHMA) over the decade remains unknown. Objectives The purpose of this study was to determine the trends and prevalence of CAHMA by age, sex, race, and geographical region. Methods We used data from 2008 to 2020 from the National Inpatient Sample database. We identified 12,845,919 cardiomyopathy-associated hospital admissions; among them, 222,727 were diagnosed as methamphetamine users. A generalized linear model with binomial link function was used to compute the prevalence ratio and 95% CI. Those who used other substances along with methamphetamine were excluded from the analysis. Results CAHMA increased by 231% (P trend <0.001) from 2008 to 2020. CAHMA increased 345% for men (P trend <0.001) and 122% for women (P trend <0.001), 271% for non-Hispanic White (P trend <0.001), 254% for non-Hispanic Black (p trend <0.001), 565% for Hispanic (P trend <0.001), and 645% for non-Hispanic Asian (P trend <0.001) population. CAHMA also increased significantly in the West region (530%) (P trend <0.001) and South region (200%) (P trend <0.001) of the United States. Men, Hispanic population, age groups 26 to 40 and 41 to 64 years, and Western regions showed a significantly higher uptrend than their counterparts (P trend <0.001). Conclusions CAHMA have increased significantly in the United States. Men, Hispanics, non-Hispanic Asian, age groups 41 to 64. and western regions showed a higher proportional increase highlighting gender-based, racial/ethnic, and regional disparities over the study period.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Shafaqat Ali
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Jimmy Brown
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Maamannan Venkataraj
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Abu Saleh Mosa Faisal
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Kenneth Densmore
- Office of Research, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Nicholas E. Goeders
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Steven R. Bailey
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Steven A. Conrad
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - John A. Vanchiere
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Remex NS, Abdullah CS, Aishwarya R, Kolluru GK, Traylor J, Bhuiyan MAN, Kevil CG, Orr AW, Rom O, Pattillo CB, Bhuiyan MS. Deletion of Sigmar1 leads to increased arterial stiffness and altered mitochondrial respiration resulting in vascular dysfunction. Front Physiol 2024; 15:1386296. [PMID: 38742156 PMCID: PMC11089145 DOI: 10.3389/fphys.2024.1386296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Sigmar1 is a ubiquitously expressed, multifunctional protein known for its cardioprotective roles in cardiovascular diseases. While accumulating evidence indicate a critical role of Sigmar1 in cardiac biology, its physiological function in the vasculature remains unknown. In this study, we characterized the expression of Sigmar1 in the vascular wall and assessed its physiological function in the vascular system using global Sigmar1 knockout (Sigmar1-/-) mice. We determined the expression of Sigmar1 in the vascular tissue using immunostaining and biochemical experiments in both human and mouse blood vessels. Deletion of Sigmar1 globally in mice (Sigmar1-/-) led to blood vessel wall reorganizations characterized by nuclei disarray of vascular smooth muscle cells, altered organizations of elastic lamina, and higher collagen fibers deposition in and around the arteries compared to wildtype littermate controls (Wt). Vascular function was assessed in mice using non-invasive time-transit method of aortic stiffness measurement and flow-mediated dilation (FMD) of the left femoral artery. Sigmar1-/- mice showed a notable increase in arterial stiffness in the abdominal aorta and failed to increase the vessel diameter in response to reactive-hyperemia compared to Wt. This was consistent with reduced plasma and tissue nitric-oxide bioavailability (NOx) and decreased phosphorylation of endothelial nitric oxide synthase (eNOS) in the aorta of Sigmar1-/- mice. Ultrastructural analysis by transmission electron microscopy (TEM) of aorta sections showed accumulation of elongated shaped mitochondria in both vascular smooth muscle and endothelial cells of Sigmar1-/- mice. In accordance, decreased mitochondrial respirometry parameters were found in ex-vivo aortic rings from Sigmar1 deficient mice compared to Wt controls. These data indicate a potential role of Sigmar1 in maintaining vascular homeostasis.
Collapse
Affiliation(s)
- Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - Gopi K. Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Christopher G. Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - A. Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| | - Christopher B. Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health, Shreveport, LA, United States
| |
Collapse
|
11
|
Zhang J, Nguyen AH, Jilani D, Trigo Torres RS, Schmiess-Heine L, Le T, Xia X, Cao H. Consecutive treatments of methamphetamine promote the development of cardiac pathological symptoms in zebrafish. PLoS One 2023; 18:e0294322. [PMID: 37976248 PMCID: PMC10655962 DOI: 10.1371/journal.pone.0294322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic methamphetamine use, a widespread drug epidemic, has been associated with cardiac morphological and electrical remodeling, leading to the development of numerous cardiovascular diseases. While methamphetamine has been documented to induce arrhythmia, most results originate from clinical trials from users who experienced different durations of methamphetamine abuse, providing no documentation on the use of methamphetamine in standardized settings. Additionally, the underlying molecular mechanism on how methamphetamine affects the cardiovascular system remains elusive. A relationship was sought between cardiotoxicity and arrhythmia with associated methamphetamine abuse in zebrafish to identify and to understand the adverse cardiac symptoms associated with methamphetamine. Zebrafish were first treated with methamphetamine 3 times a week over a 2-week duration. Immediately after treatment, zebrafish underwent electrocardiogram (ECG) measurement using an in-house developed acquisition system for electrophysiological analysis. Subsequent analyses of cAMP expression and Ca2+ regulation in zebrafish cardiomyocytes were conducted. cAMP is vital to development of myocardial fibrosis and arrhythmia, prominent symptoms in the development of cardiovascular diseases. Ca2+ dysregulation is also a factor in inducing arrhythmias. During the first week of treatment, zebrafish that were administered with methamphetamine displayed a decrease in heart rate, which persisted throughout the second week and remained significantly lower than the heart rate of untreated fish. Results also indicate an increased heart rate variability during the early stage of treatment followed by a decrease in the late stage for methamphetamine-treated fish over the duration of the experiment, suggesting a biphasic response to methamphetamine exposure. Methamphetamine-treated fish also exhibited reduced QTc intervals throughout the experiment. Results from the cAMP and Ca2+ assays demonstrate that cAMP was upregulated and Ca2+ was dysregulated in response to methamphetamine treatment. Collagenic assays indicated significant fibrotic response to methamphetamine treatment. These results provide potential insight into the role of methamphetamine in the development of fibrosis and arrhythmia due to downstream effectors of cAMP.
Collapse
Affiliation(s)
- Jimmy Zhang
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Anh H. Nguyen
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| | - Daniel Jilani
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | | | - Lauren Schmiess-Heine
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Tai Le
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Xing Xia
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
| | - Hung Cao
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
- Department of Electrical Engineering and Computer Science, University of California-Irvine, Irvine, CA, United States of America
- Sensoriis, Inc., Edmonds, WA, United States of America
| |
Collapse
|
12
|
Xing DG, Horan T, Bhuiyan MS, Faisal ASM, Densmore K, Murnane KS, Goeders NE, Bailey SR, Conrad SA, Vanchiere JA, Patterson JC, Kevil CG, Bhuiyan MAN. Social-geographic disparities in suicidal ideations among methamphetamine users in the USA. Psychiatry Res 2023; 329:115524. [PMID: 37852161 PMCID: PMC10841467 DOI: 10.1016/j.psychres.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
IMPORTANCE Methamphetamine use is a growing public health concern nationwide. Suicide is the second leading cause of death in 2019 for US citizens aged 10-14 years and 25-34 years and is also a significant public health concern. Understanding the intersection of methamphetamine use and suicidal ideation (SI) is necessary to develop public health and policy solutions that mitigate these ongoing severe public health issues. OBJECTIVE Our objective was to examine SI in methamphetamine users to allow us to determine prevalence and trends by age, sex, race, and geographical region. DESIGN, SETTINGS, AND PARTICIPANTS Using data collected between 2008 and 2019 from the National Inpatient Sample (NIS) database, we identified hospital admissions (HA) of patients ≥18 years of age with a primary or secondary diagnosis of SI who were also diagnosed as methamphetamine users. Those who used other substances with methamphetamine were excluded from the analysis. MAIN OUTCOME AND MEASURES To determine the trend and prevalence of hospital admissions due to SI and SI among methamphetamine users, we used trend weights to calculate the national estimates and performed design-based analysis to account for complex survey design and sampling weights on data collected between 2008 and 2019 in the US. RESULTS The prevalence ratio (PR) of hospitalizations with concurrent SI and methamphetamine use increased 16-fold from 2008 to 2019. The most significant increase occurred between 2015 and 2016; the PR doubled from 6.07 to 12.14. The PR of hospitalizations with concurrent SI and methamphetamine use was highest in patients aged 26-40 (49.08%) and 41-64 (28.49%). Patients aged 41-64 showed the most significant increase from 2008 to 2019 (15.8-fold). While non-Hispanic White patients comprised most of these hospitalizations (77.02%), non-Hispanic Black patients showed the highest proportional increase (39.1-fold). The Southern and Western regions in the US showed the highest PR for these hospitalizations (34.86% and 34.31%, respectively). CONCLUSION AND RELEVANCE Our findings indicate that SI in methamphetamine users has been increasing for some time and is likely to grow. In addition, our results suggest that these patients are demographically different. Both conditions are associated with a lesser likelihood of seeking and receiving care. Therefore, when addressing increased SI or methamphetamine use, learning more about patients who share both conditions is necessary to ensure proper care.
Collapse
Affiliation(s)
- Diensn G Xing
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Teresa Horan
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Abu Saleh Mosa Faisal
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Kenneth Densmore
- Office of Research, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Kevin S Murnane
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Steven R Bailey
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Steven A Conrad
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Pediatrics, LSU Health Sciences Center Shreveport, Shreveport, LA, United States
| | - John A Vanchiere
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Pediatrics, LSU Health Sciences Center Shreveport, Shreveport, LA, United States
| | - James C Patterson
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Christopher G Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, United States; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
13
|
Liu Y, Chen Q, Yang JZ, Li XW, Chen LJ, Zhang KK, Liu JL, Li JH, Hsu C, Chen L, Zeng JH, Wang Q, Zhao D, Xu JT. Multi-Omics Analysis Reveals the Role of Sigma-1 Receptor in a Takotsubo-like Cardiomyopathy Model. Biomedicines 2023; 11:2766. [PMID: 37893138 PMCID: PMC10604683 DOI: 10.3390/biomedicines11102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy that presents with sudden onset of chest pain and dyspneic and cardiac dysfunction as a result of extreme physical or emotional stress. The sigma-1 receptor (Sigmar1) is a ligand-dependent molecular chaperone that is postulated to be involved in various processes related to cardiovascular disease. However, the role of Sigmar1 in TTS remains unresolved. In this study, we established a mouse model of TTS using wild-type and Sigmar1 knockout mice to investigate the involvement of Sigmar1 in TTS development. Our results revealed that Sigmar1 knockout exacerbated cardiac dysfunction, with a noticeable decrease in ejection fraction (EF) and fractional shortening (FS) compared to the wild-type model. In terms of the gut microbiome, we observed regulation of Firmicutes and Bacteroidetes ratios; suppression of probiotic Lactobacillus growth; and a rise in pathogenic bacterial species, such as Colidextribacter. Metabolomic and transcriptomic analyses further suggested that Sigmar1 plays a role in regulating tryptophan metabolism and several signaling pathways, including MAPK, HIF-1, calcium signaling, and apoptosis pathways, which may be crucial in TTS pathogenesis. These findings offer valuable insight into the function of Sigmar1 in TTS, and this receptor may represent a promising therapeutic target for TTS.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qing Chen
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
- Beijing Municipal Public Security Judicial Appraisal Center, Beijing 100142, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing 100088, China
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China (Q.W.)
| |
Collapse
|
14
|
Shabani M, Jamali Z, Bayrami D, Salimi A. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC Pharmacol Toxicol 2023; 24:33. [PMID: 37208773 DOI: 10.1186/s40360-023-00676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Methamphetamine is widely abused in all parts of the world. It has been reported that short-term and long-term methamphetamine exposure could damage the dopaminergic system and induce cardiomyopathy and cardiotoxicity via mitochondrial dysfunction and oxidative stress. Vanillic acid (VA), a phenolic acid compound derived from plants, is known for its antioxidant and mitochondrial protection properties. METHODS In the current study we used VA for attenuating of Methamphetamine-induced mitochondrial toxicity in cardiac mitochondria. Isolated mitochondria obtained from rat heart were grouped as: control, methamphetamine (250 µM), VA (10, 50 and 100 µM) was cotreated with methamphetamine (250 µM) and VA (100 µM) alone. After 60 min, mitochondrial fraction including: succinate dehydrogenases (SDH) activity, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation (LPO) were evaluated. RESULTS Methamphetamine exposure significantly disrupted mitochondrial function and induced ROS formation, lipid peroxidation, GSH depletion, MMP collapse and mitochondrial swelling, while VA significantly increased SDH activity as indicator of mitochondrial toxicity and dysfunction. VA also significantly decreased ROS formation, lipid peroxidation, mitochondrial swelling, MMP collapse and depletion of GSH in cardiac mitochondria in the presence of methamphetamine. CONCLUSION These findings suggested that VA is able to reduce methamphetamine-induced mitochondrial dysfunction and oxidative stress. Our results demonstrate that VA could potentially serve as a promising and accessible cardioprotective agent against methamphetamine-induced cardiotoxicity, via antioxidant and mitochondrial protection properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
15
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
16
|
Remex NS, Abdullah CS, Aishwarya R, Nitu SS, Traylor J, Hartman B, King J, Bhuiyan MAN, Kevil CG, Orr AW, Bhuiyan MS. Sigmar1 ablation leads to lung pathological changes associated with pulmonary fibrosis, inflammation, and altered surfactant proteins levels. Front Physiol 2023; 14:1118770. [PMID: 37051024 PMCID: PMC10083329 DOI: 10.3389/fphys.2023.1118770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Sigma1 receptor protein (Sigmar1) is a small, multifunctional molecular chaperone protein ubiquitously expressed in almost all body tissues. This protein has previously shown its cardioprotective roles in rodent models of cardiac hypertrophy, heart failure, and ischemia-reperfusion injury. Extensive literature also suggested its protective functions in several central nervous system disorders. Sigmar1's molecular functions in the pulmonary system remained unknown. Therefore, we aimed to determine the expression of Sigmar1 in the lungs. We also examined whether Sigmar1 ablation results in histological, ultrastructural, and biochemical changes associated with lung pathology over aging in mice. In the current study, we first confirmed the presence of Sigmar1 protein in human and mouse lungs using immunohistochemistry and immunostaining. We used the Sigmar1 global knockout mouse (Sigmar1-/-) to determine the pathophysiological role of Sigmar1 in lungs over aging. The histological staining of lung sections showed altered alveolar structures, higher immune cells infiltration, and upregulation of inflammatory markers (such as pNFκB) in Sigmar1-/- mice compared to wildtype (Wt) littermate control mice (Wt). This indicates higher pulmonary inflammation resulting from Sigmar1 deficiency in mice, which was associated with increased pulmonary fibrosis. The protein levels of some fibrotic markers, fibronectin, and pSMAD2 Ser 245/250/255 and Ser 465/467, were also elevated in mice lungs in the absence of Sigmar1 compared to Wt. The ultrastructural analysis of lungs in Wt mice showed numerous multilamellar bodies of different sizes with densely packed lipid lamellae and mitochondria with a dark matrix and dense cristae. In contrast, the Sigmar1-/- mice lung tissues showed altered multilamellar body structures in alveolar epithelial type-II pneumocytes with partial loss of lipid lamellae structures in the lamellar bodies. This was further associated with higher protein levels of all four surfactant proteins, SFTP-A, SFTP-B, SFTP-C, and SFTP-D, in the Sigmar1-/- mice lungs. This is the first study showing Sigmar1's expression pattern in human and mouse lungs and its association with lung pathophysiology. Our findings suggest that Sigmar1 deficiency leads to increased pulmonary inflammation, higher pulmonary fibrosis, alterations of the multilamellar body stuructures, and elevated levels of lung surfactant proteins.
Collapse
Affiliation(s)
- Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Sadia S. Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Christopher G. Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - A. Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
17
|
Sharma S, Sharma P, Subedi U, Bhattarai S, Miller C, Manikandan S, Batinic-Haberle I, Spasojevic I, Sun H, Panchatcharam M, Miriyala S. Mn(III) Porphyrin, MnTnBuOE-2-PyP 5+, Commonly Known as a Mimic of Superoxide Dismutase Enzyme, Protects Cardiomyocytes from Hypoxia/Reoxygenation Induced Injury via Reducing Oxidative Stress. Int J Mol Sci 2023; 24:6159. [PMID: 37047131 PMCID: PMC10094288 DOI: 10.3390/ijms24076159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (I/R) causes damage to cardiomyocytes through oxidative stress and apoptosis. We investigated the cardioprotective effects of MnTnBuOE-2-PyP5+ (BMX-001), a superoxide dismutase mimic, in an in vitro model of I/R injury in H9c2 cardiomyocytes. We found that BMX-001 protected against hypoxia/reoxygenation (H/R)-induced oxidative stress, as evident by a significant reduction in intracellular and mitochondrial superoxide levels. BMX-001 pre-treatment also reduced H/R-induced cardiomyocyte apoptosis, as marked by a reduction in TUNEL-positive cells. We further demonstrated that BMX-001 pre-treatment significantly improved mitochondrial function, particularly O2 consumption, in mouse adult cardiomyocytes subjected to H/R. BMX-001 treatment also attenuated cardiolipin peroxidation, 4-hydroxynonenal (4-HNE) level, and 4-HNE adducted proteins following H/R injury. Finally, the pre-treatment with BMX-001 improved cell viability and lactate dehydrogenase (LDH) activity in H9c2 cells following H/R injury. Our findings suggest that BMX-001 has therapeutic potential as a cardioprotective agent against oxidative stress-induced H/R damage in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Shrivats Manikandan
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
18
|
Zhao X, Lu J, Zhang C, Chen C, Zhang M, Zhang J, Du Q, Wang H. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence. Toxicol Appl Pharmacol 2023; 466:116457. [PMID: 36914120 DOI: 10.1016/j.taap.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui Zhang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Aishwarya R, Abdullah CS, Remex NS, Nitu S, Hartman B, King J, Bhuiyan MAN, Rom O, Miriyala S, Panchatcharam M, Orr AW, Kevil CG, Bhuiyan MS. Pathological Sequelae Associated with Skeletal Muscle Atrophy and Histopathology in G93A*SOD1 Mice. MUSCLES (BASEL, SWITZERLAND) 2023; 2:51-74. [PMID: 38516553 PMCID: PMC10956373 DOI: 10.3390/muscles2010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | | | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
20
|
Transcranial Stimulation for the Treatment of Stimulant Use Disorder. Neurol Int 2023; 15:325-338. [PMID: 36976664 PMCID: PMC10051697 DOI: 10.3390/neurolint15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The increasing prevalence of stimulant use disorder (StUD) involving methamphetamine and cocaine has been a growing healthcare concern in the United States. Cocaine usage is associated with atherosclerosis, systolic and diastolic dysfunction, and arrhythmias. Furthermore, approximately one of every four MIs is cocaine-induced among patients aged 18 to 45. Methamphetamine use has been associated with nerve terminal damage in the dopaminergic system resulting in impaired motor function, cognitive decline, and co-morbid psychiatric disorders. Current treatment options for StUD are extremely limited, and there are currently no FDA-approved pharmacotherapies. Behavioral interventions are considered first-line treatment; however, in a recent meta-analysis comparing behavioral treatment options for cocaine, contingency management programs provided the only significant reduction in use. Current evidence points to the potential of various neuromodulation techniques as the next best modality in treating StUD. The most promising evidence thus far has been transcranial magnetic stimulation which several studies have shown to reduce risk factors associated with relapse. Another more invasive neuromodulation technique being studied is deep-brain stimulation, which has shown promising results in its ability to modulate reward circuits to treat addiction. Results showing the impact of transcranial magnetic stimulation (TMS) in the treatment of StUD are limited by the lack of studies conducted and the limited understanding of the neurological involvement driving addiction-based diseases such as StUD. Future studies should seek to provide data on consumption-reducing effects rather than craving evaluations.
Collapse
|
21
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Cardenas-Sosa MA, Echavarria R. Sigma-1 Receptor Signaling: In Search of New Therapeutic Alternatives for Cardiovascular and Renal Diseases. Int J Mol Sci 2023; 24:ijms24031997. [PMID: 36768323 PMCID: PMC9916216 DOI: 10.3390/ijms24031997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Miguel Alejandro Cardenas-Sosa
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONACYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
22
|
Abdullah CS, Remex NS, Aishwarya R, Nitu S, Kolluru GK, Traylor J, Hartman B, King J, Bhuiyan MAN, Hall N, Murnane KS, Goeders NE, Kevil CG, Orr AW, Bhuiyan MS. Mitochondrial dysfunction and autophagy activation are associated with cardiomyopathy developed by extended methamphetamine self-administration in rats. Redox Biol 2022; 58:102523. [PMID: 36335762 PMCID: PMC9641018 DOI: 10.1016/j.redox.2022.102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The recent rise in illicit use of methamphetamine (METH), a highly addictive psychostimulant, is a huge health care burden due to its central and peripheral toxic effects. Mounting clinical studies have noted that METH use in humans is associated with the development of cardiomyopathy; however, preclinical studies and animal models to dissect detailed molecular mechanisms of METH-associated cardiomyopathy development are scarce. The present study utilized a unique very long-access binge and crash procedure of METH self-administration to characterize the sequelae of pathological alterations that occur with METH-associated cardiomyopathy. Rats were allowed to intravenously self-administer METH for 96 h continuous weekly sessions over 8 weeks. Cardiac function, histochemistry, ultrastructure, and biochemical experiments were performed 24 h after the cessation of drug administration. Voluntary METH self-administration induced pathological cardiac remodeling as indicated by cardiomyocyte hypertrophy, myocyte disarray, interstitial and perivascular fibrosis accompanied by compromised cardiac systolic function. Ultrastructural examination and native gel electrophoresis revealed altered mitochondrial morphology and reduced mitochondrial oxidative phosphorylation (OXPHOS) supercomplexes (SCs) stability and assembly in METH exposed hearts. Redox-sensitive assays revealed significantly attenuated mitochondrial respiratory complex activities with a compensatory increase in pyruvate dehydrogenase (PDH) activity reminiscent of metabolic remodeling. Increased autophagy flux and increased mitochondrial antioxidant protein level was observed in METH exposed heart. Treatment with mitoTEMPO reduced the autophagy level indicating the involvement of mitochondrial dysfunction in the adaptive activation of autophagy in METH exposed hearts. Altogether, we have reported a novel METH-associated cardiomyopathy model using voluntary drug seeking behavior. Our studies indicated that METH self-administration profoundly affects mitochondrial ultrastructure, OXPHOS SCs assembly and redox activity accompanied by increased PDH activity that may underlie observed cardiac dysfunction.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicole Hall
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kevin Sean Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Psychiatry, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
23
|
Kolluru GK, Glawe JD, Pardue S, Kasabali A, Alam S, Rajendran S, Cannon AL, Abdullah CS, Traylor JG, Shackelford RE, Woolard MD, Orr AW, Goeders NE, Dominic P, Bhuiyan MSS, Kevil CG. Methamphetamine causes cardiovascular dysfunction via cystathionine gamma lyase and hydrogen sulfide depletion. Redox Biol 2022; 57:102480. [PMID: 36167027 PMCID: PMC9513700 DOI: 10.1016/j.redox.2022.102480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - John D Glawe
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Ahmad Kasabali
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Shafiul Alam
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Allison L Cannon
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - James G Traylor
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Matthew D Woolard
- Department of Microbiology and Immunology, LSU Health Sciences Center- Shreveport, USA
| | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center- Shreveport, USA
| | - Paari Dominic
- Division of Cardiology Department of Medicine, LSU Health Sciences Center- Shreveport, USA
| | | | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA.
| |
Collapse
|
24
|
Zhang C, Chen C, Zhao X, Lu J, Zhang M, Qiu H, Yue X, Wang H. New insight into methamphetamine-associated heart failure revealed by transcriptomic analyses: Circadian rhythm disorder. Toxicol Appl Pharmacol 2022; 451:116172. [PMID: 35863504 DOI: 10.1016/j.taap.2022.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.
Collapse
Affiliation(s)
- Cui Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xu Zhao
- The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hai Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China..
| |
Collapse
|
25
|
Tobolski J, Sawyer DB, Song SJ, Afari ME. Cardiovascular disease associated with methamphetamine use: a review. Heart Fail Rev 2022; 27:2059-2065. [PMID: 35844009 DOI: 10.1007/s10741-022-10261-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Methamphetamine abuse is a global epidemic associated with a wide-ranging array of adverse effects on the cardiovascular system including dilated cardiomyopathy, malignant and benign arrhythmias, coronary vasospasm, and atherosclerotic coronary artery disease. While the acute behavioral manifestations of amphetamine abuse are the most easily clinically identified, cardiovascular toxicity is common in this patient population and should be considered in this setting due to its high morbidity and mortality. The specific mechanisms for amphetamine cardiotoxicity have not been fully established, but new research implicates activation of several cellular targets including Sigma-1 receptors and trace amine-associated receptor 1 (TAAR1) leading to a myriad of negative downstream effects including increased reactive oxygenating species (ROS), mitochondrial dysfunction, and modulations of intracellular calcium. Additional pathologic effects are mediated by increased circulating catecholamines, which when chronically activated have well-established adverse effects on the cardiovascular system. In this article, we present a case report followed by a current review of the epidemiology, pathophysiology, diagnosis, and treatment modalities of amphetamine-induced cardiovascular disease.
Collapse
Affiliation(s)
- Jared Tobolski
- Cardiac Service Line, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Douglas B Sawyer
- Cardiac Service Line, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA
| | - Sharon J Song
- Spectrum Healthcare Partners, South Portland, ME, 04106, USA
| | - Maxwell Eyram Afari
- Cardiac Service Line, Maine Medical Center, 22 Bramhall Street, Portland, ME, 04102, USA.
| |
Collapse
|
26
|
He S, Yao Y, Yang N, Wang Y, Liu D, Cao Z, Chen H, Fu Y, Yang M, Wang S, He G, Zhao Q. Dapagliflozin Protects Methamphetamine-Induced Cardiomyopathy by Alleviating Mitochondrial Damage and Reducing Cardiac Function Decline in a Mouse Model. Front Pharmacol 2022; 13:925276. [PMID: 35873593 PMCID: PMC9301370 DOI: 10.3389/fphar.2022.925276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Methamphetamine (METH)-induced cardiovascular toxicity has been attributed to its destructive effect on mitochondrial function at least to some extent. Previous studies highlighted the benefits of dapagliflozin (DAPA) on the cardiovascular system, but the response of METH-induced cardiomyopathy to DAPA is never addressed before. The present study aimed to investigate the potential ability of DAPA in preventing METH-induced cardiomyopathy.Materials and Methods: C57BL/6 mice were randomly divided into control group (n = 24), METH group (n = 24), and METH + DAPA group (n = 24). The METH-induced cardiomyopathy group received intraperitoneal METH injections at gradually increasing doses thrice weekly for 14 weeks. Mice in the METH + DAPA group were simultaneously treated with DAPA 1 mg/kg/day by intragastric administration. Echocardiography was performed to assess cardiac function. Reactive oxygen species (ROS), JC-1, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays were performed to evaluate oxidative stress, mitochondrial damage, and apoptosis, respectively. Mitochondrial and apoptosis-related protein expression was measured by western blotting.Results: Mice exposed to METH exhibited reduced cardiac function (left ventricular ejection fraction [LVEF]: 56.51 ± 6.49 vs. 73.62 ± 1.42, p < 0.01), fibrotic remodeling, and mitochondrial dysfunction, leading to apoptosis (apoptotic cells%: 7.4 ± 1.3 vs. 1.3 ± 0.5, p < 0.01). DAPA significantly reduced mitochondrial dynamics and function, ROS, apoptosis (apoptotic cells%: 2.4 ± 0.8 vs. 7.4 ± 1.3, p < 0.01), cardiac function decline (LVEF: 70.99 ± 4.936 vs. 56.51 ± 6.49, p < 0.01), and fibrotic remodeling. These results indicated that DAPA could be considered as an effective therapeutic agent in the protection against METH-associated cardiomyopathy.Conclusion: DAPA protects against METH-induced cardiomyopathy in mice by decreasing mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Nan Yang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guangjie He
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Qingyan Zhao,
| |
Collapse
|
27
|
Effect of High-Intensity Interval Training on Cardiac Apoptosis Markers in Methamphetamine-Dependent Rats. Curr Issues Mol Biol 2022; 44:3030-3038. [PMID: 35877433 PMCID: PMC9315973 DOI: 10.3390/cimb44070209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers.
Collapse
|
28
|
Thoi F, Scherer DJ, Kaye DM, Sanders P, Stokes MB. Methamphetamine-Associated Cardiomyopathy: Addressing the Clinical Challenges. Heart Lung Circ 2022; 31:616-622. [PMID: 35153149 DOI: 10.1016/j.hlc.2021.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 01/05/2023]
Abstract
The growth in methamphetamine usage worldwide continues to present increasing societal and health care challenges. With the escalation of its usage in a variety of social demographics, the entity of methamphetamine-associated cardiomyopathy (MA-CMP) has emerged. This entity is increasingly responsible for an important proportion of heart failure burden in both admissions to hospital and in those individuals requiring chronic heart failure care. MA-CMP poses some unique challenges including its recognition, particularly in younger patients presenting with new-onset heart failure, its severity at presentation and complications as well as management options. The challenging nature of methamphetamine addiction and the necessity to achieve abstinence is a fundamental aspect of management of this condition. As methamphetamine use continues at high levels in Australia, the burden of MA-CMP will inevitably increase and, therefore, all clinicians responsible for heart failure management require an awareness of this disease entity and the specific clinical challenges of its care.
Collapse
Affiliation(s)
- Fiona Thoi
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Scherer
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA, Australia; Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - David M Kaye
- Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, SA, Australia; Department of Clinical Research, The Baker Heart and Diabetes Institute; Department of Cardiology, The Alfred Hospital; Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Prashanthan Sanders
- School of Medicine, University of Adelaide, Adelaide, SA, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA, Australia; Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, SA, Australia. https://twitter.com/PrashSanders
| | - Michael B Stokes
- School of Medicine, University of Adelaide, Adelaide, SA, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA, Australia; Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
29
|
Abdullah CS, Aishwarya R, Morshed M, Remex NS, Miriyala S, Panchatcharam M, Bhuiyan MS. Monitoring Mitochondrial Morphology and Respiration in Doxorubicin-Induced Cardiomyopathy. Methods Mol Biol 2022; 2497:207-220. [PMID: 35771444 PMCID: PMC11118012 DOI: 10.1007/978-1-0716-2309-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy constitutes dose-dependent cardiac toxicity, culminating in fatal heart failure progression. Cardiac toxicity limits effective and subsequent use of DOX in chemotherapy regimens in pediatric, adult, and recurrent cancer patients. DOX-induced profound alterations in mitochondrial morphology, dynamics, and defects in mitochondrial energy metabolism in the heart comprise key stressors in DOX-induced cardiotoxicity. Hence, the discovery of novel molecular targets and therapeutics to mitigate DOX-induced mitochondrial dysfunctions are imperative. Herein, we provided two laboratory protocols to monitor DOX-induced alterations in mitochondrial morphology and respiration in isolated primary neonatal rat cardiomyocytes. Neonatal rat cardiomyocytes are extensively used to monitor signaling mechanisms regulating cardiomyopathy in vitro. Therefore, these protocols will help researchers study the effects of novel pharmacological and genetic manipulations against DOX-induced alterations in mitochondrial morphology and energy metabolism in cardiomyocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
30
|
Abdullah CS, Aishwarya R, Alam S, Remex NS, Morshed M, Nitu S, Miriyala S, Panchatcharam M, Hartman B, King J, Alfrad Nobel Bhuiyan M, Traylor J, Kevil CG, Orr AW, Bhuiyan MS. The molecular role of Sigmar1 in regulating mitochondrial function through mitochondrial localization in cardiomyocytes. Mitochondrion 2022; 62:159-175. [PMID: 34902622 PMCID: PMC8790786 DOI: 10.1016/j.mito.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Sigmar1 is a widely expressed molecular chaperone protein in mammalian cell systems. Accumulating research demonstrated the cardioprotective roles of pharmacologic Sigmar1 activation by ligands in preclinical rodent models of cardiac injury. Extensive biochemical and immuno-electron microscopic research demonstrated Sigmar1's sub-cellular localization largely depends on cell and organ types. Despite comprehensive studies, Sigmar1's direct molecular role in cardiomyocytes remains elusive. In the present study, we determined Sigmar1's subcellular localization, transmembrane topology, and function using complementary microscopy, biochemical, and functional assays in cardiomyocytes. Quantum dots in transmission electron microscopy showed Sigmar1 labeled quantum dots on the mitochondrial membranes, lysosomes, and sarcoplasmic reticulum-mitochondrial interface. Subcellular fractionation of heart cell lysates confirmed Sigmar1's localization in purified mitochondria fraction and lysosome fraction. Immunocytochemistry confirmed Sigmar1 colocalization with mitochondrial proteins in isolated adult mouse cardiomyocytes. Sigmar1's mitochondrial localization was further confirmed by Sigmar1 colocalization with Mito-Tracker in isolated mouse heart mitochondria. A series of biochemical experiments, including alkaline extraction and proteinase K treatment of purified heart mitochondria, demonstrated Sigmar1 as an integral mitochondrial membrane protein. Sigmar1's structural requirement for mitochondrial localization was determined by expressing FLAG-tagged Sigmar1 fragments in cells. Full-length Sigmar1 and Sigmar1's C terminal-deletion fragments were able to localize to the mitochondrial membrane, whereas N-terminal deletion fragment was unable to incorporate into the mitochondria. Finally, functional assays using extracellular flux analyzer and high-resolution respirometry showed Sigmar1 siRNA knockdown significantly altered mitochondrial respiration in cardiomyocytes. Overall, we found that Sigmar1 localizes to mitochondrial membranes and is indispensable for maintaining mitochondrial respiratory homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | | | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| |
Collapse
|
31
|
Aishwarya R, Abdullah CS, Remex NS, Alam S, Morshed M, Nitu S, Hartman B, King J, Bhuiyan MAN, Orr AW, Kevil CG, Bhuiyan MS. Molecular Characterization of Skeletal Muscle Dysfunction in Sigma 1 Receptor (Sigmar1) Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:160-177. [PMID: 34710383 PMCID: PMC8759042 DOI: 10.1016/j.ajpath.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Naznin S Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | | | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher G Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
32
|
Dominic P, Ahmad J, Awwab H, Bhuiyan MS, Kevil CG, Goeders NE, Murnane KS, Patterson JC, Sandau KE, Gopinathannair R, Olshansky B. Stimulant Drugs of Abuse and Cardiac Arrhythmias. Circ Arrhythm Electrophysiol 2022; 15:e010273. [PMID: 34961335 PMCID: PMC8766923 DOI: 10.1161/circep.121.010273] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nonmedical use of prescription and nonprescription drugs is a worldwide epidemic, rapidly growing in magnitude with deaths because of overdose and chronic use. A vast majority of these drugs are stimulants that have various effects on the cardiovascular system including the cardiac rhythm. Drugs, like cocaine and methamphetamine, have measured effects on the conduction system and through several direct and indirect pathways, utilizing multiple second messenger systems, change the structural and electrical substrate of the heart, thereby promoting cardiac dysrhythmias. Substituted amphetamines and cocaine affect the expression and activation kinetics of multiple ion channels and calcium signaling proteins resulting in EKG changes, and atrial and ventricular brady and tachyarrhythmias. Preexisting conditions cause substrate changes in the heart, which decrease the threshold for such drug-induced cardiac arrhythmias. The treatment of cardiac arrhythmias in patients who take drugs of abuse may be specialized and will require an understanding of the unique underlying mechanisms and necessitates a multidisciplinary approach. The use of primary or secondary prevention defibrillators in drug abusers with chronic systolic heart failure is both sensitive and controversial. This review provides a broad overview of cardiac arrhythmias associated with stimulant substance abuse and their management.
Collapse
Affiliation(s)
- Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Javaria Ahmad
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Hajra Awwab
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Md. Shenuarin Bhuiyan
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, Department of Molecular and Cellular Physiology Louisiana State University Health Sciences Center, Shreveport, LA
| | - Christopher G. Kevil
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, Department of Molecular and Cellular Physiology Louisiana State University Health Sciences Center, Shreveport, LA, Department of Cellular Biology and Anatomy Louisiana State University Health Sciences Center, Shreveport, LA
| | - Nicholas E. Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA
| | - James C. Patterson
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA
| | | | - Rakesh Gopinathannair
- The Kansas City Heart Rhythm Institute (KCHRI) & Research Foundation, Overland Park Regional Medical Center, Overland Park, KS
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
33
|
Salerno JA, Torquato T, Temerozo JR, Goto-Silva L, Karmirian K, Mendes MA, Sacramento CQ, Fintelman-Rodrigues N, Souza LRQ, Ornelas IM, Veríssimo CP, Aragão LGHS, Vitória G, Pedrosa CSG, da Silva Gomes Dias S, Cardoso Soares V, Puig-Pijuan T, Salazar V, Dariolli R, Biagi D, Furtado DR, Barreto Chiarini L, Borges HL, Bozza PT, Zaluar P. Guimarães M, Souza TM, Rehen SK. Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ 2021; 9:e12595. [PMID: 35036128 PMCID: PMC8697769 DOI: 10.7717/peerj.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.
Collapse
Affiliation(s)
- José Alexandre Salerno
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thayana Torquato
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Karina Karmirian
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Mayara A. Mendes
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Letícia R Q. Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Isis M. Ornelas
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carla P. Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Suelen da Silva Gomes Dias
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Teresa Puig-Pijuan
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vinícius Salazar
- Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- PluriCell Biotech, São Paulo, Brazil
| | | | - Daniel R. Furtado
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Luciana Barreto Chiarini
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena L. Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marilia Zaluar P. Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Salimi A, Minouei M, Niknejad M, Mojarad Aylar E. Antioxidant activity of calcitriol reduces direct methamphetamine-induced mitochondrial dysfunction in isolated rat heart mitochondria. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1978499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Minouei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Niknejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Mojarad Aylar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
35
|
Huang C, Santofimia-Castaño P, Iovanna J. NUPR1: A Critical Regulator of the Antioxidant System. Cancers (Basel) 2021; 13:cancers13153670. [PMID: 34359572 PMCID: PMC8345110 DOI: 10.3390/cancers13153670] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nuclear protein 1 (NUPR1) is activated in cellular stress and is expressed at high levels in cancer cells. Much evidence has been gathered supporting its critical role in regulating the antioxidant system. Our review aims to summarize the literature data on the impact of NUPR1 on the oxidative stress response via such a regulatory role and how its inhibition induces reactive oxygen species-mediated cell death, such as ferroptosis. Abstract Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
Collapse
|
36
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
37
|
Scott ML, Murnane KS, Orr AW. Young at heart? Drugs of abuse cause early-onset cardiovascular disease in the young. Heart 2021; 107:604-606. [PMID: 33589426 DOI: 10.1136/heartjnl-2020-318856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Matthew L Scott
- Department of Pathology, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Kevin S Murnane
- Departments of Pharmacology, Toxicology and Neuroscience and Psychiatry, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Anthony Wayne Orr
- Departments of Pathology, Cellular Biology and Anatomy, and Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
38
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|