1
|
Cui L, Yang R, Huo D, Li L, Qu X, Wang J, Wang X, Liu H, Chen H, Wang X. Streptococcus pneumoniae extracellular vesicles aggravate alveolar epithelial barrier disruption via autophagic degradation of OCLN (occludin). Autophagy 2024; 20:1577-1596. [PMID: 38497494 PMCID: PMC11210924 DOI: 10.1080/15548627.2024.2330043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) represents a major human bacterial pathogen leading to high morbidity and mortality in children and the elderly. Recent research emphasizes the role of extracellular vesicles (EVs) in bacterial pathogenicity. However, the contribution of S. pneumoniae EVs (pEVs) to host-microbe interactions has remained unclear. Here, we observed that S. pneumoniae infections in mice led to severe lung injuries and alveolar epithelial barrier (AEB) dysfunction. Infections of S. pneumoniae reduced the protein expression of tight junction protein OCLN (occludin) and activated macroautophagy/autophagy in lung tissues of mice and A549 cells. Mechanically, S. pneumoniae induced autophagosomal degradation of OCLN leading to AEB impairment in the A549 monolayer. S. pneumoniae released the pEVs that could be internalized by alveolar epithelial cells. Through proteomics, we profiled the cargo proteins inside pEVs and found that these pEVs contained many virulence factors, among which we identified a eukaryotic-like serine-threonine kinase protein StkP. The internalized StkP could induce the phosphorylation of BECN1 (beclin 1) at Ser93 and Ser96 sites, initiating autophagy and resulting in autophagy-dependent OCLN degradation and AEB dysfunction. Finally, the deletion of stkP in S. pneumoniae completely protected infected mice from death, significantly alleviated OCLN degradation in vivo, and largely abolished the AEB disruption caused by pEVs in vitro. Overall, our results suggested that pEVs played a crucial role in the spread of S. pneumoniae virulence factors. The cargo protein StkP in pEVs could communicate with host target proteins and even hijack the BECN1 autophagy initiation pathway, contributing to AEB disruption and bacterial pathogenicity.Abbreviations: AEB: alveolarepithelial barrier; AECs: alveolar epithelial cells; ATG16L1: autophagy related 16 like 1; ATP:adenosine 5'-triphosphate; BafA1: bafilomycin A1; BBB: blood-brain barrier; CFU: colony-forming unit; co-IP: co-immunoprecipitation; CQ:chloroquine; CTRL: control; DiO: 3,3'-dioctadecylox-acarbocyanineperchlorate; DOX: doxycycline; DTT: dithiothreitol; ECIS: electricalcell-substrate impedance sensing; eGFP: enhanced green fluorescentprotein; ermR: erythromycin-resistance expression cassette; Ery: erythromycin; eSTKs: eukaryotic-like serine-threoninekinases; EVs: extracellular vesicles; HA: hemagglutinin; H&E: hematoxylin and eosin; HsLC3B: human LC3B; hpi: hours post-infection; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC/MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVs: membranevesicles; NC:negative control; NETs:neutrophil extracellular traps; OD: optical density; OMVs: outer membrane vesicles; PBS: phosphate-buffered saline; pEVs: S.pneumoniaeextracellular vesicles; protK: proteinase K; Rapa: rapamycin; RNAi: RNA interference; S.aureus: Staphylococcusaureus; SNF:supernatant fluid; sgRNA: single guide RNA; S.pneumoniae: Streptococcuspneumoniae; S.suis: Streptococcussuis; TEER: trans-epithelium electrical resistance; moi: multiplicity ofinfection; TEM:transmission electron microscope; TJproteins: tight junction proteins; TJP1/ZO-1: tight junction protein1; TSA: tryptic soy agar; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Luqing Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jundan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
2
|
Sakuma C, Shizukuishi S, Ogawa M, Honjo Y, Takeyama H, Guan JL, Weiser J, Sasai M, Yamamoto M, Ohnishi M, Akeda Y. Individual Atg8 paralogs and a bacterial metabolite sequentially promote hierarchical CASM-xenophagy induction and transition. Cell Rep 2024; 43:114131. [PMID: 38656870 DOI: 10.1016/j.celrep.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.
Collapse
Affiliation(s)
- Chisato Sakuma
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Yuko Honjo
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, CARE/Crawley Building, Suite E-870 3230 Eden Avenue, Cincinnati, OH 45267, USA
| | - Jeffery Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Shizukuishi S, Ogawa M, Kuroda E, Hamaguchi S, Sakuma C, Kakuta S, Tanida I, Uchiyama Y, Akeda Y, Ryo A, Ohnishi M. Pneumococcal sialidase promotes bacterial survival by fine-tuning of pneumolysin-mediated membrane disruption. Cell Rep 2024; 43:113962. [PMID: 38483905 DOI: 10.1016/j.celrep.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.
Collapse
Affiliation(s)
- Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Eisuke Kuroda
- Department of Transformative Infection Control Development Studies, Osaka University Graduate School of Medicine, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Shigeto Hamaguchi
- Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan; Department of Transformative Analysis for Human Specimen, Osaka University Graduate School of Medicine, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Chisato Sakuma
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan; Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Ogawa M, Shizukuishi S, Akeda Y, Ohnishi M. Molecular mechanism of Streptococcus pneumoniae-targeting xenophagy recognition and evasion: Reinterpretation of pneumococci as intracellular bacteria. Microbiol Immunol 2023; 67:224-227. [PMID: 36872456 DOI: 10.1111/1348-0421.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Streptococcus pneumoniae is a major, encapsulated Gram-positive pathogen that causes diseases including community-acquired pneumonia, meningitis, and sepsis. This pathogen colonizes the nasopharyngeal epithelia asymptomatically but can often migrate to sterile tissues and cause life-threatening invasive infections (invasive pneumococcal disease). Although multivalent pneumococcal polysaccharides and conjugate vaccines are available and effective, they also have major shortcomings with respect to the emergence of vaccine-resistant serotypes. Therefore, alternative therapeutic approaches are needed, and the molecular analysis of host-pathogen interactions and their applications to pharmaceutical development and clinical practice has recently received increased attention. In this review, we introduce pneumococcal surface virulence factors involved in pathogenicity and highlight recent advances in our understanding of host autophagy recognition mechanisms against intracellular S. pneumoniae and pneumococcal evasion from autophagy.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Chubu Regional Public Health Center, Okinawa, Japan
| |
Collapse
|
5
|
TBK1 is part of a galectin 8 dependent membrane damage recognition complex and drives autophagy upon Adenovirus endosomal escape. PLoS Pathog 2022; 18:e1010736. [PMID: 35857795 PMCID: PMC9342788 DOI: 10.1371/journal.ppat.1010736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022] Open
Abstract
Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage. Rapid detection of invading pathogens is crucial for cell survival. Membrane alterations in this process are detected by cells but are rarely studied in the context of viral infections. TBK1 is an important kinase driving innate immunity and autophagy in response to pathogen invasion. Here we report that TBK1 promotes autophagy in response to membrane penetration by adenoviruses. We demonstrate that TBK1 is rapidly activated and recruited to virus membrane penetration sites, and promotes autophagy through its kinase activity. We show that TBK1 recruitment depends on membrane damage recognition via galectin 8 but occurs independently of classical autophagy receptors or functional autophagy. Moreover, we demonstrate that TBK1 activation is part of a wider cellular response to endo-lysosomal damage. Our work highlights a prominent role for TBK1 in the swift cellular response to membrane damage and the downstream activation of autophagy.
Collapse
|
6
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone. Med Microbiol Immunol 2022; 211:119-132. [PMID: 35325292 DOI: 10.1007/s00430-022-00731-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is one of the leading causes of bacterial keratitis in the developing world and globally. In the current study, we have determined oxidative stress as pathogenesis of S. pneumoniae infection in corneal tissues and human corneal epithelial cells (HCEC) and explored host immune response of HCEC towards S. pneumoniae. We also determined whether treatment with tert-Butylhydroquinone (tBHQ), a Nrf2 inducer, could alleviate oxidative stress and reduce bacterial cytotoxicity in these cells. Oxidative stress was determined in corneal tissues of patients and HCEC by immunohistochemistry and immunofluorescence analysis, respectively. The expression of antioxidant genes, cytokines and antimicrobial peptides was determined by quantitative PCR. Infection of HCEC by S. pneumoniae was determined by colony-forming units. The autophagy and cell death were determined by fluorescence microscopy. The phosphorylation of signaling proteins was evaluated by immunoblot analysis. S. pneumoniae induced oxidative stress during corneal infections and inhibited antioxidant signaling pathways and immune responses like autophagy. tBHQ aided in restoring Nrf2 activation, reduced reactive oxygen species generation and prevented cytotoxicity and cell death in S. pneumoniae-infected HCEC. tBHQ also induced autophagy in a Nrf2-dependent manner and reduced bacterial survival in HCEC. Increased expression of antimicrobial peptides by tBHQ might have contributed to a reduction of bacterial load and cytotoxicity, as exemplified in LL-37 depleted corneal epithelial cells exposed to S. pneumoniae compared to control siRNA-transfected cells. tBHQ mediates alleviation of oxidative stress induced by S. pneumoniae by activating Nrf2-mediated antioxidant signaling in corneal epithelial cells. tBHQ also enhances expression of antimicrobial peptides in corneal cells and aids in inhibition of bacterial survival and cytotoxicity of HCEC.
Collapse
|
8
|
Chen P, Yang J, Wu N, Han B, Kastelic JP, Gao J. Streptococcus lutetiensis Induces Autophagy via Oxidative Stress in Bovine Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2549772. [PMID: 35178153 PMCID: PMC8843784 DOI: 10.1155/2022/2549772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Streptococcus lutetiensis, an emerging pathogen causing bovine mastitis, has not been well characterized. We reported that S. lutetiensis was pathogenic both in vivo and in vitro and caused inflammatory reactions in the mammary gland. However, roles of autophagy and oxidative stress in the pathogenesis of S. lutetiensis-induced mastitis are unclear. In this study, an autophagy model of S. lutetiensis-infected bovine mammary epithelial cells (bMECs) was used to assess oxidative stress and autophagy flux. Expressions of Beclin1, light chain 3II, and Sequestosome 1/p62 were elevated in bMECs after S. lutetiensis infection. In addition, autophagosome and lysosome formation confirmed autophagy occurred. Based on LysoTracker Red and acridine orange, lysosome degradation was blocked, and lower expressions of lysosomal-associated membrane protein 2, cathepsins D, and cathepsins L confirmed lysosomal damage. Concurrently, the nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO1), and NAD (P)H: quinone oxidoreductase 1 (NQO1), and basilic proteins associated with the Nrf2/Keap1 signaling pathway, were detected. Decreased keap1 and increased Nrf2, HO1, NQO1, and reactive oxygen species (ROS) indicated increased oxidative stress. Treatment with N-Acetyl-L-cysteine (NAC), an ROS inhibitor, decreased both oxidative stress and autophagy. Therefore, we concluded that S. lutetiensis caused intracellular oxidative stress and autophagy in bMECs. In addition, crosstalk between autophagy and oxidative stress affected the autophagic flux and blocked downstream autophagy. The Nrf2-keap1-p62 pathway participated in this process, with ROS acting upstream of these effects, interfering with normal cell functions.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Naiwen Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Grijmans BJM, van der Kooij SB, Varela M, Meijer AH. LAPped in Proof: LC3-Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. Front Cell Infect Microbiol 2022; 11:809121. [PMID: 35047422 PMCID: PMC8762105 DOI: 10.3389/fcimb.2021.809121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Cells of the innate immune system continuously patrol the extracellular environment for potential microbial threats that are to be neutralized by phagocytosis and delivery to lysosomes. In addition, phagocytes employ autophagy as an innate immune mechanism against pathogens that succeed to escape the phagolysosomal pathway and invade the cytosol. In recent years, LC3-associated phagocytosis (LAP) has emerged as an intermediate between phagocytosis and autophagy. During LAP, phagocytes target extracellular microbes while using parts of the autophagic machinery to label the cargo-containing phagosomes for lysosomal degradation. LAP contributes greatly to host immunity against a multitude of bacterial pathogens. In the pursuit of survival, bacteria have developed elaborate strategies to disarm or circumvent the LAP process. In this review, we will outline the nature of the LAP mechanism and discuss recent insights into its interplay with bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
10
|
Miyakawa K, Nishi M, Ogawa M, Matsunaga S, Sugiyama M, Nishitsuji H, Kimura H, Ohnishi M, Watashi K, Shimotohno K, Wakita T, Ryo A. Galectin-9 restricts hepatitis B virus replication via p62/SQSTM1-mediated selective autophagy of viral core proteins. Nat Commun 2022; 13:531. [PMID: 35087074 PMCID: PMC8795376 DOI: 10.1038/s41467-022-28171-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Autophagy has been linked to a wide range of functions, including a degradative process that defends host cells against pathogens. Although the involvement of autophagy in HBV infection has become apparent, it remains unknown whether selective autophagy plays a critical role in HBV restriction. Here, we report that a member of the galectin family, GAL9, directs the autophagic degradation of HBV HBc. BRET screening revealed that GAL9 interacts with HBc in living cells. Ectopic expression of GAL9 induces the formation of HBc-containing cytoplasmic puncta through interaction with another antiviral factor viperin, which co-localized with the autophagosome marker LC3. Mechanistically, GAL9 associates with HBc via viperin at the cytoplasmic puncta and enhanced the auto-ubiquitination of RNF13, resulting in p62 recruitment to form LC3-positive autophagosomes. Notably, both GAL9 and viperin are type I IFN-stimulated genes that act synergistically for the IFN-dependent proteolysis of HBc in HBV-infected hepatocytes. Collectively, these results reveal a previously undescribed antiviral mechanism against HBV in infected cells and a form of crosstalk between the innate immune system and selective autophagy in viral infection. In human cells, invading pathogens trigger an innate immune response that helps prevent viral replication and spread. Here, the authors reveal a mechanism of innate immunity that selectively leads to the autophagic degradation of hepatitis B virus core protein.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan.
| |
Collapse
|
11
|
Liu H, Gui X, Chen S, Fu W, Li X, Xiao T, Hou J, Jiang T. Structural Variability of Lipoarabinomannan Modulates Innate Immune Responses within Infected Alveolar Epithelial Cells. Cells 2022; 11:cells11030361. [PMID: 35159170 PMCID: PMC8834380 DOI: 10.3390/cells11030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen persisting in phagosomes that has the ability to escape host immune surveillance causing tuberculosis (TB). Lipoarabinomannan (LAM), as a glycolipid, is one of the complex outermost components of the mycobacterial cell envelope and plays a critical role in modulating host responses during M. tb infection. Different species within the Mycobacterium genus exhibit distinct LAM structures and elicit diverse innate immune responses. However, little is known about the mechanisms. In this study, we first constructed a LAM-truncated mutant with fewer arabinofuranose (Araf) residues named M. sm-ΔM_6387 (Mycobacterium smegmatis arabinosyltransferase EmbC gene knockout strain). It exhibited some prominent cell wall defects, including tardiness of mycobacterial migration, loss of acid-fast staining, and increased cell wall permeability. Within alveolar epithelial cells (A549) infected by M. sm-ΔM_6387, the uptake rate was lower, phagosomes with bacterial degradation appeared, and microtubule-associated protein light chain 3 (LC3) recruitment was enhanced compared to wild type Mycobacterium smegmatis (M. smegmatis). We further confirmed that the variability in the removal capability of M. sm-ΔM_6387 resulted from host cell responses rather than the changes in the mycobacterial cell envelope. Moreover, we found that M. sm-ΔM_6387 or its glycolipid extracts significantly induced expression changes in some genes related to innate immune responses, including Toll-like receptor 2 (TLR2), class A scavenger receptor (SR-A), Rubicon, LC3, tumor necrosis factor alpha (TNF-α), Bcl-2, and Bax. Therefore, our studies suggest that nonpathogenic M. smegmatis can deposit LC3 on phagosomal membranes, and the decrease in the quantity of Araf residues for LAM molecules not only impacts mycobacterial cell wall integrity but also enhances host defense responses against the intracellular pathogens and decreases phagocytosis of host cells.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xuwen Gui
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Shixing Chen
- Key Laboratory of Science and Technology on Microsystem, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Weizhe Fu
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Xiang Li
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tingyuan Xiao
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Jie Hou
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
| | - Tao Jiang
- Department of Biotechnology, The College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (H.L.); (X.G.); (W.F.); (X.L.); (T.X.); (J.H.)
- Correspondence: ; Tel.: +86-411-8611-0350
| |
Collapse
|
12
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
13
|
Abstract
Besides the ubiquitin-proteasome system, autophagy is a major degradation pathway within cells. It delivers invading pathogens, damaged organelles, aggregated proteins, and other macromolecules from the cytosol to the lysosome for bulk degradation. This so-called canonical autophagy activity contributes to the maintenance of organelle, protein, and metabolite homeostasis as well as innate immunity. Over the past years, numerous studies rapidly deepened our knowledge on the autophagy machinery and its regulation, driven by the fact that impairment of autophagy is associated with several human pathologies, including cancer, immune diseases, and neurodegenerative disorders. Unexpectedly, components of the autophagic machinery were also found to participate in various processes that do not involve lysosomal delivery of cytosolic constituents. These functions are defined as noncanonical autophagy. Regarding neurodegenerative diseases, most research was performed in neurons, while for a long time, microglia received considerably less attention. Concomitant with the notion that microglia greatly contribute to brain health, the understanding of the role of autophagy in microglia expanded. To facilitate an overview of the current knowledge, here we present the fundamentals as well as the recent advances of canonical and noncanonical autophagy functions in microglia.
Collapse
|
14
|
Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging. Proc Natl Acad Sci U S A 2020; 117:33561-33569. [PMID: 33376222 PMCID: PMC7776987 DOI: 10.1073/pnas.2015368117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.
Collapse
|
15
|
Anil A, Banerjee A. Pneumococcal Encounter With the Blood-Brain Barrier Endothelium. Front Cell Infect Microbiol 2020; 10:590682. [PMID: 33224900 PMCID: PMC7669544 DOI: 10.3389/fcimb.2020.590682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Meningitis, the inflammation of the protective membrane surrounding the brain and spinal cord (known as meninges), is a condition associated with high mortality rates and permanent neurological sequelae in a significant proportion of survivors. The opportunistic pathogen Streptococcus pneumoniae (SPN/pneumococcus) is the leading cause of bacterial meningitis in adults and older children. Following infection of the lower respiratory tract and subsequent bloodstream invasion, SPN breaches the blood-brain barrier endothelium for invasion of the central nervous system. Transcytosis, a mode of passage through the endothelial cells has been identified as the predominant route of pneumococcal blood-brain barrier trafficking. Herein, we review the interactions enabling SPN invasion into the brain endothelial cells, events involved in the tug-of-war between pneumococcal virulence factors and host intracellular defense machineries and pneumococcal strategies for evasion of host defenses and successful transendothelial trafficking.
Collapse
Affiliation(s)
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Martens S, Fracchiolla D. Activation and targeting of ATG8 protein lipidation. Cell Discov 2020; 6:23. [PMID: 32377373 PMCID: PMC7198486 DOI: 10.1038/s41421-020-0155-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
ATG8 family proteins are evolutionary conserved ubiquitin-like modifiers, which become attached to the headgroup of the membrane lipid phosphatidylethanolamine in a process referred to as lipidation. This reaction is carried out analogous to the conjugation of ubiquitin to its target proteins, involving the E1-like ATG7, the E2-like ATG3 and the E3-like ATG12-ATG5-ATG16 complex, which determines the site of lipidation. ATG8 lipidation is a hallmark of autophagy where these proteins are involved in autophagosome formation, the fusion of autophagosomes with lysosomes and cargo selection. However, it has become evident that ATG8 lipidation also occurs in processes that are not directly related to autophagy. Here we discuss recent insights into the targeting of ATG8 lipidation in autophagy and other pathways with special emphasis on the recruitment and activation of the E3-like complex.
Collapse
Affiliation(s)
- Sascha Martens
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| | - Dorotea Fracchiolla
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/5, 1030 Vienna, Austria
| |
Collapse
|
17
|
Shizukuishi S, Ogawa M, Ryo A, Ohnishi M. The multi-step mechanism and biological role of noncanonical autophagy targeting Streptococcus pneumoniae during the early stages of infection. Autophagy 2020; 16:1152-1153. [PMID: 32183577 DOI: 10.1080/15548627.2020.1743937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Multiple autophagic processes are triggered in response to bacterial infection as the host attempts to eliminate intracellular invaders. However, it is still unclear how the mechanisms contributing to canonical macroautophagy/autophagy, including xenophagy, coordinate with the more recently described features that are characteristic of noncanonical autophagy. Recently, we revealed that infection with Streptococcus pneumoniae can trigger the formation of RB1CC1/FIP200-independent LC3-associated phagosome-like vacuoles (PcLVs) that contain the pneumococci at an early stage of infection. We also found that interactions of SQSTM1/p62 with the ATG16L1 WD domain are essential for PcLV formation. Intriguingly, PcLVs were required for the subsequent generation of bactericidal autophagic vacuoles (PcAVs). Furthermore, we also identified LC3-delocalized SQSTM1-positive PcLVs as intracellular intermediates that link PcLVs and PcAVs. These findings reveal a novel multi-step mechanism that contributes to xenophagy of the critical S. pneumoniae respiratory pathogen.
Collapse
Affiliation(s)
- Sayaka Shizukuishi
- Department of Bacteriology I, National Institute of Infectious Diseases , Tokyo, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine , Kanagawa, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases , Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine , Kanagawa, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
18
|
The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections. Int J Mol Sci 2020; 21:ijms21062008. [PMID: 32187990 PMCID: PMC7139735 DOI: 10.3390/ijms21062008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023] Open
Abstract
Autophagy is a general protective mechanism for maintaining homeostasis in eukaryotic cells, regulating cellular metabolism, and promoting cell survival by degrading and recycling cellular components under stress conditions. The degradation pathway that is mediated by autophagy receptors is called selective autophagy, also named as xenophagy. Autophagy receptor NDP52 acts as a ‘bridge’ between autophagy and the ubiquitin-proteasome system, and it also plays an important role in the process of selective autophagy. Pathogenic microbial infections cause various diseases in both humans and animals, posing a great threat to public health. Increasing evidence has revealed that autophagy and autophagy receptors are involved in the life cycle of pathogenic microbial infections. The interaction between autophagy receptor and pathogenic microorganism not only affects the replication of these microorganisms in the host cell, but it also affects the host’s immune system. This review aims to discuss the effects of autophagy on pathogenic microbial infection and replication, and summarizes the mechanisms by which autophagy receptors interact with microorganisms. While considering the role of autophagy receptors in microbial infection, NDP52 might be a potential target for developing effective therapies to treat pathogenic microbial infections.
Collapse
|