1
|
Xue G, Wang G, Shi Q, Wang H, Lv BM, Gao M, Niu X, Zhang HY. Exploring the dynamic pathogenesis of Parkinson's disease by case-control and longitudinal blood transcriptome analyses. Neurobiol Dis 2025; 209:106891. [PMID: 40210007 DOI: 10.1016/j.nbd.2025.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The pathogenesis of Parkinson's disease (PD) was recently hypothesized to change along with the disease course. Given the fact that transcriptional changes in blood can provide insightful clues for PD pathogenesis, we performed case-control and longitudinal whole blood transcriptome analyses to identify the signature genes underlying the hypothesized dynamic pathogenesis of PD. In the case-control study, we compared the gene expression patterns in healthy control (N = 189), prodromal (N = 58) and de novo idiopathic PD subjects (N = 390). The results showed that the prodromal subjects were at the tipping-point stage, which is characterized by the abnormal expression patterns of 414 genes associated with oxygen transport and reactive oxygen species metabolic process. We next performed a longitudinal transcriptome analysis on 255 PD patients from the baseline to the third year, and identified 203 genes related to immune and inflammatory responses during disease progression. These findings not just offer deeper insights into the dynamic pathogenesis of PD, but also help to find potential drugs to prevent the early neurodegeneration process.
Collapse
Affiliation(s)
- Gang Xue
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Basic Medical Laboratory, Hubei Key Laboratory of Central Nervous System Tumor and Intervention, General Hospital of Central Theater Command, Wuhan, Hubei Province 430070, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Lab of Epigenetics and Advanced Health Technology, Space Science and Technology Institute (Shenzhen), Shenzhen 518117, China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. NPJ Parkinsons Dis 2025; 11:77. [PMID: 40240380 PMCID: PMC12003903 DOI: 10.1038/s41531-025-00933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Many drug targets in ongoing Parkinson's disease (PD) clinical trials have strong genetic links. While genome-wide association studies (GWAS) nominate regions associated with disease, pinpointing causal genes is challenging. Our aim was to prioritize additional druggable genes underlying PD GWAS signals. The polygenic priority score (PoPS) integrates genome-wide information from MAGMA gene-level associations and over 57,000 gene-level features. We applied PoPS to East Asian and European PD GWAS data and prioritized genes based on PoPS, distance to the GWAS signal, and non-synonymous credible set variants. We prioritized 46 genes, including well-established PD genes (SNCA, LRRK2, GBA1, TMEM175, VPS13C), genes with strong literature evidence supporting a mechanistic link to PD (RIT2, BAG3, SCARB2, FYN, DYRK1A, NOD2, CTSB, SV2C, ITPKB), and genes relatively unexplored in PD. Many hold potential for drug repurposing or development. We prioritized high-confidence genes with strong links to PD pathogenesis that may represent our next-best candidates for developing disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lara M Lange
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Axe Neurosciences, Département de Psychiatrie et Neurosciences, Laval University, Québec, QC, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany.
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
3
|
Li Z, Chen X, Xiang W, Tang T, Gan L. m6A Demethylase FTO-Mediated Upregulation of BAP1 Induces Neuronal Ferroptosis via the p53/SLC7A11 Axis in the MPP +/MPTP-Induced Parkinson's Disease Model. ACS Chem Neurosci 2025; 16:405-416. [PMID: 39846440 DOI: 10.1021/acschemneuro.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the involvement of ferroptosis in its pathological mechanism. In this study, the effects and mechanism of BRCA1-associated protein 1 (BAP1) on neuronal ferroptosis in PD were evaluated. Methods: A PD mouse model was constructed by injecting mice with MPTP. Nissl staining, immunohistochemistry, immunofluorescence, and Prussian blue staining evaluated histopathology and iron distribution. The PD cell model was constructed by subjecting SK-N-SH cells to MPP+. The m6A level of BAP1 was assessed by MeRIP. mRNA levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, and SLC7A11 were evaluated utilizing RT-qPCR. Protein levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, SLC7A11, and p53 were measured by Western blot. Cell viability was assessed using CCK-8 assay, and TUNEL was used for assessing apoptosis. The levels of MDA, GSH, SOD, and Fe2+ were also measured. The interactions among molecules were verified using RIP assay, dual luciferase reporter assay, and ChIP assay. Results: SK-N-SH cells treated with MPP+ showed a decrease in overall m6A levels of BAP1. FTO facilitated m6A demethylation of BAP1, leading to an increased level of expression of BAP1. m6A-binding protein, YTHDF2 recognized and decayed methylated mRNA of BAP1, leading to the reduced BAP1 stability. The FTO/BAP1 axis promoted MPP+-induced ferroptosis by suppressing SLC7A11. BAP1, in collaboration with p53, reduced the level of expression of SLC7A11. Knocking down BAP1 mitigated ferroptosis in an MPTP mouse model. Conclusion: m6A-mediated modification of BAP1 regulates neuronal ferroptosis by cooperating with p53 to decrease the level of SLC7A11. Thus, BAP1 may be a potential therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Xin Chen
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Wenwen Xiang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ting Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Li Gan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
4
|
Leser FS, Júnyor FDS, Pagnoncelli IB, Delgado AB, Medeiros I, Nóbrega ACC, Andrade BDS, de Lima MN, da Silva NE, Jacob L, Boyé K, Geraldo LHM, de Souza AMT, Maron-Gutierrez T, Castro-Faria-Neto H, Follmer C, Braga C, Neves GA, Eichmann A, Romão LF, Lima FRS. CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. J Neuroinflammation 2025; 22:31. [PMID: 39894839 PMCID: PMC11789347 DOI: 10.1186/s12974-024-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the central nervous system associated with neuroinflammation and microglial cell activation. Chemokine signaling regulates neuron-glia communication and triggers a microglial inflammatory profile. Herein, we identified the neuronal chemokine CCL21 as a major cause of microglial cell imbalance through the CCR7 receptor pathway with therapeutic implications for PD. In humans, we found that CCL21 transcript expression was increased in dopaminergic neurons (DANs) of the substantia nigra in PD patients. CCL21 and CCR7 expressions were spatially associated with brain regional vulnerability to synucleinopathies, as well as with the expression of microglial activation, neuroinflammation, and degeneration-related genes. Also, in mouse models of PD, we showed that CCL21 was overexpressed in DANs in vivo and in vitro. Mechanistically, neuronal CCL21 was shown to regulate microglial cell migration, proliferation, and activation in a CCR7-dependent manner through both canonical (PI3K/AKT) and non-canonical (ERK1/2/JNK) signaling pathways. Finally, we demonstrated that navarixin, a clinically relevant chemokine inhibitor with high affinity for the CCR7 receptor, could block CCL21 effects on microglia and prevent neurodegeneration and behavioral deficits in two mouse models of PD induced with either α-synuclein oligomers (αSynO) or 3,4-dihydroxyphenylacetaldehyde (DOPAL). Altogether, our data indicate that navarixin blocks CCL21/CCR7-mediated neuron-microglia communication and could be used as a therapeutic strategy against PD.
Collapse
Affiliation(s)
- Felipe Saceanu Leser
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Flavio de Souza Júnyor
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Iohanna Bianca Pagnoncelli
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anna Beatriz Delgado
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Isabelle Medeiros
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Ana Clara Campanelli Nóbrega
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Brenda da Silva Andrade
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Maiara Nascimento de Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nícolas Emanoel da Silva
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Laurent Jacob
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Kevin Boyé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
| | - Luiz Henrique Medeiros Geraldo
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA
| | - Alessandra Mendonça Teles de Souza
- Laboratory Molecular Modeling & QSAR, Pharmaceutical Sciences Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Cristian Follmer
- Laboratory of Physical Chemistry of Proteins and Peptides (Lafipp), Chemistry Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisas em Biologia, NUMPEX-Bio, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, 25240-005, Brasil
| | - Gilda Angela Neves
- Laboratory of Molecular Pharmacology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Anne Eichmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center (PARCC), Paris, 75015, France.
- Department of Internal Medicine, Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, 06510-3221, USA.
| | - Luciana Ferreira Romão
- Laboratory of Neurobiology Applied to Biomedicine, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Flavia Regina Souza Lima
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
5
|
Lange LM, Cerquera-Cleves C, Schipper M, Panagiotaropoulou G, Braun A, Kraft J, Awasthi S, Bell N, Posthuma D, Ripke S, Blauwendraat C, Heilbron K. Prioritizing Parkinson's disease risk genes in genome-wide association loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318996. [PMID: 39711693 PMCID: PMC11661345 DOI: 10.1101/2024.12.13.24318996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging. Our aim was to prioritize genes underlying PD GWAS signals. The polygenic priority score (PoPS) is a similarity-based gene prioritization method that integrates genome-wide information from MAGMA gene-level association tests and more than 57,000 gene-level features, including gene expression, biological pathways, and protein-protein interactions. We applied PoPS to data from the largest published PD GWAS in East Asian- and European-ancestries. We identified 120 independent associations with P < 5×10-8 and prioritized 46 PD genes across these loci based on their PoPS scores, distance to the GWAS signal, and presence of non-synonymous variants in the credible set. Alongside well-established PD genes (e.g., TMEM175 and VPS13C), some of which are targeted in ongoing clinical trials (i.e., SNCA, LRRK2, and GBA1), we prioritized genes with a plausible mechanistic link to PD pathogenesis (e.g., RIT2, BAG3, and SCARB2). Many of these genes hold potential for drug repurposing or novel therapeutic developments for PD (i.e., FYN, DYRK1A, NOD2, CTSB, SV2C, and ITPKB). Additionally, we prioritized potentially druggable genes that are relatively unexplored in PD (XPO1, PIK3CA, EP300, MAP4K4, CAMK2D, NCOR1, and WDR43). We prioritized a high-confidence list of genes with strong links to PD pathogenesis that may represent our next-best candidates for disease-modifying therapeutics. We hope our findings stimulate further investigations and preclinical work to facilitate PD drug development programs.
Collapse
Affiliation(s)
- Lara M. Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Catalina Cerquera-Cleves
- Neurology Unit, Department of Neurosciences, Hospital Universitario San Ignacio, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University, Quebec City, Quebec, Canada
| | | | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
- Current address: Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
6
|
Wong MMK, Sha Z, Lütje L, Kong XZ, van Heukelum S, van de Berg WDJ, Jonkman LE, Fisher SE, Francks C. The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. Proc Natl Acad Sci U S A 2024; 121:e2401687121. [PMID: 39133845 PMCID: PMC11348331 DOI: 10.1073/pnas.2401687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.
Collapse
Affiliation(s)
- Maggie M. K. Wong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Zhiqiang Sha
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Lukas Lütje
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
| | - Xiang-Zhen Kong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou310058, China
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou311121, China
| | - Sabrina van Heukelum
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
| | - Wilma D. J. van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam1007 MB, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
| | - Laura E. Jonkman
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, Amsterdam1007 MB, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam1007 MB, The Netherlands
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GA, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
7
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Ji Y, Cai M, Zhou Y, Ma J, Zhang Y, Zhang Z, Zhao J, Wang Y, Jiang Y, Zhai Y, Xu J, Lei M, Xu Q, Liu H, Liu F. Exploring functional dysconnectivity in schizophrenia: alterations in eigenvector centrality mapping and insights into related genes from transcriptional profiles. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:37. [PMID: 38491019 PMCID: PMC10943118 DOI: 10.1038/s41537-024-00457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Schizophrenia is a mental health disorder characterized by functional dysconnectivity. Eigenvector centrality mapping (ECM) has been employed to investigate alterations in functional connectivity in schizophrenia, yet the results lack consistency, and the genetic mechanisms underlying these changes remain unclear. In this study, whole-brain voxel-wise ECM analyses were conducted on resting-state functional magnetic resonance imaging data. A cohort of 91 patients with schizophrenia and 91 matched healthy controls were included during the discovery stage. Additionally, in the replication stage, 153 individuals with schizophrenia and 182 healthy individuals participated. Subsequently, a comprehensive analysis was performed using an independent transcriptional database derived from six postmortem healthy adult brains to explore potential genetic factors influencing the observed functional dysconnectivity, and to investigate the roles of identified genes in neural processes and pathways. The results revealed significant and reliable alterations in the ECM across multiple brain regions in schizophrenia. Specifically, there was a significant decrease in ECM in the bilateral superior and middle temporal gyrus, and an increase in the bilateral thalamus in both the discovery and replication stages. Furthermore, transcriptional analysis revealed 420 genes whose expression patterns were related to changes in ECM, and these genes were enriched mainly in biological processes associated with synaptic signaling and transmission. Together, this study enhances our knowledge of the neural processes and pathways involved in schizophrenia, shedding light on the genetic factors that may be linked to functional dysconnectivity in this disorder.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujing Zhou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yurong Jiang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
10
|
Wang Y, Xiao Y, Xing Y, Yu M, Wang X, Ren J, Liu W, Zhong Y. Morphometric similarity differences in drug-naive Parkinson's disease correlate with transcriptomic signatures. CNS Neurosci Ther 2024; 30:e14680. [PMID: 38529533 PMCID: PMC10964038 DOI: 10.1111/cns.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Differences in cortical morphology have been reported in individuals with Parkinson's disease (PD). However, the pathophysiological mechanism of transcriptomic vulnerability in local brain regions remains unclear. OBJECTIVE This study aimed to characterize the morphometric changes of brain regions in early drug-naive PD patients and uncover the brain-wide gene expression correlates. METHODS The morphometric similarity (MS) network analysis was used to quantify the interregional structural similarity from multiple magnetic resonance imaging anatomical indices measured in each brain region of 170 early drug-naive PD patients and 123 controls. Then, we applied partial least squares regression to determine the relationship between regional changes in MS and spatial transcriptional signatures from the Allen Human Brain Atlas dataset, and identified the specific genes related to MS differences in PD. We further investigated the biological processes by which the PD-related genes were enriched and the cellular characterization of these genes. RESULTS Our results showed that MS was mainly decreased in cingulate, frontal, and temporal cortical areas and increased in parietal and occipital cortical areas in early drug-naive PD patients. In addition, genes whose expression patterns were associated with regional MS changes in PD were involved in astrocytes, excitatory, and inhibitory neurons and were functionally enriched in neuron-specific biological processes related to trans-synaptic signaling and nervous system development. CONCLUSIONS These findings advance our understanding of the microscale genetic and cellular mechanisms driving macroscale morphological abnormalities in early drug-naive PD patients and provide potential targets for future therapeutic trials.
Collapse
Affiliation(s)
- Yajie Wang
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
- Department of NeurologyThe First People's Hospital of YanchengYanchengChina
| | - Yiwen Xiao
- School of PsychologyNanjing Normal UniversityNanjingChina
| | - Yi Xing
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Miao Yu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiao Wang
- Department of RadiologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jingru Ren
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuan Zhong
- School of PsychologyNanjing Normal UniversityNanjingChina
| |
Collapse
|
11
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
12
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
13
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Li R, Reiter JL, Chen AB, Chen SX, Foroud T, Edenberg HJ, Lai D, Liu Y. RNA alternative splicing impacts the risk for alcohol use disorder. Mol Psychiatry 2023; 28:2922-2933. [PMID: 37217680 PMCID: PMC10615768 DOI: 10.1038/s41380-023-02111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption. Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our framework is also applicable to other types of splicing events and to other complex genetic disorders.
Collapse
Affiliation(s)
- Rudong Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy B Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steven X Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
16
|
Rajab MD, Jammeh E, Taketa T, Brayne C, Matthews FE, Su L, Ince PG, Wharton SB, Wang D. Assessment of Alzheimer-related pathologies of dementia using machine learning feature selection. Alzheimers Res Ther 2023; 15:47. [PMID: 36895019 PMCID: PMC9999590 DOI: 10.1186/s13195-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Although a variety of brain lesions may contribute to the pathological assessment of dementia, the relationship of these lesions to dementia, how they interact and how to quantify them remains uncertain. Systematically assessing neuropathological measures by their degree of association with dementia may lead to better diagnostic systems and treatment targets. This study aims to apply machine learning approaches to feature selection in order to identify critical features of Alzheimer-related pathologies associated with dementia. We applied machine learning techniques for feature ranking and classification to objectively compare neuropathological features and their relationship to dementia status during life using a cohort (n=186) from the Cognitive Function and Ageing Study (CFAS). We first tested Alzheimer's Disease and tau markers and then other neuropathologies associated with dementia. Seven feature ranking methods using different information criteria consistently ranked 22 out of the 34 neuropathology features for importance to dementia classification. Although highly correlated, Braak neurofibrillary tangle stage, beta-amyloid and cerebral amyloid angiopathy features were ranked the highest. The best-performing dementia classifier using the top eight neuropathological features achieved 79% sensitivity, 69% specificity and 75% precision. However, when assessing all seven classifiers and the 22 ranked features, a substantial proportion (40.4%) of dementia cases was consistently misclassified. These results highlight the benefits of using machine learning to identify critical indices of plaque, tangle and cerebral amyloid angiopathy burdens that may be useful for classifying dementia.
Collapse
Affiliation(s)
- Mohammed D Rajab
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK
| | - Emmanuel Jammeh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Teruka Taketa
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | | | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Li Su
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
- Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK.
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
17
|
Chen M, Li S, Zhu Z, Dai C, Hao X. Investigating the shared genetic architecture and causal relationship between pain and neuropsychiatric disorders. Hum Genet 2023; 142:431-443. [PMID: 36445456 DOI: 10.1007/s00439-022-02507-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Pain often occurs in parallel with neuropsychiatric disorders. However, the underlying mechanisms and potential causality have not been well studied. We collected the genome-wide association study (GWAS) summary statistics of 26 common pain and neuropsychiatric disorders with sample size ranging from 17,310 to 482,730 in European population. The genetic correlation between pair of pain and neuropsychiatric disorders, as well as the relevant cell types were investigated by linkage disequilibrium (LD) score regression analyses. Then, transcriptome-wide association study (TWAS) was applied to identify the potential shared genes by integrating the gene expression information and GWAS. In addition, Mendelian randomization (MR) analyses were conducted to infer the potential causality between pain and neuropsychiatric disorders. Among the 169 pairwise pain and neuropsychiatric disorders, 55 pairs showed positive correlations (median rg = 0.43) and 9 pairs showed negative correlations (median rg = -0.31). Using MR analyses, 26 likely causal associations were identified, including that neuroticism and insomnia were risk factors for most of short-term pain, and multisite chronic pain was risk factor for neuroticism, insomnia, major depressive disorder and attention deficit/hyperactivity disorder, and vice versa. The signals of pain and neuropsychiatric disorders tended to be enriched in the functional regions of cell types from central nervous system (CNS). A total of 19 genes shared in at least one pain and neuropsychiatric disorder pair were identified by TWAS, including AMT, NCOA6, and UNC45A, which involved in glycine degradation, insulin secretion, and cell proliferation, respectively. Our findings provided the evidence of shared genetic structure, causality and potential shared pathogenic mechanisms between pain and neuropsychiatric disorders, and enhanced our understanding of the comorbidities of pain and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mengya Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ziwei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chengguqiu Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Romero-Garcia R, Mandal AS, Bethlehem RAI, Crespo-Facorro B, Hart MG, Suckling J. Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain 2023; 146:1200-1211. [PMID: 36256589 PMCID: PMC9976966 DOI: 10.1093/brain/awac378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
Unravelling the complex events driving grade-specific spatial distribution of brain tumour occurrence requires rich datasets from both healthy individuals and patients. Here, we combined open-access data from The Cancer Genome Atlas, the UK Biobank and the Allen Brain Human Atlas to disentangle how the different spatial occurrences of glioblastoma multiforme and low-grade gliomas are linked to brain network features and the normative transcriptional profiles of brain regions. From MRI of brain tumour patients, we first constructed a grade-related frequency map of the regional occurrence of low-grade gliomas and the more aggressive glioblastoma multiforme. Using associated mRNA transcription data, we derived a set of differential gene expressions from glioblastoma multiforme and low-grade gliomas tissues of the same patients. By combining the resulting values with normative gene expressions from post-mortem brain tissue, we constructed a grade-related expression map indicating which brain regions express genes dysregulated in aggressive gliomas. Additionally, we derived an expression map of genes previously associated with tumour subtypes in a genome-wide association study (tumour-related genes). There were significant associations between grade-related frequency, grade-related expression and tumour-related expression maps, as well as functional brain network features (specifically, nodal strength and participation coefficient) that are implicated in neurological and psychiatric disorders. These findings identify brain network dynamics and transcriptomic signatures as key factors in regional vulnerability for glioblastoma multiforme and low-grade glioma occurrence, placing primary brain tumours within a well established framework of neurological and psychiatric cortical alterations.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ayan S Mandal
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Benedicto Crespo-Facorro
- Department of Psychiatry, Universidad de Sevilla, Hospital Universitario Virgen del Rocio/IBiS-CSIC/CIBERSAM, ISCIII, Sevilla, Spain
| | - Michael G Hart
- St George’s, University of London and St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences Neurosciences Research Centre, London, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
19
|
Verma A, Kommaddi RP, Gnanabharathi B, Hirsch EC, Ravindranath V. Genes critical for development and differentiation of dopaminergic neurons are downregulated in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:495-512. [PMID: 36820885 DOI: 10.1007/s00702-023-02604-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
We performed transcriptome analysis using RNA sequencing on substantia nigra pars compacta (SNpc) from mice after acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and from Parkinson's disease (PD) patients. Acute and chronic exposure to MPTP resulted in decreased expression of genes involved in sodium channel regulation. However, upregulation of pro-inflammatory pathways was seen after single dose but not after chronic MPTP treatment. Dopamine biosynthesis and synaptic vesicle recycling pathways were downregulated in PD patients and after chronic MPTP treatment in mice. Genes essential for midbrain development and determination of dopaminergic phenotype such as, LMX1B, FOXA1, RSPO2, KLHL1, EBF3, PITX3, RGS4, ALDH1A1, RET, FOXA2, EN1, DLK1, GFRA1, LMX1A, NR4A2, GAP43, SNCA, PBX1, and GRB10 were downregulated in human PD and overexpression of GFP tagged LMX1B rescued MPP+ induced death in SH-SY5Y neurons. Downregulation of gene ensemble involved in development and differentiation of dopaminergic neurons indicate their potential involvement in pathogenesis and progression of human PD.
Collapse
Affiliation(s)
- Aditi Verma
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India
| | | | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - ICM, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Di Leva F, Filosi M, Oyston L, Silvestri E, Picard A, Lavdas AA, Lobbestael E, Baekelandt V, Neely GG, Pramstaller PP, Hicks AA, Corti C. Increased Levels of the Parkinson's Disease-Associated Gene ITPKB Correlate with Higher Expression Levels of α-Synuclein, Independent of Mutation Status. Int J Mol Sci 2023; 24:1984. [PMID: 36768321 PMCID: PMC9916293 DOI: 10.3390/ijms24031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.
Collapse
Affiliation(s)
- Francesca Di Leva
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Michele Filosi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Lisa Oyston
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erica Silvestri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - G. Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| |
Collapse
|
21
|
Han J, Liu M, Ling Y, Ren Y, Qiu Y, Liu Y, Yin Y. The Role of Endophilin A1 in Lipopolysaccharide-Induced Parkinson's Disease Model Mice. JOURNAL OF PARKINSON'S DISEASE 2023; 13:743-756. [PMID: 37334616 PMCID: PMC10473136 DOI: 10.3233/jpd-225098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Endophilin A1 (EPA1) is encoded by the SH3GL2 gene, and SH3GL2 was designated as a Parkinson's disease (PD) risk locus by genome-wide association analysis, suggesting that EPA1 may be involved in the occurrence and development of PD. OBJECTIVE To investigate the role of EPA1 in lipopolysaccharide (LPS)-induced PD model mice. METHODS The mice PD model was prepared by injecting LPS into the substantia nigra (SN), and the changes in the behavioral data of mice in each group were observed. The damage of dopaminergic neurons, activation of microglia, and reactive oxygen species (ROS) generation were detected by immunofluorescence method; calcium ion concentration was detected by calcium content detection kit; EPA1 and inflammation and its related indicators were detected by western blot method. EPA1 knockdown was performed by an adeno-associated virus vector containing EPA1-shRNA-eGFP infusion. RESULTS LPS-induced PD model mice developed behavioral dysfunction, SN dopaminergic nerve damage, significantly increased calcium ion, calpain 1, and ROS production, activated NLRP1 inflammasome and promoted pro-inflammatory cell release, and SN EPA1 knockdown improves behavioral disorders, alleviates dopaminergic neuron damage, reduces calcium, calpain 1, ROS generation, and blocks NLRP1 inflammasome-driven inflammatory responses. CONCLUSION The expression of EPA1 in the SN of LPS-induced PD model mice was increased, and it played a role in promoting the occurrence and development of PD. EPA1 knockdown inhibited the NLRP1 inflammasome activation, decreased the release of inflammatory factors and ROS generation, and alleviated dopaminergic neuron damage. This indicated that EPA1 may participating in the occurrence and development of PD.
Collapse
Affiliation(s)
- Junhui Han
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Ling
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yubo Ren
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yue Qiu
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yi Liu
- Stomatological Hospital & College, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
22
|
He YJ, Cong L, Liang SL, Ma X, Tian JN, Li H, Wu Y. Discovery and validation of Ferroptosis-related molecular patterns and immune characteristics in Alzheimer's disease. Front Aging Neurosci 2022; 14:1056312. [PMID: 36506471 PMCID: PMC9727409 DOI: 10.3389/fnagi.2022.1056312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background To date, the pathogenesis of Alzheimer's disease is still not fully elucidated. Much evidence suggests that Ferroptosis plays a crucial role in the pathogenesis of AD, but little is known about its molecular immunological mechanisms. Therefore, this study aims to comprehensively analyse and explore the molecular mechanisms and immunological features of Ferroptosis-related genes in the pathogenesis of AD. Materials and methods We obtained the brain tissue dataset for AD from the GEO database and downloaded the Ferroptosis-related gene set from FerrDb for analysis. The most relevant Hub genes for AD were obtained using two machine learning algorithms (Least absolute shrinkage and selection operator (LASSO) and multiple support vector machine recursive feature elimination (mSVM-RFE)). The study of the Hub gene was divided into two parts. In the first part, AD patients were genotyped by unsupervised cluster analysis, and the different clusters' immune characteristics were analysed. A PCA approach was used to quantify the FRGscore. In the second part: we elucidate the biological functions involved in the Hub genes and their role in the immune microenvironment by integrating algorithms (GSEA, GSVA and CIBERSORT). Analysis of Hub gene-based drug regulatory networks and mRNA-miRNA-lncRNA regulatory networks using Cytoscape. Hub genes were further analysed using logistic regression models. Results Based on two machine learning algorithms, we obtained a total of 10 Hub genes. Unsupervised clustering successfully identified two different clusters, and immune infiltration analysis showed a significantly higher degree of immune infiltration in type A than in type B, indicating that type A may be at the peak of AD neuroinflammation. Secondly, a Hub gene-based Gene-Drug regulatory network and a ceRNA regulatory network were successfully constructed. Finally, a logistic regression algorithm-based AD diagnosis model and Nomogram diagram were developed. Conclusion Our study provides new insights into the role of Ferroptosis-related molecular patterns and immune mechanisms in AD, as well as providing a theoretical basis for the addition of diagnostic markers for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 2022; 22:657-673. [PMID: 35246670 PMCID: PMC8895080 DOI: 10.1038/s41577-022-00684-6] [Citation(s) in RCA: 624] [Impact Index Per Article: 208.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 01/18/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the 'perfect storm' that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.
Collapse
Affiliation(s)
- Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| | - Rebecca L Wallings
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Mary K Herrick
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cody E Keating
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
24
|
Grotzinger AD, de la Fuente J, Davies G, Nivard MG, Tucker-Drob EM. Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits. Nat Commun 2022; 13:6280. [PMID: 36271044 PMCID: PMC9586980 DOI: 10.1038/s41467-022-33724-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
Functional genomic methods are needed that consider multiple genetically correlated traits. Here we develop and validate Transcriptome-wide Structural Equation Modeling (T-SEM), a multivariate method for studying the effects of tissue-specific gene expression across genetically overlapping traits. T-SEM allows for modeling effects on broad dimensions spanning constellations of traits, while safeguarding against false positives that can arise when effects of gene expression are specific to a subset of traits. We apply T-SEM to investigate the biological mechanisms shared across seven distinct cognitive traits (N = 11,263-331,679), as indexed by a general dimension of genetic sharing (g). We identify 184 genes whose tissue-specific expression is associated with g, including 10 genes not identified in univariate analysis for the individual cognitive traits for any tissue type, and three genes whose expression explained a significant portion of the genetic sharing across g and different subclusters of psychiatric disorders. We go on to apply Stratified Genomic SEM to identify enrichment for g within 28 functional categories. This includes categories indexing the intersection of protein-truncating variant intolerant (PI) genes and specific neuronal cell types, which we also find to be enriched for the genetic covariance between g and a psychotic disorders factor.
Collapse
Affiliation(s)
- Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | - Javier de la Fuente
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Gail Davies
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Michel G Nivard
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
Nayeri Z, Aliakbari F, Afzali F, Parsafar S, Gharib E, Otzen DE, Morshedi D. Characterization of exogenous αSN response genes and their relation to Parkinson’s disease using network analyses. Front Pharmacol 2022; 13:966760. [PMID: 36249814 PMCID: PMC9563388 DOI: 10.3389/fphar.2022.966760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Despite extensive research, the molecular mechanisms underlying the toxicity of αSN in Parkinson’s disease (PD) pathology are still poorly understood. To address this, we used a microarray dataset to identify genes that are induced and differentially expressed after exposure to toxic αSN aggregates, which we call exogenous αSN response (EASR) genes. Using systems biology approaches, we then determined, at multiple levels of analysis, how these EASR genes could be related to PD pathology. A key result was the identification of functional connections between EASR genes and previously identified PD-related genes by employing the proteins’ interactions networks and 9 brain region-specific co-expression networks. In each brain region, co-expression modules of EASR genes were enriched for gene sets whose expression are altered by SARS-CoV-2 infection, leading to the hypothesis that EASR co-expression genes may explain the observed links between COVID-19 and PD. An examination of the expression pattern of EASR genes in different non-neurological healthy brain regions revealed that regions with lower mean expression of the upregulated EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates and lose their neurological functions during PD progression. Gene Set Enrichment Analysis of healthy and PD samples from substantia nigra revealed that a specific co-expression network, “TNF-α signaling via NF-κB”, is an upregulated pathway associated with the PD phenotype. Inhibitors of the “TNF-α signaling via NF-κB” pathway may, therefore, decrease the activity level of this pathway and thereby provide therapeutic benefits for PD patients. We virtually screened FDA-approved drugs against these upregulated genes (NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified several promising drugs. Altogether, our study provides a better understanding of αSN toxicity mechanisms in PD and identifies potential therapeutic targets and small molecules for treatment of PD.
Collapse
Affiliation(s)
- Zahra Nayeri
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Farzaneh Afzali
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Soha Parsafar
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Gharib
- Department of Chemistry and Biochemistry, University de Moncton, Moncton, ON, Canada
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- *Correspondence: Dina Morshedi,
| |
Collapse
|
26
|
Pihlstrøm L, Shireby G, Geut H, Henriksen SP, Rozemuller AJM, Tunold JA, Hannon E, Francis P, Thomas AJ, Love S, Mill J, van de Berg WDJ, Toft M. Epigenome-wide association study of human frontal cortex identifies differential methylation in Lewy body pathology. Nat Commun 2022; 13:4932. [PMID: 35995800 PMCID: PMC9395387 DOI: 10.1038/s41467-022-32619-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are closely related progressive disorders with no available disease-modifying therapy, neuropathologically characterized by intraneuronal aggregates of misfolded α-synuclein. To explore the role of DNA methylation changes in PD and DLB pathogenesis, we performed an epigenome-wide association study (EWAS) of 322 postmortem frontal cortex samples and replicated results in an independent set of 200 donors. We report novel differentially methylated replicating loci associated with Braak Lewy body stage near TMCC2, SFMBT2, AKAP6 and PHYHIP. Differentially methylated probes were independent of known PD genetic risk alleles. Meta-analysis provided suggestive evidence for a differentially methylated locus within the chromosomal region affected by the PD-associated 22q11.2 deletion. Our findings elucidate novel disease pathways in PD and DLB and generate hypotheses for future molecular studies of Lewy body pathology.
Collapse
Affiliation(s)
- Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Gemma Shireby
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hanneke Geut
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, The Netherlands
| | | | - Annemieke J M Rozemuller
- Amsterdam UMC, Vrije Universiteit, Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jon-Anders Tunold
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eilis Hannon
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Paul Francis
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jonathan Mill
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Wilma D J van de Berg
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Balbo I, Montarolo F, Genovese F, Tempia F, Hoxha E. Effects of the administration of Elovl5-dependent fatty acids on a spino-cerebellar ataxia 38 mouse model. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:8. [PMID: 35933444 PMCID: PMC9357323 DOI: 10.1186/s12993-022-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background Spinocerebellar ataxia 38 (SCA38) is a rare autosomal neurological disorder characterized by ataxia and cerebellar atrophy. SCA38 is caused by mutations of ELOVL5 gene. ELOVL5 gene encodes a protein, which elongates long chain polyunsaturated fatty acids (PUFAs). Knockout mice lacking Elovl5 recapitulate SCA38 symptoms, including motor coordination impairment and disruption of cerebellar architecture. We asked whether, in Elovl5 knockout mice (Elovl5−/−), a diet with both ω3 and ω6 PUFAs downstream Elovl5 can prevent the development of SCA38 symptoms, and at which age such treatment is more effective. Elovl5−/− mice were fed either with a diet without or containing PUFAs downstream the Elovl5 enzyme, starting at different ages. Motor behavior was assessed by the balance beam test and cerebellar structure by morphometric analysis. Results The administration from birth of the diet containing PUFAs downstream Elovl5 led to a significant amelioration of the motor performance in the beam test of Elovl5−/− mice, with a reduction of foot slip errors at 6 months from 2.2 ± 0.3 to 1.3 ± 0.2 and at 8 months from 3.1 ± 0.5 to 1.9 ± 0.3. On the contrary, administration at 1 month of age or later had no effect on the motor impairment. The cerebellar Purkinje cell layer and the white matter area of Elovl5−/ −mice were not rescued even by the administration of diet from birth, suggesting that the improvement of motor performance in the beam test was due to a functional recovery of the cerebellar circuitry. Conclusions These results suggest that the dietary intervention in SCA38, whenever possible, should be started from birth or as early as possible.
Collapse
Affiliation(s)
- Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Genovese
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy.,Department of Neuroscience, University of Torino, Torino, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043, Orbassano, Italy. .,Department of Neuroscience, University of Torino, Torino, Italy.
| |
Collapse
|
28
|
Zhao H, Cai H, Mo F, Lu Y, Yao S, Yu Y, Zhu J. Genetic mechanisms underlying brain functional homotopy: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 2022; 33:3387-3400. [PMID: 35851912 DOI: 10.1093/cercor/bhac279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Functional homotopy, the high degree of spontaneous activity synchrony and functional coactivation between geometrically corresponding interhemispheric regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, little is known about the genetic mechanisms underlying functional homotopy. Resting-state functional magnetic resonance imaging data from a discovery dataset (656 healthy subjects) and 2 independent cross-race, cross-scanner validation datasets (103 and 329 healthy subjects) were used to calculate voxel-mirrored homotopic connectivity (VMHC) indexing brain functional homotopy. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analysis was conducted to identify genes linked to VMHC. We found 1,001 genes whose expression measures were spatially associated with VMHC. Functional enrichment analyses demonstrated that these VMHC-related genes were enriched for biological functions including protein kinase activity, ion channel regulation, and synaptic function as well as many neuropsychiatric disorders. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons and immune cells, and during nearly all developmental periods. In addition, the VMHC-associated genes were linked to multiple behavioral domains, including vision, execution, and attention. Our findings suggest that interhemispheric communication and coordination involve a complex interaction of polygenes with a rich range of functional features.
Collapse
Affiliation(s)
- Han Zhao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Huanhuan Cai
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Fan Mo
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yun Lu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Shanwen Yao
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Yongqiang Yu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| | - Jiajia Zhu
- Department of Radiology , The First Affiliated Hospital of Anhui Medical University, Hefei 230022 , China
- Research Center of Clinical Medical Imaging , Anhui Province, Hefei 230032 , China
- Anhui Provincial Institute of Translational Medicine , Hefei 230032 , China
| |
Collapse
|
29
|
Moors TE, Mona D, Luehe S, Duran-Pacheco G, Spycher L, Mundigl O, Kaluza K, Huber S, Hug MN, Kremer T, Ritter M, Dziadek S, Dernick G, van de Berg WDJ, Britschgi M. Multi-platform quantitation of alpha-synuclein human brain proteoforms suggests disease-specific biochemical profiles of synucleinopathies. Acta Neuropathol Commun 2022; 10:82. [PMID: 35659116 PMCID: PMC9164351 DOI: 10.1186/s40478-022-01382-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Based on immunostainings and biochemical analyses, certain post-translationally modified alpha-synuclein (aSyn) variants, including C-terminally truncated (CTT) and Serine-129 phosphorylated (pSer129) aSyn, are proposed to be involved in the pathogenesis of synucleinopathies such as Parkinson’s disease with (PDD) and without dementia (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, quantitative information about aSyn proteoforms in the human brain in physiological and different pathological conditions is still limited. To address this, we generated sequential biochemical extracts of the substantia nigra, putamen and hippocampus from 28 donors diagnosed and neuropathologically-confirmed with different synucleinopathies (PD/PDD/DLB/MSA), as well as Alzheimer’s disease, progressive supranuclear palsy, and aged normal subjects. The tissue extracts were used to build a reverse phase array including 65 aSyn antibodies for detection. In this multiplex approach, we observed increased immunoreactivity in donors with synucleinopathies compared to controls in detergent-insoluble fractions, mainly for antibodies against CT aSyn and pSer129 aSyn. In addition, despite of the restricted sample size, clustering analysis suggested disease-specific immunoreactivity signatures in patient groups with different synucleinopathies. We aimed to validate and quantify these findings using newly developed immunoassays towards total, 119 and 122 CTT, and pSer129 aSyn. In line with previous studies, we found that synucleinopathies shared an enrichment of post-translationally modified aSyn in detergent-insoluble fractions compared to the other analyzed groups. Our measurements allowed for a quantitative separation of PDD/DLB patients from other synucleinopathies based on higher detergent-insoluble pSer129 aSyn concentrations in the hippocampus. In addition, we found that MSA stood out due to enrichment of CTT and pSer129 aSyn also in the detergent-soluble fraction of the SN and putamen. Together, our results achieved by multiplexed and quantitative immunoassay-based approaches in human brain extracts of a limited sample set point to disease-specific biochemical aSyn proteoform profiles in distinct neurodegenerative disorders.
Collapse
|
30
|
Transcriptomic and cellular decoding of functional brain connectivity changes reveal regional brain vulnerability to pro- and anti-inflammatory therapies. Brain Behav Immun 2022; 102:312-323. [PMID: 35259429 DOI: 10.1016/j.bbi.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Systemic inflammation induces acute changes in mood, motivation and cognition that closely resemble those observed in depressed individuals. However, the mechanistic pathways linking peripheral inflammation to depression-like psychopathology via intermediate effects on brain function remain incompletely understood. METHODS We combined data from 30 patients initiating interferon-α treatment for Hepatitis-C and 20 anti-tumour necrosis factor (TNF) therapy for inflammatory arthritis and used resting-state functional magnetic resonance imaging to investigate acute effects of each treatment on regional global brain connectivity (GBC). We leveraged transcriptomic data from the Allen Human Brain Atlas to uncover potential biological and cellular pathways underpinning regional vulnerability to GBC changes induced by each treatment. RESULTS Interferon-α and anti-TNF therapies both produced differential small-to-medium sized decreases in regional GBC. However, these were observed within distinct brain regions and the regional patterns of GBC changes induced by each treatment did not correlate suggesting independent underlying processes. Further, the spatial distribution of these differential GBC decreases could be captured by multivariate patterns of constitutive regional expression of genes respectively related to: i) neuroinflammation and glial cells; and ii) glutamatergic neurotransmission and neurons. The extent to which each participant expressed patterns of GBC changes aligning with these patterns of transcriptomic vulnerability also correlated with both acute treatment-induced changes in interleukin-6 (IL-6) and, for Interferon-α, longer-term treatment-associated changes in depressive symptoms. CONCLUSIONS Together, we present two transcriptomic models separately linking regional vulnerability to the acute effects of interferon-α and anti-TNF treatments on brain function to glial neuroinflammation and glutamatergic neurotransmission. These findings generate hypotheses about two potential brain mechanisms through which bidirectional changes in peripheral inflammation may contribute to the development/resolution of psychopathology.
Collapse
|
31
|
Vishweswaraiah S, Akyol S, Yilmaz A, Ugur Z, Gordevičius J, Oh KJ, Brundin P, Radhakrishna U, Labrie V, Graham SF. Methylated Cytochrome P450 and the Solute Carrier Family of Genes Correlate With Perturbations in Bile Acid Metabolism in Parkinson’s Disease. Front Neurosci 2022; 16:804261. [PMID: 35431771 PMCID: PMC9009246 DOI: 10.3389/fnins.2022.804261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is second most prevalent neurodegenerative disorder following Alzheimer’s disease. Parkinson’s disease is hypothesized to be caused by a multifaceted interplay between genetic and environmental factors. Herein, and for the first time, we describe the integration of metabolomics and epigenetics (genome-wide DNA methylation; epimetabolomics) to profile the frontal lobe from people who died from PD and compared them with age-, and sex-matched controls. We identified 48 metabolites to be at significantly different concentrations (FDR q < 0.05), 4,313 differentially methylated sites [5’-C-phosphate-G-3’ (CpGs)] (FDR q < 0.05) and increased DNA methylation age in the primary motor cortex of people who died from PD. We identified Primary bile acid biosynthesis as the major biochemical pathway to be perturbed in the frontal lobe of PD sufferers, and the metabolite taurine (p-value = 5.91E-06) as being positively correlated with CpG cg14286187 (SLC25A27; CYP39A1) (FDR q = 0.002), highlighting previously unreported biochemical changes associated with PD pathogenesis. In this novel multi-omics study, we identify regulatory mechanisms which we believe warrant future translational investigation and central biomarkers of PD which require further validation in more accessible biomatrices.
Collapse
Affiliation(s)
| | | | - Ali Yilmaz
- Beaumont Health, Royal Oak, MI, United States
| | - Zafer Ugur
- Beaumont Health, Royal Oak, MI, United States
| | | | | | | | | | | | - Stewart F. Graham
- Beaumont Health, Royal Oak, MI, United States
- *Correspondence: Stewart F. Graham,
| |
Collapse
|
32
|
Emanetci E, Cakir T. A co-expression network based molecular characterization of genes responsive for Braak stages in Parkinson's disease. Eur J Neurosci 2022; 55:1873-1886. [PMID: 35318767 DOI: 10.1111/ejn.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The progression of Parkinson's disease (PD) is defined by six Braak stages. We used transcriptome data from PD patients with Braak stage information to understand underlying molecular mechanisms for the progress of the disease. We created networks of genes with decreased/increased co-expression from control group to Braak 5-6 stages. These networks are significantly associated with PD related mechanisms such as mitochondrial dysfunction and synaptic signaling among others. Applying Weighted Gene Correlation Network Analysis (WGCNA) algorithm to the co-expression networks led to more specific modules enriched with neurodegeneration related disease pathways, seizure, abnormality of coordination, and hypotonia. Furthermore, we showed that one of the co-expression networks is clustered into three major communities with dedicated molecular functions: (i) tubulin folding pathway, gap junction related mechanisms, neuronal system (ii) synaptic vesicle, intracellular vesicle, proteasome complex, PD genes (iii) energy metabolism, mitochondrial mechanisms, oxidative phosphorylation, TCA cycle, PD genes. The co-expression relations we identified in this study as crucial players in the disease progression cover several known PD-associated genes and genes whose products are known to physically interact with alpha-synuclein protein.
Collapse
Affiliation(s)
- Elif Emanetci
- Department of Bioengineering, Gebze Technical University, Kocaeli, TURKEY
| | - Tunahan Cakir
- Department of Bioengineering, Gebze Technical University, Kocaeli, TURKEY
| |
Collapse
|
33
|
Dhanwani R, Lima-Junior JR, Sethi A, Pham J, Williams G, Frazier A, Xu Y, Amara AW, Standaert DG, Goldman JG, Litvan I, Alcalay RN, Peters B, Sulzer D, Arlehamn CSL, Sette A. Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. NPJ Parkinsons Dis 2022; 8:30. [PMID: 35314697 PMCID: PMC8938520 DOI: 10.1038/s41531-022-00282-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a multi-stage neurodegenerative disorder with largely unknown etiology. Recent findings have identified PD-associated autoimmune features including roles for T cells. To further characterize the role of T cells in PD, we performed RNA sequencing on PBMC and peripheral CD4 and CD8 memory T cell subsets derived from PD patients and age-matched healthy controls. When the groups were stratified by their T cell responsiveness to alpha-synuclein (α-syn) as a proxy for an ongoing inflammatory autoimmune response, the study revealed a broad differential gene expression profile in memory T cell subsets and a specific PD associated gene signature. We identified significant enrichment of transcriptomic signatures previously associated with PD, including for oxidative stress, phosphorylation, autophagy of mitochondria, cholesterol metabolism and inflammation, and the chemokine signaling proteins CX3CR1, CCR5, and CCR1. In addition, we identified genes in these peripheral cells that have previously been shown to be involved in PD pathogenesis and expressed in neurons, such as LRRK2, LAMP3, and aquaporin. Together, these findings suggest that features of circulating T cells with α-syn-specific responses in PD patients provide insights into the interactive processes that occur during PD pathogenesis and suggest potential intervention targets.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - João Rodrigues Lima-Junior
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ashu Sethi
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Gregory Williams
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yaqian Xu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Amy W Amara
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - David G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jennifer G Goldman
- Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.,Departments of Psychiatry and Pharmacology, Columbia University, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
34
|
Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat Commun 2022; 13:1351. [PMID: 35292653 PMCID: PMC8924238 DOI: 10.1038/s41467-022-28955-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression. In this work, Louros et al. uncover a rule book for interactions of amyloids with other proteins. This grammar was shown to promote cellular spreading of tau aggregates in cells, but can also be harvested to develop structure-based aggregation blockers.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Moonen
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium.,Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
35
|
Ferraro F, Fevga C, Bonifati V, Mandemakers W, Mahfouz A, Reinders M. Correcting Differential Gene Expression Analysis for Cyto-Architectural Alterations in Substantia Nigra of Parkinson's Disease Patients Reveals Known and Potential Novel Disease-Associated Genes and Pathways. Cells 2022; 11:cells11020198. [PMID: 35053314 PMCID: PMC8774027 DOI: 10.3390/cells11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson’s disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might have been caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artefacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes such as bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, PRKN, and FBXO7, known to be related to PD, others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC, and novel potential players in the PD pathogenesis. Together, these data show the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology, providing potential new targets for drug development.
Collapse
Affiliation(s)
- Federico Ferraro
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (F.F.); (C.F.); (V.B.); (W.M.)
| | - Christina Fevga
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (F.F.); (C.F.); (V.B.); (W.M.)
| | - Vincenzo Bonifati
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (F.F.); (C.F.); (V.B.); (W.M.)
| | - Wim Mandemakers
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (F.F.); (C.F.); (V.B.); (W.M.)
| | - Ahmed Mahfouz
- Delft Bioinformatics Labaratory, Delft University of Technology, 2628 XE Delft, The Netherlands;
- Leiden Computational Biology Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Labaratory, Delft University of Technology, 2628 XE Delft, The Netherlands;
- Leiden Computational Biology Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Section Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
36
|
O’Day C, Finkelstein DI, Diwakarla S, McQuade RM. A Critical Analysis of Intestinal Enteric Neuron Loss and Constipation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1841-1861. [PMID: 35848035 PMCID: PMC9535602 DOI: 10.3233/jpd-223262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 06/06/2023]
Abstract
Constipation afflicts many patients with Parkinson's disease (PD) and significantly impacts on patient quality of life. PD-related constipation is caused by intestinal dysfunction, but the etiology of this dysfunction in patients is unknown. One possible cause is neuron loss within the enteric nervous system (ENS) of the intestine. This review aims to 1) Critically evaluate the evidence for and against intestinal enteric neuron loss in PD patients, 2) Justify why PD-related constipation must be objectively measured, 3) Explore the potential link between loss of enteric neurons in the intestine and constipation in PD, 4) Provide potential explanations for disparities in the literature, and 5) Outline data and study design considerations to improve future research. Before the connection between intestinal enteric neuron loss and PD-related constipation can be confidently described, future research must use sufficiently large samples representative of the patient population (majority diagnosed with idiopathic PD for at least 5 years), implement a consistent neuronal quantification method and study design, including standardized patient recruitment criteria, objectively quantify intestinal dysfunctions, publish with a high degree of data transparency and account for potential PD heterogeneity. Further investigation into other potential influencers of PD-related constipation is also required, including changes in the function, connectivity, mitochondria and/or α-synuclein proteins of enteric neurons and their extrinsic innervation. The connection between enteric neuron loss and other PD-related gastrointestinal (GI) issues, including gastroparesis and dysphagia, as well as changes in nutrient absorption and the microbiome, should be explored in future research.
Collapse
Affiliation(s)
- Chelsea O’Day
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - David Isaac Finkelstein
- Parkinson’s Disease Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Shanti Diwakarla
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| | - Rachel Mai McQuade
- Gut-Axis Injury & Repair Laboratory, Department of Medicine - Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE) Level 3 and 4, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
37
|
Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M. Imaging transcriptomics: Convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep 2021; 37:110173. [PMID: 34965413 DOI: 10.1016/j.celrep.2021.110173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The integration of transcriptomic and neuroimaging data, "imaging transcriptomics," has recently emerged to generate hypotheses about potential biological pathways underlying regional variability in neuroimaging features. However, the validity of this approach is yet to be examined in depth. Here, we sought to bridge this gap by performing transcriptomic decoding of the regional distribution of well-known molecular markers spanning different elements of the biology of the healthy human brain. Imaging transcriptomics identifies biological and cell pathways that are consistent with the known biology of a wide range of molecular neuroimaging markers. The extent to which it can capture patterns of gene expression that align well with elements of the biology of the neuroinflammatory axis, at least in healthy controls without a proinflammatory challenge, is inconclusive. Imaging transcriptomics might constitute an interesting approach to improve our understanding of the biological pathways underlying regional variability in a wide range of neuroimaging phenotypes.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Department of Information Engineering, University of Padua, Via Gradenigo, 6/b, 35131 Padova, Italy.
| | | |
Collapse
|
38
|
Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021; 35:1176-1206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Redox pioneer Helmut Sies attempted to explain reactive species' challenges faced by organelles, cells, tissues, and organs via three complementary definitions: (i) oxidative stress, that is, the disturbance in the prooxidant-antioxidant defense balance in favor of the prooxidants; (ii) oxidative eustress, the low physiological exposure to prooxidants; and (iii) oxidative distress, the supraphysiological exposure to prooxidants. Recent Advances: Identification, concentration, and interactions are the most important elements to improve our understanding of reactive species in physiology and pathology. In this context, the reactive species interactome (RSI) is a new multilevel redox regulatory system that identifies reactive species families, reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species, and it integrates their interactions with their downstream biological targets. Critical Issues: We propose a united view to fully combine reactive species identification, oxidative eustress and distress, and the RSI system. In this view, we also propose including the forgotten reactive carbonyl species, an increasingly rediscovered reactive species family related to the other reactive families, and key enzymes within the RSI. We focus on brain physiology and pathology to demonstrate why this united view should be considered. Future Directions: More studies are needed for an improved understanding of the contributions of reactive species through their identification, concentration, and interactions, including in the brain. Appreciating the RSI in its entirety should unveil new molecular players and mechanisms in physiology and pathology in the brain and elsewhere.
Collapse
Affiliation(s)
- Elise Malard
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Elodie Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| |
Collapse
|
39
|
Subedi B, Anderson S, Croft TL, Rouchka EC, Zhang M, Hammond-Weinberger DR. Gene alteration in zebrafish exposed to a mixture of substances of abuse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116777. [PMID: 33689951 PMCID: PMC8053679 DOI: 10.1016/j.envpol.2021.116777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
A recent surge in the use and abuse of diverse prescribed psychotic and illicit drugs necessitates the surveillance of drug residues in source water and the associated ecological impacts of chronic exposure to the aquatic organism. Thirty-six psychotic and illicit drug residues were determined in discharged wastewater from two centralized municipal wastewater treatment facilities and two wastewater receiving creeks for seven consecutive days in Kentucky. Zebrafish (Danio rerio) larvae were exposed to the environmental relevant mixtures of all drug residues, all illicit drugs, and all prescribed psychotic drugs. The extracted RNA from fish homogenates was sequenced, and differentially expressed sequences were analyzed for known or predicted nervous system expression, and screened annotated protein-coding genes to the true environmental cocktail mixture. Illicit stimulant (cocaine and one metabolite), opioids (methadone, methadone metabolite, and oxycodone), hallucinogen (MDA), benzodiazepine (oxazepam and temazepam), carbamazepine, and all target selective serotonin reuptake inhibitors including sertraline, fluoxetine, venlafaxine, and citalopram were quantified in 100% of collected samples from both creeks. The high dose cocktail mixture exposure group revealed the largest group of differentially expressed genes: 100 upregulated and 77 downregulated (p ≤ 0.05; q ≤ 0.05). The top 20 differentially expressed sequences in each exposure group comprise 82 unique transcripts corresponding to 74% annotated genes, 7% non-coding sequences, and 19% uncharacterized sequences. Among 61 differentially expressed sequences that corresponded to annotated protein-coding genes, 23 (38%) genes or their homologs are known to be expressed in the nervous system of fish or other organisms. Several of the differentially expressed sequences are associated primarily with the immune system, including several major histocompatibility complex class I and interferon-induced proteins. Interleukin-1 beta (downregulated in this study) abnormalities are considered a risk factor for psychosis. This is the first study to assess the contributions of multiple classes of psychotic and illicit drugs in combination with developmental gene expression.
Collapse
Affiliation(s)
- B Subedi
- Department of Chemistry, Murray State University, Murray, KY, United States.
| | - S Anderson
- Department of Biology, Murray State University, Murray, KY, United States
| | - T L Croft
- Department of Chemistry, Murray State University, Murray, KY, United States
| | - E C Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, United States
| | - M Zhang
- Genomics Facility University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
40
|
Zarkali A, Weil RS. Beyond dopamine: Further evidence of cholinergic dysfunction in Parkinson's disease (Commentary on Keo et al., 2021). Eur J Neurosci 2021; 53:3740-3742. [PMID: 33960522 DOI: 10.1111/ejn.15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
41
|
Human Cytomegalovirus Uses a Host Stress Response To Balance the Elongation of Saturated/Monounsaturated and Polyunsaturated Very-Long-Chain Fatty Acids. mBio 2021; 12:mBio.00167-21. [PMID: 33947752 PMCID: PMC8262922 DOI: 10.1128/mbio.00167-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stress and virus infection regulate lipid metabolism. Human cytomegalovirus (HCMV) infection induces fatty acid (FA) elongation and increases the abundance of lipids with very-long-chain FA (VLCFA) tails. While reprogramming of metabolism can be stress related, the role of stress in HCMV reprogramming of lipid metabolism is poorly understood. In this study, we engineered cells to knock out protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) in the ER stress pathway and measured lipid changes using lipidomics to determine if PERK is needed for lipid changes associated with HCMV infection. In HCMV-infected cells, PERK promotes increases in the levels of phospholipids with saturated FA (SFA) and monounsaturated FA (MUFA) VLCFA tails. Further, PERK enhances FA elongase 7 (ELOVL7) protein levels, which elongates SFA and MUFA VLCFAs. Additionally, we found that increases in the elongation of polyunsaturated fatty acids (PUFAs) associated with HCMV infection were independent of PERK and that lipids with PUFA tails accumulated in HCMV-infected PERK knockout cells. Additionally, the protein levels of ELOVL5, which elongates PUFAs, are increased by HCMV infection through a PERK-independent mechanism. These observations show that PERK differentially regulates ELOVL7 and ELOVL5, creating a balance between the synthesis of lipids with SFA/MUFA tails and PUFA tails. Additionally, we found that PERK was necessary for virus replication and the infectivity of released viral progeny. Overall, our findings indicate that PERK—and, more broadly, ER stress—may be necessary for the membrane biogenesis needed to generate infectious HCMV virions.
Collapse
|
42
|
Balbo I, Montarolo F, Boda E, Tempia F, Hoxha E. Elovl5 Expression in the Central Nervous System of the Adult Mouse. Front Neuroanat 2021; 15:669073. [PMID: 33994961 PMCID: PMC8116736 DOI: 10.3389/fnana.2021.669073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
ELOVL5 (Elongase of Very-Long Fatty Acid 5) gene encodes for an enzyme that elongates long chain fatty acids, with a marked preference for polyunsaturated molecules. In particular, it plays an essential role in the elongation of omega-3 and omega-6 fatty acids, precursors for long-chain polyunsaturated fatty acids (PUFAs). Mutations of ELOVL5 cause the spino-cerebellar ataxia type 38 (SCA38), a rare autosomal neurological disease characterized by gait abnormality, dysarthria, dysphagia, hyposmia and peripheral neuropathy, conditions well represented by a mouse model with a targeted deletion of this gene (Elovl5–/– mice). However, the expression pattern of this enzyme in neuronal and glial cells of the central nervous system (CNS) is still uninvestigated. This work is aimed at filling this gap of knowledge by taking advantage of an Elovl5-reporter mouse line and immunofluorescence analyses on adult mouse CNS sections and glial cell primary cultures. Notably, Elovl5 appears expressed in a region- and cell type-specific manner. Abundant Elovl5-positive cells were found in the cerebellum, brainstem, and primary and accessory olfactory regions, where mitral cells show the most prominent expression. Hippocampal pyramidal cells of CA2/CA3 where also moderately labeled, while in the rest of the telencephalon Elovl5 expression was high in regions related to motor control. Analysis of primary glial cell cultures revealed Elovl5 expression in oligodendroglial cells at various maturation steps and in microglia, while astrocytes showed a heterogeneous in vivo expression of Elovl5. The elucidation of Elovl5 CNS distribution provides relevant information to understand the physiological functions of this enzyme and its PUFA products, whose unbalance is known to be involved in many pathological conditions.
Collapse
Affiliation(s)
- Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Neuroscience Institute (Italy), Turin, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| |
Collapse
|
43
|
Markopoulou K, Chase BA, Premkumar AP, Schoneburg B, Kartha N, Wei J, Yu H, Epshteyn A, Garduno L, Pham A, Vazquez R, Frigerio R, Maraganore D. Variable Effects of PD-Risk Associated SNPs and Variants in Parkinsonism-Associated Genes on Disease Phenotype in a Community-Based Cohort. Front Neurol 2021; 12:662278. [PMID: 33935957 PMCID: PMC8079937 DOI: 10.3389/fneur.2021.662278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic risk factors for Parkinson's disease (PD) risk and progression have been identified from genome-wide association studies (GWAS), as well as studies of familial forms of PD, implicating common variants at more than 90 loci and pathogenic or likely pathogenic variants at 16 loci. With the goal of understanding whether genetic variants at these PD-risk loci/genes differentially contribute to individual clinical phenotypic characteristics of PD, we used structured clinical documentation tools within the electronic medical record in an effort to provide a standardized and detailed clinical phenotypic characterization at the point of care in a cohort of 856 PD patients. We analyzed common SNPs identified in previous GWAS studies, as well as low-frequency and rare variants at parkinsonism-associated genes in the MDSgene database for their association with individual clinical characteristics and test scores at baseline assessment in our community-based PD patient cohort: age at onset, disease duration, Unified Parkinson's Disease Rating Scale I-VI, cognitive status, initial and baseline motor and non-motor symptoms, complications of levodopa therapy, comorbidities and family history of neurological disease with one or more than one affected family members. We find that in most cases an individual common PD-risk SNP identified in GWAS is associated with only a single clinical feature or test score, while gene-level tests assessing low-frequency and rare variants reveal genes associated in either a unique or partially overlapping manner with the different clinical features and test scores. Protein-protein interaction network analysis of the identified genes reveals that while some of these genes are members of already identified protein networks others are not. These findings indicate that genetic risk factors for PD differentially affect the phenotypic presentation and that genes associated with PD risk are also differentially associated with individual disease phenotypic characteristics at baseline. These findings raise the intriguing possibility that different SNPs/gene effects impact discrete phenotypic characteristics. Furthermore, they support the hypothesis that different gene and protein-protein interaction networks that underlie PD risk, the PD phenotype, and the neurodegenerative process leading to the disease phenotype, and point to the significance of the genetic background on disease phenotype.
Collapse
Affiliation(s)
- Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bruce A. Chase
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ashvini P. Premkumar
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Bernadette Schoneburg
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Ninith Kartha
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Epshteyn
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lisette Garduno
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Anna Pham
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Rosa Vazquez
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
| | | |
Collapse
|
44
|
Molecular characterization of the stress network in individuals at risk for schizophrenia. Neurobiol Stress 2021; 14:100307. [PMID: 33644266 PMCID: PMC7893486 DOI: 10.1016/j.ynstr.2021.100307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 01/24/2023] Open
Abstract
The biological mechanisms underlying inter-individual differences in human stress reactivity remain poorly understood. We aimed to identify the molecular underpinning of aberrant neural stress sensitivity in individuals at risk for schizophrenia. Linking mRNA expression data from the Allen Human Brain Atlas to task-based fMRI revealed 201 differentially expressed genes in cortex-specific brain regions differentially activated by stress in individuals with low (healthy siblings of schizophrenia patients) or high (healthy controls) stress sensitivity. These genes are associated with stress-related psychiatric disorders (e.g. schizophrenia and anxiety) and include markers for specific neuronal populations (e.g. ADCYAP1, GABRB1, SSTR1, and TNFRSF12A), neurotransmitter receptors (e.g. GRIN3A, SSTR1, GABRB1, and HTR1E), and signaling factors that interact with the corticosteroid receptor and hypothalamic-pituitary-adrenal axis (e.g. ADCYAP1, IGSF11, and PKIA). Overall, the identified genes potentially underlie altered stress reactivity in individuals at risk for schizophrenia and other psychiatric disorders and play a role in mounting an adaptive stress response in at-risk individuals, making them potentially druggable targets for stress-related diseases.
Collapse
|
45
|
Jung HY, Kwon HJ, Kim W, Hwang IK, Choi GM, Chang IB, Kim DW, Moon SM. Tat-Endophilin A1 Fusion Protein Protects Neurons from Ischemic Damage in the Gerbil Hippocampus: A Possible Mechanism of Lipid Peroxidation and Neuroinflammation Mitigation as Well as Synaptic Plasticity. Cells 2021; 10:cells10020357. [PMID: 33572372 PMCID: PMC7916150 DOI: 10.3390/cells10020357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood–brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Woosuk Kim
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (I.K.H.)
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Korea;
| | - In Bok Chang
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); or (S.M.M.); Tel.: +82-31-8086-2412 (ext. 2330) (S.M.M.)
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 18450, Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Korea
- Correspondence: (D.W.K.); or (S.M.M.); Tel.: +82-31-8086-2412 (ext. 2330) (S.M.M.)
| |
Collapse
|
46
|
Fattorelli N, Martinez-Muriana A, Wolfs L, Geric I, De Strooper B, Mancuso R. Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nat Protoc 2021; 16:1013-1033. [PMID: 33424025 DOI: 10.1038/s41596-020-00447-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Microglia are critically involved in complex neurological disorders with a strong genetic component, such as Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Although mouse microglia can recapitulate aspects of human microglia physiology, they do not fully capture the human genetic aspects of disease and do not reproduce all human cell states. Primary cultures of human microglia or microglia derived from human induced pluripotent stem cells (PSCs) are difficult to maintain in brain-relevant cell states in vitro. Here we describe MIGRATE (microglia in vitro generation refined for advanced transplantation experiments, which provides a combined in vitro differentiation and in vivo xenotransplantation protocol to study human microglia in the context of the mouse brain. This article details an accurate, step-by-step workflow that includes in vitro microglia differentiation from human PSCs, transplantation into the mouse brain and quantitative analysis of engraftment. Compared to current differentiation and xenotransplantation protocols, we present an optimized, faster and more efficient approach that yields up to 80% chimerism. To quantitatively assess engraftment efficiency by flow cytometry, access to specialized flow cytometry is required. Alternatively, the percentage of chimerism can be estimated by standard immunohistochemical analysis. The MIGRATE protocol takes ~40 d to complete, from culturing PSCs to engraftment efficiency assessment.
Collapse
Affiliation(s)
- Nicola Fattorelli
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anna Martinez-Muriana
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Leen Wolfs
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ivana Geric
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium. .,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium. .,UK Dementia Research Institute at UCL, University College London, London, UK.
| | - Renzo Mancuso
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium. .,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium. .,Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
47
|
Mestre TA, Fereshtehnejad SM, Berg D, Bohnen NI, Dujardin K, Erro R, Espay AJ, Halliday G, van Hilten JJ, Hu MT, Jeon B, Klein C, Leentjens AF, Marinus J, Mollenhauer B, Postuma R, Rajalingam R, Rodríguez-Violante M, Simuni T, Surmeier DJ, Weintraub D, McDermott MP, Lawton M, Marras C. Parkinson's Disease Subtypes: Critical Appraisal and Recommendations. JOURNAL OF PARKINSON'S DISEASE 2021; 11:395-404. [PMID: 33682731 PMCID: PMC8150501 DOI: 10.3233/jpd-202472] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), there is heterogeneity in the clinical presentation and underlying biology. Research on PD subtypes aims to understand this heterogeneity with potential contribution for the knowledge of disease pathophysiology, natural history and therapeutic development. There have been many studies of PD subtypes but their impact remains unclear with limited application in research or clinical practice. OBJECTIVE To critically evaluate PD subtyping systems. METHODS We conducted a systematic review of PD subtypes, assessing the characteristics of the studies reporting a subtyping system for the first time. We completed a critical appraisal of their methodologic quality and clinical applicability using standardized checklists. RESULTS We included 38 studies. The majority were cross-sectional (n = 26, 68.4%), used a data-driven approach (n = 25, 65.8%), and non-clinical biomarkers were rarely used (n = 5, 13.1%). Motor characteristics were the domain most commonly reported to differentiate PD subtypes. Most of the studies did not achieve the top rating across items of a Methodologic Quality checklist. In a Clinical Applicability Checklist, the clinical importance of differences between subtypes, potential treatment implications and applicability to the general population were rated poorly, and subtype stability over time and prognostic value were largely unknown. CONCLUSION Subtyping studies undertaken to date have significant methodologic shortcomings and most have questionable clinical applicability and unknown biological relevance. The clinical and biological signature of PD may be unique to the individual, rendering PD resistant to meaningful cluster solutions. New approaches that acknowledge the individual-level heterogeneity and that are more aligned with personalized medicine are needed.
Collapse
Affiliation(s)
- Tiago A. Mestre
- Parkinson’s disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa Brain and Research Institute, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | | | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Nicolaas I. Bohnen
- Departments of Radiology & Neurology, University of Michigan, University of Michigan Udall Center, Ann Arbor VAMC, Ann Arbor, MI, USA
| | - Kathy Dujardin
- Movement Disorders Department, Center of Excellence for Neurodegenerative Diseases LiCEND, Lille, France
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Neuroscience Section, University of Salerno, Baronissi (SA), Italy
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Glenda Halliday
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | | | - Michele T. Hu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Neurology Department, Oxford, United Kingdom
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Albert F.G. Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Goettingen, Department of Neurology, Kassel, Germany
| | - Ronald Postuma
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| | | | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D. James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania; Parkinson’s Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Michael P. McDermott
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
48
|
Mroczek M, Desouky A, Sirry W. Imaging Transcriptomics in Neurodegenerative Diseases. J Neuroimaging 2020; 31:244-250. [PMID: 33368775 DOI: 10.1111/jon.12827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
Imaging transcriptomics investigates the relationship between neuroanatomical/neuroimaging features and gene expression. The spatial and temporal distribution of the expressed genes and their pattern of spreading over time can contribute to elucidating cellular and molecular processes involved in neurodegeneration. In this study, we review recent findings regarding the correlation between neuroimaging and expression data in neurodegenerative diseases with a focus on Alzheimer's disease and Parkinson's disease. An association between gene expression data and different neuroimaging neurodegeneration features, such as R2 relaxation time and volumetric cortical atrophy, was established. Several positive and negative expression correlations were identified, and they confirmed the focal nature of neurodegeneration. Positively correlated genes were associated with cell motility, immune system activity, neuroinflammation, and microglia. Data from connectome studies support the hypothesis of selective network vulnerability and a temporal spreading pattern in neurodegenerative pathologies. Genes related to cellular mobility and transport are overexpressed in the neuroimaging-defined delineated areas of degeneration. In addition, expression enrichment of genes involved in immunological processes in vulnerable regions-such as the Toll-like receptor, a receptor involved in innate immunity-plays a major role in neuroinflammation in neurodegenerative diseases. However, substantial limitations must be overcome in future studies: the lack of high-quality resolution expression data, the lack of standardized study protocols, and insufficient sensitive early stage neuroimaging markers of degeneration. Identifying neuroimaging and expression prodromal biomarkers and investigating their causal relation in the preclinical disease stage may enable early targeted therapy before the onset of irreversible brain changes.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
| | - Ahmed Desouky
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Wadid Sirry
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
49
|
Zarkali A, McColgan P, Ryten M, Reynolds R, Leyland LA, Lees AJ, Rees G, Weil RS. Differences in network controllability and regional gene expression underlie hallucinations in Parkinson's disease. Brain 2020; 143:3435-3448. [PMID: 33118028 PMCID: PMC7719028 DOI: 10.1093/brain/awaa270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Visual hallucinations are common in Parkinson's disease and are associated with poorer prognosis. Imaging studies show white matter loss and functional connectivity changes with Parkinson's visual hallucinations, but the biological factors underlying selective vulnerability of affected parts of the brain network are unknown. Recent models for Parkinson's disease hallucinations suggest they arise due to a shift in the relative effects of different networks. Understanding how structural connectivity affects the interplay between networks will provide important mechanistic insights. To address this, we investigated the structural connectivity changes that accompany visual hallucinations in Parkinson's disease and the organizational and gene expression characteristics of the preferentially affected areas of the network. We performed diffusion-weighted imaging in 100 patients with Parkinson's disease (81 without hallucinations, 19 with visual hallucinations) and 34 healthy age-matched controls. We used network-based statistics to identify changes in structural connectivity in Parkinson's disease patients with hallucinations and performed an analysis of controllability, an emerging technique that allows quantification of the influence a brain region has across the rest of the network. Using these techniques, we identified a subnetwork of reduced connectivity in Parkinson's disease hallucinations. We then used the Allen Institute for Brain Sciences human transcriptome atlas to identify regional gene expression patterns associated with affected areas of the network. Within this network, Parkinson's disease patients with hallucinations showed reduced controllability (less influence over other brain regions), than Parkinson's disease patients without hallucinations and controls. This subnetwork appears to be critical for overall brain integration, as even in controls, nodes with high controllability were more likely to be within the subnetwork. Gene expression analysis of gene modules related to the affected subnetwork revealed that down-weighted genes were most significantly enriched in genes related to mRNA and chromosome metabolic processes (with enrichment in oligodendrocytes) and upweighted genes to protein localization (with enrichment in neuronal cells). Our findings provide insights into how hallucinations are generated, with breakdown of a key structural subnetwork that exerts control across distributed brain regions. Expression of genes related to mRNA metabolism and membrane localization may be implicated, providing potential therapeutic targets.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Peter McColgan
- Huntington’s Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - Regina Reynolds
- Department of Neurodegenerative Disease, UCL Institute of Neurology, 10-12 Russell Square House, London, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London WC1N 3BG, UK
| |
Collapse
|
50
|
Panagiotakopoulou V, Ivanyuk D, De Cicco S, Haq W, Arsić A, Yu C, Messelodi D, Oldrati M, Schöndorf DC, Perez MJ, Cassatella RP, Jakobi M, Schneiderhan-Marra N, Gasser T, Nikić-Spiegel I, Deleidi M. Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nat Commun 2020; 11:5163. [PMID: 33057020 PMCID: PMC7560616 DOI: 10.1038/s41467-020-18755-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson's disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Vasiliki Panagiotakopoulou
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Dina Ivanyuk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Silvia De Cicco
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, University of Tübingen, Tübingen, 72076, Germany
| | - Aleksandra Arsić
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Cong Yu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Daria Messelodi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Marvin Oldrati
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - David C Schöndorf
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Maria-Jose Perez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ruggiero Pio Cassatella
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Germany.
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|