1
|
Rabiee N, Rabiee M. Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing. ACS Pharmacol Transl Sci 2025; 8:1028-1049. [PMID: 40242591 PMCID: PMC11997888 DOI: 10.1021/acsptsci.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
The development of precise and efficient delivery systems is pivotal for advancing CRISPR/Cas9 gene-editing technologies, particularly for therapeutic applications. Engineered metal-organic frameworks (MOFs) have emerged as a promising class of inorganic nonviral vectors, offering unique advantages such as tunable porosity, high cargo-loading capacity, and biocompatibility. This review explores the design and application of MOF-based nanoplatforms tailored for the targeted delivery of CRISPR/Cas9 components, aiming to enhance gene-editing precision and efficiency. By incorporating stimuli-responsive linkers and bioactive ligands, these MOFs enable controlled release of CRISPR/Cas9 payloads at the target site. Comparative discussions demonstrate superior performance of MOFs over conventional nonviral systems in terms of stability, transfection efficiency, and reduced off-target effects. Additionally, the intracellular trafficking mechanisms and the therapeutic potential of these platforms in preclinical models are discussed. These findings highlight the transformative potential of MOF-based delivery systems in overcoming the challenges associated with gene-editing technologies, such as immunogenicity and cytotoxicity, paving the way for their application in precision medicine. This review provides a blueprint for the integration of nanotechnology and genome editing, advancing the frontier of nonviral therapeutic delivery systems.
Collapse
Affiliation(s)
- Navid Rabiee
- Department
of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua−Peking
Joint Center for Life Sciences, Tsinghua
University, Beijing 100084, China
- MOE
Key Laboratory of Bioinformatics, Tsinghua
University, Beijing 100084, China
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials
Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
2
|
Zhou J, Zhu F, Sun L. Causal Relationship between Branched-Chain Amino Acids and Inflammatory Bowel Disease: A Bidirectional and Multivariable Mendelian Randomization Study. Br J Hosp Med (Lond) 2025; 86:1-17. [PMID: 39998153 DOI: 10.12968/hmed.2024.0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Aims/Background The relationship between dysregulated branched-chain amino acid (BCAA) and inflammatory bowel disease (IBD) is not fully understood. This study applied a bidirectional, two-sample Mendelian randomization (MR) approach to explore the potential causal relationship between circulating BCAA levels and IBD. Methods Genome-wide association studies (GWAS) data on total BCAA levels, comprising leucine, valine, and isoleucine, were utilized. Data on IBD and its subtypes were sourced from the FinnGen study. The primary analytical method was the inverse-variance weighted (IVW) MR. To determine the direct causal effect of BCAA levels on IBD risk while accounting for confounders, we employed multivariable Mendelian randomization (MVMR). Results IVW analysis revealed a positive correlation between circulating total BCAA levels, including valine, leucine, and isoleucine, and an increased risk of Crohn's disease (CD). No causal link was detected between BCAA levels and overall IBD or ulcerative colitis (UC). In the MVMR analysis, adjusting for common risk factors further validated a direct causal effect of elevated BCAA levels on CD risk. Conclusion Our findings suggest that elevated circulating BCAA levels are associated with an increased risk of CD. Further research is warranted to explore the potential implications of these findings for CD risk management.
Collapse
Affiliation(s)
- Jiaying Zhou
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Fengting Zhu
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Leimin Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen T, Ellman DG, Fang S, Bak ST, Nørgård MØ, Svenningsen P, Andersen DC. Transfer of cardiomyocyte-derived extracellular vesicles to neighboring cardiac cells requires tunneling nanotubes during heart development. Theranostics 2024; 14:3843-3858. [PMID: 38994028 PMCID: PMC11234280 DOI: 10.7150/thno.91604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Extracellular vesicles (EVs) are thought to mediate intercellular communication during development and disease. Yet, biological insight to intercellular EV transfer remains elusive, also in the heart, and is technically challenging to demonstrate. Here, we aimed to investigate biological transfer of cardiomyocyte-derived EVs in the neonatal heart. Methods: We exploited CD9 as a marker of EVs, and generated two lines of cardiomyocyte specific EV reporter mice: Tnnt2-Cre; double-floxed inverted CD9/EGFP and αMHC-MerCreMer; double-floxed inverted CD9/EGFP. The two mouse lines were utilized to determine whether developing cardiomyocytes transfer EVs to other cardiac cells (non-myocytes and cardiomyocytes) in vitro and in vivo and investigate the intercellular transport pathway of cardiomyocyte-derived EVs. Results: Genetic tagging of cardiomyocytes was confirmed in both reporter mouse lines and proof of concept in the postnatal heart showed that, a fraction of EGFP+/MYH1- non-myocytes exist firmly demonstrating in vivo cardiomyocyte-derived EV transfer. However, two sets of direct and indirect EGFP +/- cardiac cell co-cultures showed that cardiomyocyte-derived EGFP+ EV transfer requires cell-cell contact and that uptake of EGFP+ EVs from the medium is limited. The same was observed when co-cultiring with mouse macrophages. Further mechanistic insight showed that cardiomyocyte EV transfer occurs through type I tunneling nanotubes. Conclusion: While the current notion assumes that EVs are transferred through secretion to the surroundings, our data show that cardiomyocyte-derived EV transfer in the developing heart occurs through nanotubes between neighboring cells. Whether these data are fundamental and relate to adult hearts and other organs remains to be determined, but they imply that the normal developmental process of EV transfer goes through cell-cell contact rather than through the extracellular compartment.
Collapse
Affiliation(s)
- Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel Ørnfeldt Nørgård
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Amo L, Kole HK, Scott B, Borrego F, Qi CF, Wang H, Bolland S. Purification and analysis of kidney-infiltrating leukocytes in a mouse model of lupus nephritis. Methods Cell Biol 2024; 188:131-152. [PMID: 38880521 DOI: 10.1016/bs.mcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.
Collapse
Affiliation(s)
- Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Hemanta K Kole
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Bethany Scott
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Hongsheng Wang
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Silvia Bolland
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| |
Collapse
|
5
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
6
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
7
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Baumann Z, Parayil N, Noreen F, Roux J, Meier DT, Cavelti-Weder C. Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. Part Fibre Toxicol 2023; 20:25. [PMID: 37400850 DOI: 10.1186/s12989-023-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. METHODS To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. RESULTS Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1β protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. CONCLUSION In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Faiza Noreen
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Swiss Institute of Bioinformatics, Basel, 4031, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland.
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, 4031, Switzerland.
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
- University Hospital Zurich, Rämistrasse 100, Zürich, 8009, Switzerland.
| |
Collapse
|
8
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
9
|
Edavettal S, Cejudo-Martin P, Dasgupta B, Yang D, Buschman MD, Domingo D, Van Kolen K, Jaiprasat P, Gordon R, Schutsky K, Geist B, Taylor N, Soubrane CH, Van Der Helm E, LaCombe A, Ainekulu Z, Lacy E, Aligo J, Ho J, He Y, Lebowitz PF, Patterson JT, Scheer JM, Singh S. Enhanced delivery of antibodies across the blood-brain barrier via TEMs with inherent receptor-mediated phagocytosis. MED 2022; 3:860-882.e15. [PMID: 36257298 DOI: 10.1016/j.medj.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.
Collapse
Affiliation(s)
| | | | | | - Danlin Yang
- Janssen Research and Development, Spring House, PA 19477, USA
| | | | | | | | | | - Renata Gordon
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Keith Schutsky
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Brian Geist
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Natalie Taylor
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Ann LaCombe
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | - Eilyn Lacy
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Aligo
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Jason Ho
- Janssen Research and Development, Spring House, PA 19477, USA
| | - Yingbo He
- Janssen Research and Development, San Diego, CA 92121, USA
| | | | | | - Justin M Scheer
- Janssen Research and Development, Spring House, PA 19477, USA.
| | - Sanjaya Singh
- Janssen Research and Development, Spring House, PA 19477, USA
| |
Collapse
|
10
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
11
|
Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy. Pharmacol Ther 2022; 238:108176. [DOI: 10.1016/j.pharmthera.2022.108176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
|
12
|
Scott NA, Lawson MAE, Hodgetts RJ, Le Gall G, Hall LJ, Mann ER. Macrophage metabolism in the intestine is compartment specific and regulated by the microbiota. Immunology 2022; 166:138-152. [PMID: 35199335 DOI: 10.1111/imm.13461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Intestinal macrophages play a vital role in the maintenance of gut homeostasis through signals derived from the microbiota. We previously demonstrated that microbial-derived metabolites can shape the metabolic functions of macrophages. Here, we show that antibiotic-induced disruption of the intestinal microbiota dramatically alters both the local metabolite environment and the metabolic functions of macrophages in the colon. Broad-spectrum antibiotic administration in mice increased the expression of the large neutral amino acid transporter LAT1 and accordingly, amino acid uptake. Subsequently, antibiotic administration enhanced the metabolic functions of colonic macrophages, increasing phosphorylation of components of mammalian/mechanistic target of rapamycin signalling pathways, with increased expression of genes involved in glycolysis and oxidative phosphorylation (OXPHOS), increased mitochondrial function, increased rate of extracellular acidification (ECAR; measure of glycolysis) and increased rate of oxygen consumption (OCR; measure of OXPHOS). Small bowel macrophages were less metabolically active than their colonic counterparts, with macrophage metabolism in the small intestine being independent of the microbiota. Finally, we reveal tissue-resident Tim4+ CD4+ macrophages exhibit enhanced fatty acid uptake alongside reduced fatty acid synthesis compared to recruited macrophages. Thus, the microbiota shapes gut macrophage metabolism in a compartment-specific manner, with important implications for monocyte recruitment and macrophage differentiation.
Collapse
Affiliation(s)
- Nicholas A Scott
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Manchester, UK
| | - Melissa A E Lawson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Manchester, UK.,Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ryan James Hodgetts
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Manchester, UK.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Elizabeth R Mann
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, Manchester, UK
| |
Collapse
|
13
|
Rohm TV, Keller L, Bosch AJT, AlAsfoor S, Baumann Z, Thomas A, Wiedemann SJ, Steiger L, Dalmas E, Wehner J, Rachid L, Mooser C, Yilmaz B, Fernandez Trigo N, Jauch AJ, Wueest S, Konrad D, Henri S, Niess JH, Hruz P, Ganal-Vonarburg SC, Roux J, Meier DT, Cavelti-Weder C. Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Commun Biol 2022; 5:370. [PMID: 35440795 PMCID: PMC9018739 DOI: 10.1038/s42003-022-03305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control. Expansion of pro-inflammatory macrophages in the colon occurs early after high-fat diet initiation, prior to macrophage accumulation in the adipose tissue, in a microbiome-dependent fashion. Macrophage depletion systemically and/or exclusively in the colon improves glucose metabolism.
Collapse
Affiliation(s)
- Theresa V Rohm
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Lena Keller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Angela J T Bosch
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Shefaa AlAsfoor
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Zora Baumann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | | | - Sophia J Wiedemann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Laura Steiger
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Elise Dalmas
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Josua Wehner
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Catherine Mooser
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Annaise J Jauch
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Jan H Niess
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Department of Visceral Surgery und Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Julien Roux
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
14
|
Halaby MJ, McGaha TL. Amino Acid Transport and Metabolism in Myeloid Function. Front Immunol 2021; 12:695238. [PMID: 34456909 PMCID: PMC8397459 DOI: 10.3389/fimmu.2021.695238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of amino acid availability and metabolism in immune cells is essential for immune system homeostasis and responses to exogenous and endogenous challenges including microbial infection, tumorigenesis and autoimmunity. In myeloid cells the consumption of amino acids such as arginine and tryptophan and availability of their metabolites are key drivers of cellular identity impacting development, functional polarization to an inflammatory or regulatory phenotype, and interaction with other immune cells. In this review, we discuss recent developments and emerging concepts in our understanding of the impact amino acid availability and consumption has on cellular phenotype focusing on two key myeloid cell populations, macrophages and myeloid derived suppressor cells (MDSCs). We also highlight the potential of myeloid-specific of amino acid transporters and catabolic enzymes as immunotherapy targets in a variety of conditions such as cancer and autoimmune disease discussing the opportunities and limitations in targeting these pathways for clinical therapy.
Collapse
Affiliation(s)
- Marie Jo Halaby
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Immunology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S. Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 2021; 16:3775-3801. [PMID: 34172973 DOI: 10.1038/s41596-021-00550-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
The dimensionality of cytometry data has strongly increased in the last decade, and in many situations the traditional manual downstream analysis becomes insufficient. The field is therefore slowly moving toward more automated approaches, and in this paper we describe the protocol for analyzing high-dimensional cytometry data using FlowSOM, a clustering and visualization algorithm based on a self-organizing map. FlowSOM is used to distinguish cell populations from cytometry data in an unsupervised way and can help to gain deeper insights in fields such as immunology and oncology. Since the original FlowSOM publication (2015), we have validated the tool on a wide variety of datasets, and to write this protocol, we made use of this experience to improve the user-friendliness of the package (e.g., comprehensive functions replacing commonly required scripts). Where the original paper focused mainly on the algorithm description, this protocol offers user guidelines on how to implement the procedure, detailed parameter descriptions and troubleshooting recommendations. The protocol provides clearly annotated R code, and is therefore relevant for all scientists interested in computational high-dimensional analyses without requiring a strong bioinformatics background. We demonstrate the complete workflow, starting from data preparation (such as compensation, transformation and quality control), including detailed discussion of the different FlowSOM parameters and visualization options, and concluding with how the results can be further used to answer biological questions, such as statistical comparison between groups of interest. An average FlowSOM analysis takes 1-3 h to complete, though quality issues can increase this time considerably.
Collapse
Affiliation(s)
- Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Artuur Couckuyt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Annelies Emmaneel
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium. .,Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
16
|
Rohm TV, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, Delko T, Hruz P, Cavelti-Weder C. Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-Inflammatory Intestinal Macrophage Accumulation. Front Immunol 2021; 12:668654. [PMID: 34054838 PMCID: PMC8158297 DOI: 10.3389/fimmu.2021.668654] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic low-grade inflammation is a hallmark of obesity and associated with cardiovascular complications. However, it remains unclear where this inflammation starts. As the gut is constantly exposed to food, gut microbiota, and metabolites, we hypothesized that mucosal immunity triggers an innate inflammatory response in obesity. We characterized five distinct macrophage subpopulations (P1-P5) along the gastrointestinal tract and blood monocyte subpopulations (classical, non-classical, intermediate), which replenish intestinal macrophages, in non-obese (BMI<27kg/m2) and obese individuals (BMI>32kg/m2). To elucidate factors that potentially trigger gut inflammation, we correlated these subpopulations with cardiovascular risk factors and lifestyle behaviors. In obese individuals, we found higher pro-inflammatory macrophages in the stomach, duodenum, and colon. Intermediate blood monocytes were also increased in obesity, suggesting enhanced recruitment to the gut. We identified unhealthy lifestyle habits as potential triggers of gut and systemic inflammation (i.e., low vegetable intake, high processed meat consumption, sedentary lifestyle). Cardiovascular risk factors other than body weight did not affect the innate immune response. Thus, obesity in humans is characterized by gut inflammation as shown by accumulation of pro-inflammatory intestinal macrophages, potentially via recruited blood monocytes. Understanding gut innate immunity in human obesity might open up new targets for immune-modulatory treatments in metabolic disease.
Collapse
Affiliation(s)
- Theresa V Rohm
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Regula Fuchs
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Rahel L Müller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Lena Keller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Zora Baumann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Angela J T Bosch
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Romano Schneider
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Danny Labes
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Igor Langer
- Department of Visceral Surgery, Lindenhof Hospital, Bern, Switzerland
| | - Julia B Pilz
- AMB-Arztpraxis MagenDarm Basel, Basel and MagenDarm Aarau, Aarau, Switzerland
| | - Jan H Niess
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Tarik Delko
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
17
|
Kaya B, Doñas C, Wuggenig P, Diaz OE, Morales RA, Melhem H, Hernández PP, Kaymak T, Das S, Hruz P, Franc Y, Geier F, Ayata CK, Villablanca EJ, Niess JH. Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1 + Macrophages Regulates Intestinal Homeostasis. Cell Rep 2021; 32:107979. [PMID: 32755573 DOI: 10.1016/j.celrep.2020.107979] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.
Collapse
Affiliation(s)
- Berna Kaya
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Cristian Doñas
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Philipp Wuggenig
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | | - Pedro P Hernández
- Institut Curie, PSL Research University, INSERM U934/CNRS UMR3215, Development and Homeostasis of Mucosal Tissues Group, 75005 Paris, France
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Petr Hruz
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland
| | - Yannick Franc
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| | - Florian Geier
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - C Korcan Ayata
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden.
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
18
|
Suzuki M, Sujino T, Chiba S, Harada Y, Goto M, Takahashi R, Mita M, Hamase K, Kanai T, Ito M, Waldor MK, Yasui M, Sasabe J. Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. SCIENCE ADVANCES 2021; 7:7/10/eabd6480. [PMID: 33658193 PMCID: PMC7929512 DOI: 10.1126/sciadv.abd6480] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Organisms use l-amino acids (l-aa) for most physiological processes. Unlike other organisms, bacteria chiral-convert l-aa to d-configurations as essential components of their cell walls and as signaling molecules in their ecosystems. Mammals recognize microbe-associated molecules to initiate immune responses, but roles of bacterial d-amino acids (d-aa) in mammalian immune systems remain largely unknown. Here, we report that amino acid chirality balanced by bacteria-mammal cross-talk modulates intestinal B cell fate and immunoglobulin A (IgA) production. Bacterial d-aa stimulate M1 macrophages and promote survival of intestinal naïve B cells. Mammalian intestinal d-aa catabolism limits the number of B cells and restricts growth of symbiotic bacteria that activate T cell-dependent IgA class switching of the B cells. Loss of d-aa catabolism results in excessive IgA production and dysbiosis with altered IgA coating on bacteria. Thus, chiral conversion of amino acids is linked to bacterial recognition by mammals to control symbiosis with bacteria.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Pharmacology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-Ku, Tokyo 102-0083, Japan
| | - Tomohisa Sujino
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayako Chiba
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoichi Harada
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | | | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takanori Kanai
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Matthew Kaden Waldor
- Howard Hughes Medical Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
19
|
Ko JH, Olona A, Papathanassiu AE, Buang N, Park KS, Costa ASH, Mauro C, Frezza C, Behmoaras J. BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. J Cell Sci 2020; 133:jcs247957. [PMID: 33148611 PMCID: PMC7116427 DOI: 10.1242/jcs.247957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
In response to environmental stimuli, macrophages change their nutrient consumption and undergo an early metabolic adaptation that progressively shapes their polarization state. During the transient, early phase of pro-inflammatory macrophage activation, an increase in tricarboxylic acid (TCA) cycle activity has been reported, but the relative contribution of branched-chain amino acid (BCAA) leucine remains to be determined. Here, we show that glucose but not glutamine is a major contributor of the increase in TCA cycle metabolites during early macrophage activation in humans. We then show that, although uptake of BCAAs is not altered, their transamination by BCAT1 is increased following 8 h lipopolysaccharide (LPS) stimulation. Of note, leucine is not metabolized to integrate into the TCA cycle in basal or stimulated human macrophages. Surprisingly, the pharmacological inhibition of BCAT1 reduced glucose-derived itaconate, α-ketoglutarate and 2-hydroxyglutarate levels without affecting succinate and citrate levels, indicating a partial inhibition of the TCA cycle. This indirect effect is associated with NRF2 (also known as NFE2L2) activation and anti-oxidant responses. These results suggest a moonlighting role of BCAT1 through redox-mediated control of mitochondrial function during early macrophage activation.
Collapse
Affiliation(s)
- Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | | | - Norzawani Buang
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| |
Collapse
|
20
|
Nasser H, Adhikary P, Abdel-Daim A, Noyori O, Panaampon J, Kariya R, Okada S, Ma W, Baba M, Takizawa H, Yamane M, Niwa H, Suzu S. Establishment of bone marrow-derived M-CSF receptor-dependent self-renewing macrophages. Cell Death Discov 2020; 6:63. [PMID: 32714570 PMCID: PMC7378060 DOI: 10.1038/s41420-020-00300-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have revealed that tissue macrophages are derived from yolk sac precursors or fetal liver monocytes, in addition to bone marrow monocytes. The relative contribution of these cells to the tissue macrophage pool is not fully understood, but embryo-derived cells are supposed to be more important because of their capacity to self-renew. Here, we show the presence of adult bone marrow-derived macrophages that retain self-renewing capacity. The self-renewing macrophages were readily obtained by long-term culture of mouse bone marrow cells with macrophage colony-stimulating factor (M-CSF), a key cytokine for macrophage development. They were non-tumorigenic and proliferated in the presence of M-CSF in unlimited numbers. Despite several differences from non-proliferating macrophages, they retained many features of cells of the monocytic lineage, including the differentiation into dendritic cells or osteoclasts. Among the transcription factors involved in the self-renewal of embryonic stem cells, Krüppel-like factor 2 (KLF2) was strongly upregulated upon M-CSF stimulation in the self-renewing macrophages, which was accompanied by the downregulation of MafB, a transcription factor that suppresses KLF2 expression. Indeed, knockdown of KLF2 led to cell cycle arrest and diminished cell proliferation in the self-renewing macrophages. Our new cell model would be useful to unravel differences in phenotype, function, and molecular mechanism of proliferation among self-renewing macrophages with different origins.
Collapse
Affiliation(s)
- Hesham Nasser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41511 Egypt
| | - Partho Adhikary
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z3 Canada
| | - Amira Abdel-Daim
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Ryusho Kariya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Wenjuan Ma
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556 Japan
| | - Mariko Yamane
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
- Present Address: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047 Japan
| | - Hitoshi Niwa
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| |
Collapse
|
21
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|