1
|
Lam WLM, Gabernet G, Poth T, Sator-Schmitt M, Oquendo MB, Kast B, Lohr S, de Ponti A, Weiß L, Schneider M, Helm D, Müller-Decker K, Schirmacher P, Heikenwälder M, Klingmüller U, Schneller D, Geisler F, Nahnsen S, Angel P. RAGE is a key regulator of ductular reaction-mediated fibrosis during cholestasis. EMBO Rep 2025; 26:880-907. [PMID: 39747668 PMCID: PMC11811172 DOI: 10.1038/s44319-024-00356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury. Yet, the direct link between RAGE-mediated DR and fibrosis as well as the mode of interaction between BECs and hepatic stellate cells (HSCs) to drive fibrosis remain elusive. Here, we delineate the specific function of RAGE on BECs during DR and its potential association with fibrosis in the context of cholestasis. Employing a biliary lineage tracing cholestatic liver injury mouse model, combined with whole transcriptome sequencing and in vitro analyses, we reveal a role for BEC-specific Rage activity in fostering a pro-fibrotic milieu. RAGE is predominantly expressed in BECs and contributes to DR. Notch ligand Jagged1 is secreted from activated BECs in a Rage-dependent manner and signals HSCs in trans, eventually enhancing fibrosis during cholestasis.
Collapse
Affiliation(s)
- Wai-Ling Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Gisela Gabernet
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Morgana Barroso Oquendo
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aurora de Ponti
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Weiß
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martin Schneider
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Protein Analysis Unit, Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Tumor Models Unit, Center for Preclinical Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doris Schneller
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Fabian Geisler
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich, München, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
2
|
Niimi T, Miyazaki N, Oiki H, Uemura M, Zeng S, Promsut W, Ota N, Nonaka S, Takei H, Nittono H, Narushima S, Yanagida A, Hiramatsu R, Kanai-Azuma M, Takami S, Fujishiro J, Kanai Y. Versatile application of fast green FCF as a visible cholangiogram in adult mice to medium-sized mammals. Sci Rep 2025; 15:1960. [PMID: 39821095 PMCID: PMC11739563 DOI: 10.1038/s41598-024-84355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
An aqueous solution of a common food dye, Fast Green FCF (FG), mimics cholyl-lysyl-fluorescein to visualize embryonic bile flow via single peritoneal injection into intrauterine mouse embryos. Despite its efficacy in embryos, its suitability for adult mice and small to medium-sized mammals remained uncertain. In this study, we investigated FG cholangiography in adult mice, dogs, and goats. The results demonstrate that FG injection enables progressive cholangiography in these species, highlighting its versatility across different animal models without necessitating specialized equipment. To further evaluate diagnostic utility, FG cholangiography was performed in various mouse models of bile flow disorders. FG successfully visualized dilated lumina in the extrahepatic bile duct of BDL mice and revealed aberrant luminal structures in the gallbladder walls of Sox17+/- or Shh-cre; Sox17flox/- mice. In Mab21l1-/- mice with contracted gallbladders, FG influx was limited to the gallbladder neck. Moreover, stereomicroscopic video analysis of FG influx into the gallbladder post-fasting revealed differences in gallbladder wall state and its bile composition between Sox17+/- and wild-type mice, suggesting the potential for detecting variations in gallbladder stored bile properties. These findings underscore the efficacy of FG in facilitating progressive cholangiography across mammalian species.
Collapse
Affiliation(s)
- Tomoyuki Niimi
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hironobu Oiki
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shihan Zeng
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Watcharapon Promsut
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriaki Ota
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shunji Nonaka
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | | | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Hasegawa Y, Hashimoto D, Zhang Z, Miyajima T, Saito Y, Li W, Kikuchi R, Senjo H, Sekiguchi T, Tateno T, Chen X, Yokoyama E, Takahashi S, Ohigashi H, Ara T, Hayase E, Yokota I, Teshima T. GVHD targets organoid-forming bile duct stem cells in a TGF-β-dependent manner. Blood 2024; 144:904-913. [PMID: 38905638 DOI: 10.1182/blood.2023023060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) is a major life-threatening complication that occurs after allogeneic hematopoietic cell transplantation (HCT). Although adult tissue stem cells have been identified as targets of GVHD in the skin and gut, their role in hepatic GVHD is yet to be clarified. In the current study, we explored the fate of bile duct stem cells (BDSCs), capable of generating liver organoids in vitro, during hepatic GVHD after allogeneic HCT. We observed a significant expansion of biliary epithelial cells (BECs) on injury early after allogeneic HCT. Organoid-forming efficiency from the bile duct was also significantly increased early after allogeneic HCT. Subsequently, the organoid-forming efficiency from bile ducts was markedly decreased in association with the reduction of BECs and the elevation of plasma concentrations of bilirubin, suggesting that GVHD targets BDSCs and impairs the resilience of BECs. The growth of liver organoids in the presence of liver-infiltrating mononuclear cells from allogeneic recipients, but not from syngeneic recipients, was significantly reduced in a transforming growth factor-β (TGF-β)-dependent manner. Administration of SB-431542, an inhibitor of TGF-β signaling, from day 14 to day 28, protected organoid-forming BDSCs against GVHD and mitigated biliary dysfunction after allogeneic HCT, suggesting that BDSCs are a promising therapeutic target for hepatic GVHD.
Collapse
Affiliation(s)
- Yuta Hasegawa
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Zixuan Zhang
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Toru Miyajima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Yumika Saito
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Wenyu Li
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Ryo Kikuchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hajime Senjo
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Tomoko Sekiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahiro Tateno
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Xuanzhong Chen
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Emi Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Eiko Hayase
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Brazovskaja A, Gomes T, Holtackers R, Wahle P, Körner C, He Z, Schaffer T, Eckel JC, Hänsel R, Santel M, Seimiya M, Denecke T, Dannemann M, Brosch M, Hampe J, Seehofer D, Damm G, Camp JG, Treutlein B. Cell atlas of the regenerating human liver after portal vein embolization. Nat Commun 2024; 15:5827. [PMID: 38992008 PMCID: PMC11239663 DOI: 10.1038/s41467-024-49236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
The liver has the remarkable capacity to regenerate. In the clinic, regeneration is induced by portal vein embolization, which redirects portal blood flow, resulting in liver hypertrophy in locations with increased blood supply, and atrophy of embolized segments. Here, we apply single-cell and single-nucleus transcriptomics on healthy, hypertrophied, and atrophied patient-derived liver samples to explore cell states in the regenerating liver. Our data unveils pervasive upregulation of genes associated with developmental processes, cellular adhesion, and inflammation in post-portal vein embolization liver, disrupted portal-central hepatocyte zonation, and altered cell subtype composition of endothelial and immune cells. Interlineage crosstalk analysis reveals mesenchymal cells as an interaction hub between immune and endothelial cells, and highlights the importance of extracellular matrix proteins in liver regeneration. Moreover, we establish tissue-scale iterative indirect immunofluorescence imaging for high-dimensional spatial analysis of perivascular microenvironments, uncovering changes to tissue architecture in regenerating liver lobules. Altogether, our data is a rich resource revealing cellular and histological changes in human liver regeneration.
Collapse
Affiliation(s)
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Rene Holtackers
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christiane Körner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Theresa Schaffer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julian Connor Eckel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - René Hänsel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany.
| | - J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
6
|
Hellen DJ, Fay ME, Lee DH, Klindt-Morgan C, Bennett A, Pachura KJ, Grakoui A, Huppert SS, Dawson PA, Lam WA, Karpen SJ. BiliQML: a supervised machine-learning model to quantify biliary forms from digitized whole slide liver histopathological images. Am J Physiol Gastrointest Liver Physiol 2024; 327:G1-G15. [PMID: 38651949 PMCID: PMC11376979 DOI: 10.1152/ajpgi.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David H Lee
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Caroline Klindt-Morgan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ashley Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Miyazaki N, Takami S, Uemura M, Oiki H, Takahashi M, Kawashima H, Kanamori Y, Yoshioka T, Kasahara M, Nakazawa A, Higashi M, Yanagida A, Hiramatsu R, Kanai-Azuma M, Fujishiro J, Kanai Y. Impact of gallbladder hypoplasia on hilar hepatic ducts in biliary atresia. COMMUNICATIONS MEDICINE 2024; 4:111. [PMID: 38862768 PMCID: PMC11166647 DOI: 10.1038/s43856-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biliary atresia (BA) is an intractable disease of unknown cause that develops in the neonatal period. It causes jaundice and liver damage due to the destruction of extrahepatic biliary tracts,. We have found that heterozygous knockout mice of the SRY related HMG-box 17 (Sox17) gene, a master regulator of stem/progenitor cells in the gallbladder wall, exhibit a condition like BA. However, the precise contribution of hypoplastic gallbladder wall to the pathogenesis of hepatobiliary disease in Sox17 heterozygous embryos and human BA remains unclear. METHODS We employed cholangiography and histological analyses in the mouse BA model. Furthermore, we conducted a retrospective analysis of human BA. RESULTS We show that gallbladder wall hypoplasia causes abnormal multiple connections between the hilar hepatic bile ducts and the gallbladder-cystic duct in Sox17 heterozygous embryos. These multiple hilar extrahepatic ducts fuse with the developing intrahepatic duct walls and pull them out of the liver parenchyma, resulting in abnormal intrahepatic duct network and severe cholestasis. In human BA with gallbladder wall hypoplasia (i.e., abnormally reduced expression of SOX17), we also identify a strong association between reduced gallbladder width (a morphometric parameter indicating gallbladder wall hypoplasia) and severe liver injury at the time of the Kasai surgery, like the Sox17-mutant mouse model. CONCLUSIONS Together with the close correlation between gallbladder wall hypoplasia and liver damage in both mouse and human cases, these findings provide an insight into the critical role of SOX17-positive gallbladder walls in establishing functional bile duct networks in the hepatic hilus of neonates.
Collapse
Affiliation(s)
- Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hironobu Oiki
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Masataka Takahashi
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hiroshi Kawashima
- Department of Surgery, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto Kamikyo-ku, Kyoto, Japan
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Marakovits C, Francis H. Unraveling the complexities of fibrosis and ductular reaction in liver disease: pathogenesis, mechanisms, and therapeutic insights. Am J Physiol Cell Physiol 2024; 326:C698-C706. [PMID: 38105754 PMCID: PMC11193454 DOI: 10.1152/ajpcell.00486.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ductular reaction and fibrosis are hallmarks of many liver diseases including primary sclerosing cholangitis, primary biliary cholangitis, biliary atresia, alcoholic liver disease, and metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Liver fibrosis is the accumulation of extracellular matrix often caused by excess collagen deposition by myofibroblasts. Ductular reaction is the proliferation of bile ducts (which are composed of cholangiocytes) during liver injury. Many other cells including hepatic stellate cells, hepatocytes, hepatic progenitor cells, mesenchymal stem cells, and immune cells contribute to ductular reaction and fibrosis by either directly or indirectly interacting with myofibroblasts and cholangiocytes. This review summarizes the recent findings in cellular links between ductular reaction and fibrosis in numerous liver diseases.
Collapse
Affiliation(s)
- Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
9
|
Ambrosio EMG, Bailey CSL, Unterweger IA, Christensen JB, Bruchez MP, Lundegaard PR, Ober EA. LiverZap: a chemoptogenetic tool for global and locally restricted hepatocyte ablation to study cellular behaviours in liver regeneration. Development 2024; 151:dev202217. [PMID: 38381702 DOI: 10.1242/dev.202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish. LiverZap employs the formation of a binary FAP-TAP photosensitiser followed by brief near-infrared illumination inducing hepatocyte-specific death and recapitulating mammalian liver injury types. The tool enables local hepatocyte ablation and extended live imaging capturing regenerative cell behaviours, which is crucial for studying cellular interactions at the interface of healthy and damaged tissue. Applying LiverZap, we show that targeted hepatocyte ablation in a small region of interest is sufficient to trigger local liver progenitor-like cell (LPC)-mediated regeneration, challenging the current understanding of liver regeneration. Surprisingly, the LPC response is also elicited in adjacent uninjured tissue, at up to 100 µm distance to the injury. Moreover, dynamic biliary network rearrangement suggests active cell movements from uninjured tissue in response to substantial hepatocyte loss as an integral step of LPC-mediated liver regeneration. This precisely targetable liver cell ablation tool will enable the discovery of key molecular and morphogenetic regeneration paradigms.
Collapse
Affiliation(s)
- Elizabeth M G Ambrosio
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Charlotte S L Bailey
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Iris A Unterweger
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jens B Christensen
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15217, USA
| | - Pia R Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Elke A Ober
- Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Petronella N, Gill S, Curran IHA. Comparative genomic analysis of Fischer F344 rat livers exposed for 90 days to 3-methylfuran or its parental compound furan. Food Chem Toxicol 2024; 184:114426. [PMID: 38160780 DOI: 10.1016/j.fct.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Furan is a naturally forming compound found in heat-processed foods such as coffee, canned meats, and jarred baby food. It is concurrently found with analogues including 2-methylfuran (2-MF) and 3-methylfuran (3-MF), and toxicity studies demonstrate all are potent liver toxins. Toxicity studies found 3-MF is more toxic than either furan, or 2-MF. The present analysis assesses the transcriptional response in liver samples taken from male Fischer (F344) rats exposed to furan or 3-MF from 0 to 2.0 and 0-1.0 mg/kg bw/day, respectively, for 90 days. Transcriptional analyses found decreased liver function and fatty acid metabolism are common responses to both furan and 3-MF exposure. Furan liver injury promotes a ductular reaction through Hippo and TGFB signalling, which combined with increased immune response results in ameliorating perturbed bile acid homeostasis in treated rats. Failure to activate these pathways in 3-MF exposed rats and decreased p53 activity leads to cholestasis, and increased toxicity. Finally, BMD analysis indicate many of the most sensitive pathways affected by furan and 3-MF exposure relate to metabolism - malate dehydrogenase and glucose metabolism with BMDLs of 0.03 and 0.01 mg/kg bw/day for furan and 3-MF exposure, respectively, which agrees with BMDLs previously reported for apical and microarray data.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - N Petronella
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - S Gill
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
11
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
12
|
Hrncir HR, Hantelys F, Gracz AD. Panic at the Bile Duct: How Intrahepatic Cholangiocytes Respond to Stress and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1440-1454. [PMID: 36870530 PMCID: PMC10548281 DOI: 10.1016/j.ajpath.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
In the liver, biliary epithelial cells (BECs) line intrahepatic bile ducts (IHBDs) and are primarily responsible for modifying and transporting hepatocyte-produced bile to the digestive tract. BECs comprise only 3% to 5% of the liver by cell number but are critical for maintaining choleresis through homeostasis and disease. To this end, BECs drive an extensive morphologic remodeling of the IHBD network termed ductular reaction (DR) in response to direct injury or injury to the hepatic parenchyma. BECs are also the target of a broad and heterogenous class of diseases termed cholangiopathies, which can present with phenotypes ranging from defective IHBD development in pediatric patients to progressive periductal fibrosis and cancer. DR is observed in many cholangiopathies, highlighting overlapping similarities between cell- and tissue-level responses by BECs across a spectrum of injury and disease. The following core set of cell biological BEC responses to stress and injury may moderate, initiate, or exacerbate liver pathophysiology in a context-dependent manner: cell death, proliferation, transdifferentiation, senescence, and acquisition of neuroendocrine phenotype. By reviewing how IHBDs respond to stress, this review seeks to highlight fundamental processes with potentially adaptive or maladaptive consequences. A deeper understanding of how these common responses contribute to DR and cholangiopathies may identify novel therapeutic targets in liver disease.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Fransky Hantelys
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
13
|
Lebedeva E, Shchastniy A, Babenka A. Cellular and Molecular Mechanisms of Toxic Liver Fibrosis in Rats Depending on the Stages of Its Development. Sovrem Tekhnologii Med 2023; 15:50-63. [PMID: 38434195 PMCID: PMC10902903 DOI: 10.17691/stm2023.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Indexed: 03/05/2024] Open
Abstract
The aim is to study the cellular and molecular features of toxic liver fibrosis in rats and its dependence on development stages of this pathological condition. Materials and Methods Liver fibrogenesis in male Wistar rats was induced with the thioacetamide solution by introducing into the stomach with a probe at a dose of 200 mg/kg of animal body weight 2 times per week. The process dynamics was studied at 5 time points (control, week 3, week 5, week 7, and week 9). The mRNA levels of tweak, fn14, ang, vegfa, cxcl12, and mmp-9 genes in liver were detected by real-time polymerase chain reaction. Immunohistochemical study was performed on paraffin sections. The CD31, CD34, CK19, α-SMA, FAP, CD68, CD206, CX3CR1, and CD45 cells were used as markers. Fibrosis degree was determined in histological sections, stained in line with the Mallory technique, according to the Ishak's semi-quantitative scale. Results Two simultaneously existing morphologically heterogeneous populations of myofibroblasts expressing different types of markers (FAP, α-SMA) were identified in rat liver. Prior to the onset of transformation of fibrosis into cirrhosis (F1-F4, weeks 3-7), FAP+ and SMA+ cells were localized in different places on histological specimens. All stages of liver fibrosis development were accompanied by an increase in the number (p=0.0000), a change in the phenotypic structure and functional properties of macrophages. The CK19+ cells of the portal areas differentiated into cholangiocytes that formed interlobular bile ducts and ductules, as well as hepatocytes that formed rudiments of new hepatic microlobules. Pathological venous angiogenesis and heterogeneity of endotheliocytes of the intrahepatic vascular bed were detected. Two options for changes in mRNA expression of the selected genes were identified. The level of the fn14 and mmp-9 mRNAs at all stages of fibrosis was higher (p=0.0000) than in control rats. For tweak, ang, vegfa, and cxcl12 mRNAs, the situation was the opposite - the level of genes decreased (p=0.0000). There were strong and moderate correlations between the studied target genes (p<0.05). Conclusion It was established that the stages of toxic fibrosis had morphological and molecular genetic features. The FAP+ cells make the main contribution to development of portal and initial stage of bridging fibrosis. The stellate macrophages and infiltrating monocytes/ macrophages can potentially be used for development of new therapeutic strategies for liver pathology treatment. One should take into account the features of the markers' expression by endothelial cells during the study of the intrahepatic vascular bed. Joint study of genes is a necessary ad-hoc parameter in fundamental and preclinical research.
Collapse
Affiliation(s)
- E.I. Lebedeva
- Associate Professor, Department of Histology, Cytology and Embryology; Vitebsk State Order of Peoples’ Friendship Medical University, 27 Frunze Avenue, Vitebsk, 210009, the Republic of Belarus
| | - A.T. Shchastniy
- Professor, Head of the Department of Hospital Surgery with the Course of the Fetoplacental Complex and Placental Complex; Vitebsk State Order of Peoples’ Friendship Medical University, 27 Frunze Avenue, Vitebsk, 210009, the Republic of Belarus
| | - A.S. Babenka
- Associate Professor, Department of Bioorganic Chemistry; Belarusian State Medical University, 83 Dzerzhinsky Avenue, Minsk, 220116, the Republic of Belarus
| |
Collapse
|
14
|
Hellen DJ, Karpen SJ. LiverQuant: An Improved Method for Quantitative Analysis of Liver Pathology. Bio Protoc 2023; 13:e4776. [PMID: 37497459 PMCID: PMC10367012 DOI: 10.21769/bioprotoc.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Current means to quantify cells, gene expression, and fibrosis of liver histological slides are not standardized in the research community and typically rely upon data acquired from a selection of random regions identified in each slide. As such, analyses are subject to selection bias as well as limited subsets of available data elements throughout the slide. A whole-slide analysis of cells and fibrosis would provide for a more accurate and complete quantitative analysis, along with minimization of intra- and inter-experimental variables. Herein, we present LiverQuant, a method for quantifying whole-slide scans of digitized histologic images to render a more comprehensive analysis of presented data elements. After loading images and preparing the project in the QuPath program, researchers are provided with one to two scripts per analysis that generate an average intensity threshold for their staining, automated tissue annotation, and downstream detection of their anticipated cellular matrices. When compared with two standard methodologies for histological quantification, LiverQuant had two significant advantages: increased speed and a 50-fold greater tissue area coverage. Using publicly available open-source code (GitHub), LiverQuant improves the reliability and reproducibility of experimental results while reducing the time scientists require to perform bulk analysis of liver histology. This analytical process is readily adaptable by most laboratories, requires minimal optimization, and its principles and code can be optimized for use in other organs. Graphical overview.
Collapse
Affiliation(s)
- Dominick J. Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
17
|
Caviglia S, Unterweger IA, Gasiūnaitė A, Vanoosthuyse AE, Cutrale F, Trinh LA, Fraser SE, Neuhauss SCF, Ober EA. FRaeppli: a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish. Development 2022; 149:276363. [DOI: 10.1242/dev.199615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.
Collapse
Affiliation(s)
- Sara Caviglia
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Iris A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Akvilė Gasiūnaitė
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Alexandre E. Vanoosthuyse
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Stephan C. F. Neuhauss
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| |
Collapse
|
18
|
Hrncir HR, Gracz AD. Cellular and transcriptional heterogeneity in the intrahepatic biliary epithelium. GASTRO HEP ADVANCES 2022; 2:108-120. [PMID: 36593993 PMCID: PMC9802653 DOI: 10.1016/j.gastha.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
Epithelial tissues comprise heterogeneous cellular subpopulations, which often compartmentalize specialized functions like absorption and secretion to distinct cell types. In the liver, hepatocytes and biliary epithelial cells (BECs; also called cholangiocytes) are the two major epithelial lineages and play distinct roles in (1) metabolism, protein synthesis, detoxification, and (2) bile transport and modification, respectively. Recent technological advances, including single cell transcriptomic assays, have shed new light on well-established heterogeneity among hepatocytes, endothelial cells, and immune cells in the liver. However, a "ground truth" understanding of molecular heterogeneity in BECs has remained elusive, and the field currently lacks a set of consensus biomarkers for identifying BEC subpopulations. Here, we review long-standing definitions of BEC heterogeneity as well as emerging studies that aim to characterize BEC subpopulations using next generation single cell assays. Understanding cellular heterogeneity in the intrahepatic bile ducts holds promise for expanding our foundational mechanistic knowledge of BECs during homeostasis and disease.
Collapse
Affiliation(s)
- Hannah R. Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Adam D. Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Richter B, Zafarnia S, Gremse F, Kießling F, Scheuerlein H, Settmacher U, Dahmen U. Corrosion Cast and 3D Reconstruction of the Murine Biliary Tree After Biliary Obstruction: Quantitative Assessment and Comparison With 2D Histology. J Clin Exp Hepatol 2022; 12:755-766. [PMID: 35677523 PMCID: PMC9168744 DOI: 10.1016/j.jceh.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Obstructive cholestasis can lead to significant alterations of the biliary tree depending on the extent and duration of the biliary occlusion. Current experimental studies reported about advanced techniques for corrosion cast and 3D reconstruction (3D-reco) visualizing delicate microvascular structures in animals. We compared these two different techniques for visualization and quantitative assessment of the obstructed murine biliary tree with classical 2D histology. Methods Male mice (n = 36) were allocated to 3 different experiments. In experiments 1 and 2, we injected two different media (Microfil© for 3D-reco, MV; Batson's No.17 for corrosion cast, CC) into the extrahepatic bile duct. In experiment 3 we sampled liver tissue for 2D histology (HE, BrdU). Time points of interest were days 1, 3, 5, 7, 14, and 28 after biliary occlusion. We used different types of software for quantification of the different samples: IMALYTICS Preclinical for 3D scans (MV); NDP.view2 for the digital photography of CC; HistoKat software for 2D histology. Results We achieved samples in 75% of the animals suitable for evaluation (MV and CC, each with 9/12). Contrasting of terminal bile ducts (4th order of branches) was achieved with either technique. MV permitted a fast 3D-reco of the hierarchy of the biliary tree, including the 3rd and 4th order of branches in almost all samples (8/9 and 6/9). CC enabled focused evaluation of the hierarchy of the biliary tree, including the 4th to 5th order of branches in almost all samples (9/9 and 8/9). In addition, we detected dense meshes of the smallest bile ducts in almost all CC samples (8/9). MV and CC allowed a quantitative assessment of anatomical details of the 3rd and 4th order branches of almost every sample. The 2D histology identified different kinetics and areas of proliferation of hepatocytes and cholangiocytes. Complementary usage of 3D-reco, corrosion casting and 2D histology matched dense meshes of small bile ducts with areas of intensive proliferative activity of cholangiocytes as periportal proliferative areas of 4th and 5th order branches (∼terminal bile ducts and bile ductules) matched with its morphological information the matching assessment of areas with increased proliferative activity (BrdU) and a partial quantification of the characteristics of the 4th order branches of the biliary tree. Conclusion The 3D-reco and corrosion casting of the murine biliary tree are feasible and provide a straightforward, robust, and reliable (and more economical) procedure for the visualization and quantitative assessment of architectural alterations, in comparative usage with the 2D histology.
Collapse
Key Words
- 2D IHC, two-dimensional immunohistochemistry
- 3D reconstruction
- 3D-reco, three-dimensional reconstruction
- BD, bile duct
- BT, extrahepatic and intrahepatic biliary tree
- BrdU, Bromodeoxyuridine
- CC, Corrosion Cast using Batson No.17
- CoH, Canals of Hering
- DHC, Ductus hepatocholedochus, main extrahepatic bile duct
- HE, Haematoxylin-Eosin
- MV, Microfil®-MV
- POD, postoperative day
- biliary occlusion
- biliary tree
- corrosion cast
- ehBD, extrahepatic bile duct
- ihBD, intrahepatic bile duct
- microfil
- periportal segments
- tBDT, bile duct ligation (using three sutures) with transection of the ligated extrahepatic bile duct between the middle and proximal sutures
- μCT, micro Computer Tomography (micro-CT)
Collapse
Affiliation(s)
- Beate Richter
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, University Hospital Jena, Drackendorfer Strasse 1, 07747, Jena, Germany
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Sarah Zafarnia
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
| | - Fabian Kießling
- Institute for Experimental Molecular Imaging, RWTH University Hospital Aachen, Templergraben 55, 52056, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Str. 2, 28359 Bremen, Germany
| | - Hubert Scheuerlein
- Clinic for General, Visceral and Pediatric Surgery, St. Vincenz Hospital Paderborn, Teaching Hospital of the University of Göttingen, Am Busdorf 2, 33098 Paderborn, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, University Hospital Jena, Drackendorfer Strasse 1, 07747, Jena, Germany
- Department of General, Visceral and Vascular Surgery, University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
20
|
Bebiashvili IS, Kakabadze MS, Gvidiani SM, Tsomaia KB, Gusev SA, Kordzaia DJ. Features of Ductular Reaction in Rats with Extrahepatic Cholestasis. Bull Exp Biol Med 2022; 172:770-774. [PMID: 35503585 DOI: 10.1007/s10517-022-05475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Ductular reaction develops during liver regeneration, fibrosis, and carcinogenesis. However, the types, stages of formation, and topography of ductular profiles in various pathologies remain insufficiently studied. Using the model of common bile duct occlusion, we showed that the number and topography of ductular profiles are closely related to the duration of biliary obstruction. The ductular profiles can be located inside the portal tract, along the existing bile ducts, and/or intramurally, around the portal vein, periportally, inside the lobules, in the portocaval fibrous connections, in the adventitia of the hepatic veins, in the septs connecting the portal tracts, and also in the "portal plate" of the liver. The ductular profiles can be formed as a result of expansion of existing bile ducts, cholangiocyte proliferation, as well as transdifferentiation of hepatocytes and activation of mesenchymal stem cells.
Collapse
Affiliation(s)
- I S Bebiashvili
- Faculty of Medicine, Tbilisi, Georgia
- Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | | | | | - S A Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - D J Kordzaia
- Faculty of Medicine, Tbilisi, Georgia
- Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
21
|
Ota N, Shiojiri N. Comparative study on a novel lobule structure of the zebrafish liver and that of the mammalian liver. Cell Tissue Res 2022; 388:287-299. [PMID: 35258713 DOI: 10.1007/s00441-022-03607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
The mammalian liver has a lobule structure with a portal triad consisting of the portal vein, hepatic artery, and bile duct, which exhibits zonal gene expression, whereas those of teleosts do not have a portal triad. It remains to be demonstrated what kind of the unit structures they have, including their gene expression patterns. The aims of the present study were to demonstrate the unit structure of the teleost liver and discuss it in terms of evolution and adaptation in vertebrates and the use of teleosts as an alternative model for human disease. The zebrafish liver was examined as a representative of teleosts with respect to its morphological architecture and gene expression. A novel, polygonal lobule structure was detected in the zebrafish liver. In it, portal veins and central veins were distributed at the periphery and center, respectively. Sinusoids connected both veins. Anxa4-positive preductules were incorporated into the tubular lumen of two rows of hepatocytes in sections. Intrahepatic bile ducts resided randomly in the liver lobule. Zebrafish livers did not have zonal gene expression for metabolic pathways examined. The lobules of the zebrafish liver with preductules located in the tubular lumina of hepatocytes may resemble the oval cell reaction of injured livers of mammals and might convey bile to the intestine more safely than mammalian livers. The gene expression pattern in liver lobules and our liver lobule model of the zebrafish may be important to discuss data obtained in experiments using this animal as an alternative model for human disease.
Collapse
Affiliation(s)
- Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, Oya 836, Suruga-ku, Shizuoka City, Shizuoka, 422-8529, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Oya 836, Suruga-ku, Shizuoka City, Shizuoka, 422-8529, Japan.
| |
Collapse
|
22
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
24
|
Schnabl B, Arteel GE, Stickel F, Hengstler J, Vartak N, Ghallab A, Dooley S, Li Y, Schwabe RF. Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:36-44. [PMID: 35042252 PMCID: PMC8941985 DOI: 10.1055/a-1714-9330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, United States
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Liver Research Center, Pittsburgh, United States
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Jan Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Nachiket Vartak
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, United States
| |
Collapse
|
25
|
Chen J, Cheng NC, Boland JA, Liu K, Kench JG, Watkins DN, Ferreira-Gonzalez S, Forbes SJ, McCaughan GW. Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166335. [PMID: 34973373 DOI: 10.1016/j.bbadis.2021.166335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Loss of primary cilia in epithelial cells is known to cause cystic diseases of the liver and kidney. We have previously shown that during experimental and human cirrhosis that primary cilia were predominantly expressed on biliary cells in the ductular reaction. However, the role of primary cilia in the pathogenesis of the ductular reaction is not fully understood. METHODS Primary cilia were specifically removed in biliary epithelial cells (BECs) by the administration of tamoxifen to Kif3af/f;CK19CreERT mice at week 2 of a 20-week course of TAA treatment. Biliary progenitor cells were isolated and grown as organoids from gallbladders. Cells and tissue were analysed using histology, immunohistochemistry and Western blot assays. RESULTS At the end of 20 weeks TAA administration, primary cilia loss in liver BECs resulted in multiple microscopic cystic lesions within an unaltered ductular reaction. These were not seen in control mice who did not receive TAA. There was no effect of biliary primary cilia loss on the development of cirrhosis. Increased cellular proliferation was seen within the cystic structures associated with a decrease in hepatocyte lobular proliferation. Loss of primary cilia within biliary organoids was initially associated with reduced cell passage survival but this inhibitory effect was diminished in later passages. ERK but not WNT signalling was enhanced in primary cilia loss-induced cystic lesions in vivo and its inhibition reduced the expansion of primary cilia deficient biliary progenitor cells in vitro. CONCLUSIONS TAA-treated kif3a BEC-specific knockout mice had an unaltered progression to cirrhosis, but developed cystic lesions that showed increased proliferation.
Collapse
Affiliation(s)
- Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Ngan Ching Cheng
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia
| | - Jade A Boland
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia
| | - Ken Liu
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; A.W. Morrow Gastroenterology and Liver Centre, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - James G Kench
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; Department of Tissue Pathology & Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, United Kingdom
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, United Kingdom
| | - Geoffrey W McCaughan
- Liver Injury and Cancer Program, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; A.W. Morrow Gastroenterology and Liver Centre, Australian Liver Transplant Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
26
|
Vartak N, Drasdo D, Geisler F, Itoh T, P J Oude Elferink R, van de Graaf SFJ, Chiang J, Keitel V, Trauner M, Jansen P, Hengstler JG. On the Mechanisms of Biliary Flux. Hepatology 2021; 74:3497-3512. [PMID: 34164843 DOI: 10.1002/hep.32027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Since the late 1950s, transport of bile in the liver has been described by the "osmotic concept," according to which bile flows into the canaliculi toward the ducts, countercurrent to the blood flow in the sinusoids. However, because of the small size of canaliculi, it was so far impossible to observe, let alone to quantify this process. Still, "osmotic canalicular flow" was a sufficient and plausible explanation for the clearance characteristics of a wide variety of choleretic compounds excreted in bile. Imaging techniques have now been established that allow direct flux analysis in bile canaliculi of the intact liver in living organisms. In contrast to the prevailing osmotic concept these analyses strongly suggest that the transport of small molecules in canalicular bile is diffusion dominated, while canalicular flow is negligibly small. In contrast, with the same experimental approach, it could be shown that in the interlobular ducts, diffusion is augmented by flow. Thus, bile canaliculi can be compared to a standing water zone that is connected to a river. The seemingly subtle difference between diffusion and flow is of relevance for therapy of a wide range of liver diseases including cholestasis and NAFLD. Here, we incorporated the latest findings on canalicular solute transport, and align them with extant knowledge to present an integrated and explanatory framework of bile flux that will undoubtedly be refined further in the future.
Collapse
Affiliation(s)
- Nachiket Vartak
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Dirk Drasdo
- National Institute for Research in Digital Science and Technology, Paris, France
| | - Fabian Geisler
- Clinic and Polyclinic for Internal Medicine II, Kinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Tohru Itoh
- Institute for Quantitative Biosciences, the University of Tokyo, Tokyo, Japan
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John Chiang
- North-East Ohio Medical University, Rootstown, OH, USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Jansen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
27
|
Hu S, Russell JO, Liu S, Cao C, McGaughey J, Rai R, Kosar K, Tao J, Hurley E, Poddar M, Singh S, Bell A, Shin D, Raeman R, Singhi AD, Nejak-Bowen K, Ko S, Monga SP. β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. eLife 2021; 10:71310. [PMID: 34609282 PMCID: PMC8555990 DOI: 10.7554/elife.71310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of β-catenin, one with β-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived β-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of β-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of β-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or β-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel β-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF. The liver has an incredible capacity to repair itself or ‘regenerate’ – that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called ‘ductular reaction’, which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called β-catenin – which can cause many types of cells to proliferate – is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce β-catenin in biliary duct cells, while the other lacked β-catenin both in biliary duct cells and in hepatocytes. After a short liver injury – which Hu et al. caused by feeding the mice a specific diet – the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked β-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking β-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that β-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of β-catenin in ductular reaction. Further, the results show a previously unknown interaction between β-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China.,Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jacquelyn O Russell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Catherine Cao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jackson McGaughey
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Ravi Rai
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Karis Kosar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Edward Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aaron Bell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Donghun Shin
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| |
Collapse
|
28
|
Ghallab A, Myllys M, Friebel A, Duda J, Edlund K, Halilbasic E, Vucur M, Hobloss Z, Brackhagen L, Begher-Tibbe B, Hassan R, Burke M, Genc E, Frohwein LJ, Hofmann U, Holland CH, González D, Keller M, Seddek AL, Abbas T, Mohammed ESI, Teufel A, Itzel T, Metzler S, Marchan R, Cadenas C, Watzl C, Nitsche MA, Kappenberg F, Luedde T, Longerich T, Rahnenführer J, Hoehme S, Trauner M, Hengstler JG. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021; 10:cells10102516. [PMID: 34685496 PMCID: PMC8533774 DOI: 10.3390/cells10102516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Adrian Friebel
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Julia Duda
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Michael Burke
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | - Erhan Genc
- MRI Unit, Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.B.); (E.G.)
| | | | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany;
| | - Christian H. Holland
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant—Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Magdalena Keller
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Abdel-latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Tahany Abbas
- Histology Department, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Elsayed S. I. Mohammed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Andreas Teufel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Timo Itzel
- Department of Medicine I, University Hospital, 93053 Regensburg, Germany; (A.T.); (T.I.)
| | - Sarah Metzler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, Department of Immunology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (S.M.); (C.W.)
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany;
| | - Franziska Kappenberg
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty at Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Dusseldorf, Germany; (M.V.); (T.L.)
| | - Thomas Longerich
- Translational Gastrointestinal Pathology, Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany; (J.D.); (F.K.); (J.R.)
| | - Stefan Hoehme
- Institute of Computer Science & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstr. 16-18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (E.H.); (M.T.)
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Department of Toxicology, Technical University Dortmund, Ardeystr. 67, 44139 Dortmund, Germany; (M.M.); (K.E.); (Z.H.); (L.B.); (B.B.-T.); (R.H.); (D.G.); (M.K.); (R.M.); (C.C.)
- Correspondence: (A.G.); (J.G.H.); Tel.: +49-0231-1084-356 (A.G.); +49-0231-1084-348 (J.G.H.)
| |
Collapse
|
29
|
Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16 high Cells In Vivo. Cell Metab 2020; 32:814-828.e6. [PMID: 32949498 DOI: 10.1016/j.cmet.2020.09.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.
Collapse
|