1
|
Lelong P, Besnard A, Girondot M, Habold C, Priam F, Giraudeau M, Le Loc'h G, Le Loc'h A, Fournier P, Fournier-Chambrillon C, Fort J, Bustamante P, Dupont SM, Vincze O, Page A, Perrault JR, De Thoisy B, Gros-Desormeaux JR, Martin J, Bourgeois O, Lepori M, Régis S, Lecerf N, Lefebvre F, Aubert N, Frouin C, Flora F, Pimentel E, Passalboni AS, Jeantet L, Hielard G, Louis-Jean L, Brador A, Giannasi P, Etienne D, Lecerf N, Chevallier P, Chevallier T, Meslier S, Landreau A, Desnos A, Maceno M, Larcher E, Le Maho Y, Chevallier D. Fibropapillomatosis Dynamics, Severity and Demographic Effect in Caribbean Green Turtles. ECOHEALTH 2025; 22:108-123. [PMID: 39907943 DOI: 10.1007/s10393-025-01701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Habitat degradation induced by human activities can exacerbate the spread of wildlife disease and could hinder the recovery of imperiled species. The endangered green turtle Chelonia mydas is impacted worldwide by fibropapillomatosis (FP), a neoplastic infectious disease likely triggered by the Scutavirus chelonidalpha5 with coastal anthropogenic stressors acting as cofactors in disease development. Here, we studied fibropapillomatosis dynamics and its demographic consequences using an 11-year capture-mark-recapture dataset in Anse du Bourg d'Arlet/Chaudière (ABAC) and Grande Anse d'Arlet (GA), two juvenile green turtle foraging grounds in Martinique, French West Indies. Afflicted turtles had similar mortality and permanent emigration rates to the non-afflicted ones. Fibropapillomatosis was commonly observed in large individuals and disease recovery may take several years. Consequently, permanent emigration before full recovery from the disease is suspected and might affect the developmental migration success. Additionally, the results revealed that the FP had higher prevalence and severity, and progressed two times faster in ABAC than in GA despite the proximity (< 2 km) and the similarity of the two foraging grounds. The reasons for these differences remain unidentified. Locally, further studies should be focused on the determination of the external and internal cofactors related to the observed FP dynamics. Finally, the investigations should be extended at a global regional scale to determine potential deleterious effect of the FP on the adult life-stage. These perspectives improves upon our overall understanding on the interplay between wildlife diseases, hosts and environmental factors.
Collapse
Affiliation(s)
- Pierre Lelong
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France.
- Université des Antilles, Campus de Schoelcher, 97275, Schoelcher Cedex, Martinique, France.
| | - Aurélien Besnard
- CEFE, University Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Marc Girondot
- CNRS, AgroParisTech, Ecologie Systématique et Evolution, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Caroline Habold
- Institut Pluridisciplinaire Hubert-Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 rue Becquerel, 67000, Strasbourg, France
| | - Fabienne Priam
- Groupe de Recherche BIOSPHERES, Université des Antilles, Campus de Schoelcher, 97275, Schoelcher Cedex, Martinique, France
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Aurélie Le Loc'h
- Laboratoire NAC&CO, 29 chemin de Bordeblanche, 31100, Toulouse, France
| | - Pascal Fournier
- Groupe de Recherche et d'Etude pour la Gestion de L'Environnement, 1 La Peyrère, 33730, Villandraut, France
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie M Dupont
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Orsolya Vincze
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS, Université de La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. Highway 1 N, Fort Pierce, FL, 34946, USA
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL, 33408, USA
| | - Benoît De Thoisy
- Association Kwata, Cayenne Cedex, French Guiana, France
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Jean-Raphaël Gros-Desormeaux
- Laboratoire Caribéen de Sciences Sociales, UMR 8053, LC2S, Université des Antilles, 97275, Schoelcher Cedex, Martinique, France
| | - Jordan Martin
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Ouvéa Bourgeois
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Muriel Lepori
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Sidney Régis
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Nicolas Lecerf
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Fabien Lefebvre
- Association ACWAA, Quartier L'étang, 97217, Les Anses d'Arlet, Martinique, France
| | - Nathalie Aubert
- Association ACWAA, Quartier L'étang, 97217, Les Anses d'Arlet, Martinique, France
| | - Cédric Frouin
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Frédéric Flora
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Esteban Pimentel
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Anne-Sophie Passalboni
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Lorène Jeantet
- African Institute for Mathematical Sciences, 7 Melrose Rd, Muizenberg, Cape Town, 7950, South Africa
- Department of Mathematical Sciences, Stellenbosch University, Victoria Street, Stellenbosch, 7602, South Africa
- African Institute for Mathematical Sciences, Research and Innovation Centre, Kigali, Rwanda
| | - Gaëlle Hielard
- Office de L'Eau Martinique, 7 Avenue Condorcet, 97200, Fort-de-France, Martinique, France
| | - Laurent Louis-Jean
- Parc naturel régional de la martinique, Maison du Parc, Morne TARTENSON, BP 437, 97200, Fort-de-France, Martinique, France
| | - Aude Brador
- Office Français de la Biodiversité, Parc Naturel marin de Martinique, Rue des Pionniers, 97200, Fort de France, Martinique, France
| | - Paul Giannasi
- Office Français de la Biodiversité, Parc Naturel marin de Martinique, Rue des Pionniers, 97200, Fort de France, Martinique, France
| | - Denis Etienne
- Direction de L'Environnement, de L'Aménagement et du Logement Martinique, B.P. 7212, 97274, Schœlcher Cedex, Martinique, France
| | - Nathaël Lecerf
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France
| | - Pascale Chevallier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Tao Chevallier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Stéphane Meslier
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Anthony Landreau
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Anaïs Desnos
- ANSLO-S Association naturaliste de soutien logistique à la science, 7 Avenue Georges Clémenceau, 49280, La Tessoualle, France
| | - Myriane Maceno
- Communauté d'Agglomération de L'Espace Sud, Lotissement des Frangipaniers, 97228, Sainte-Luce, Martinique, France
| | - Eugène Larcher
- Mairie des Anses d'Arlet, Boulevard des Arlésiens, 97217, Les Anses-d'Arlet, Martinique, France
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert-Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 rue Becquerel, 67000, Strasbourg, France
| | - Damien Chevallier
- Laboratoire de Biologie Des Organismes et des Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 8067, SU, IRD 207, Université des Antilles, Station de Recherche Marine de Martinique, Quartier Degras, Petite Anse, 97217, Les Anses d'Arlet, Martinique, France.
| |
Collapse
|
2
|
Pérez YAA, Lima SR, Martinez-Souza G, Gião T, Chenard MG, Helayel MJA, Mársico ET, da Silva KVGC, de Alencar NX. First case report of fibropapillomatosis tumor regression identified through photoidentification and histopathology in a Chelonia mydas in Itapirubá, Santa Catarina, Brazil. Open Vet J 2024; 14:3649-3655. [PMID: 39927341 PMCID: PMC11799617 DOI: 10.5455/ovj.2024.v14.i12.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 02/11/2025] Open
Abstract
Background Fibropapillomatosis (FP) is a tumor disease primarily affecting juvenile sea turtles, often characterized by external growths that can regress spontaneously. This study reports the first documented case of total tumor regression in a free-living green turtle (Chelonia mydas) with FP in southern Brazil. Case Description A juvenile green sea turtle (Chelonia mydas) was captured and recaptured on Itapirubá Beach, Santa Catarina, Brazil, showing signs of tumor regression with a period of 302 days between captures. At the first capture, photographs of the head and other regions were taken for photoidentification, along with documentation of fibropapilloma sites and tumor scoring. Tumor samples from the initial capture were histopathologically confirmed as fibropapillomas. At the recapture, the turtle showed a slight increase in carapace length, remaining classified as a juvenile. Tumors observed during the first capture were absent at recapture, with only scars remaining in the affected areas. Photoidentification confirmed the recapture, facilitating case monitoring. Tumor regression in this turtle is likely linked to various environmental and ecological factors. Conclusion Spontaneous regression of FP tumors remains a crucial indicator in the health monitoring of sea turtle populations. This is the first documented case of FP regression in this region of Brazil, suggesting that the turtle's increasing age and reduced exposure to anthropogenic pressure may have contributed to the tumor's regression. Although clinical follow-up of free-living sea turtles is challenging, reports of FP tumor regression are vital for understanding the health dynamics of sea turtle populations.
Collapse
Affiliation(s)
- Yohany Arnold Alfonso Pérez
- Graduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Federal Fluminense University, Rio de Janeiro, Brazil
- Caminho Marinho Project, Instituto Socioambiental de Cominicação, Santa Catarina, Brazil
| | - Samara Rosolem Lima
- Graduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Gustavo Martinez-Souza
- Caminho Marinho Project, Instituto Socioambiental de Cominicação, Santa Catarina, Brazil
- Biometrics and Conservation Laboratory, Institute of Mathematics, Statistics and Physics, Federal University of Rio Grande, Rio Grande do Sul, Brazil
| | - Thayana Gião
- Caminho Marinho Project, Instituto Socioambiental de Cominicação, Santa Catarina, Brazil
- Graduate Program in Oceanography, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Marina Galindo Chenard
- Graduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Michel José Abdalla Helayel
- Graduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Federal Fluminense University, Rio de Janeiro, Brazil
- Faculty of Veterinary, Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | | - Nayro Xavier de Alencar
- Graduate Program in Veterinary Medicine (Clinical and Animal Reproduction), Faculty of Veterinary, Federal Fluminense University, Rio de Janeiro, Brazil
- Faculty of Veterinary, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Whilde J, Mashkour N, Koda SA, Eastman CB, Thompson D, Burkhalter B, Frandsen HR, Page A, Blackburn NB, Jones K, Ariel E, Dupont SM, Wood L, Duffy DJ. International overview of sea turtle fibropapillomatosis: a survey of expert opinions and trends. Front Cell Dev Biol 2024; 12:1445438. [PMID: 39239565 PMCID: PMC11374714 DOI: 10.3389/fcell.2024.1445438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Marine environments offer a wealth of opportunities to improve understanding and treatment options for cancers, through insights into a range of fields from drug discovery to mechanistic insights. By applying One Health principles the knowledge obtained can benefit both human and animal populations, including marine species suffering from cancer. One such species is green sea turtles (Chelonia mydas), which are under threat from fibropapillomatosis (FP), an epizootic tumor disease (animal epidemic) that continues to spread and increase in prevalence globally. In order to effectively address this epizootic, a more thorough understanding is required of the prevalence of the disease and the approaches to treating afflicted turtles. Methods To identify knowledge gaps and assess future needs, we conducted a survey of sea turtle FP experts. The survey consisted of 47 questions designed to assess general perceptions of FP, the areas where more information is needed, local FP trends, the disease status, and mitigation needs, and was voluntarily completed by 44 experts across a broad geographic range. Results Over 70% of respondents both recognized FP as a cancerous panzootic disease, and reported that FP is increasing in prevalence. They report several factors contributing to this increase. Nearly all of the respondents reported that FP research, patient treatment and rehabilitation required more funding in their area, and reported inadequate facilities and capacity for dealing with FP patients. Treatment approaches varied: just over 70% of the medical experts that responded surgically remove FP tumors, either using laser or scalpel. Just under half of respondents use anti-cancer drugs in their treatment of FP. Internal tumors were reported as justification for euthanasia by 61.5% of respondents, and 30.8% reported severe external tumors to be sufficient grounds for euthanasia. Most medical respondents (93.3%) routinely perform necropsy on deceased or euthanized FP-afflicted turtles. Over 80% of respondents considered large-scale multidisciplinary collaboration 'extremely important' for advancing the field of FP research. Discussion The survey responses provide a valuable insight into the current status of FP in sea turtles, FP treatment, rehabilitation and research, and help to identify critical FP-related areas most in need of attention.
Collapse
Affiliation(s)
- Jenny Whilde
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Samantha A Koda
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Catherine B Eastman
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Drew Thompson
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Hilary R Frandsen
- National Park Service, Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX, United States
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Karina Jones
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Sophie M Dupont
- BOREA Research Unit, Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques, UMR 8067, MNHN, CNRS, SU, IRD 207, UCN, UA, Station de Recherche Marine de Martinique, Les Anses d'Arlet, France
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS, La Rochelle Université, La Rochelle, France
| | - Lawrence Wood
- Florida Hawksbill Project, National Save The Sea Turtle Foundation, Ft. Lauderdale, FL, United States
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
McCauley M, Koda SA, Loesgen S, Duffy DJ. Multicellular species environmental DNA (eDNA) research constrained by overfocus on mitochondrial DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169550. [PMID: 38142009 DOI: 10.1016/j.scitotenv.2023.169550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Environmental DNA (eDNA) is becoming an established tool across the biological and medical sciences. Despite the evident successes and wide adoption of eDNA approaches, some fundamental questions remain. For instance, there is almost a dogma in the field around the superiority of mitochondrial DNA for use in eDNA studies, however robust comparison with nuclear eDNA is widely lacking. The dominance of mitochondrial-based eDNA for animal and plant studies appears to be largely settled, despite a widespread lack of rigorous nuclear eDNA testing. Outside of the source organism the protections conferred on eDNA by the cell, mitochondrial and nuclear membranes are poorly understood, including the contribution of each to eDNA persistence and degradation. Utilizing shotgun sequencing to unbiasedly assess the level of nuclear and mitochondrial eDNA across samples, we reveal stark differences in nuclear versus mitochondrial eDNA persistence and abundance. By focusing too heavily on mitochondrial DNA alone the field is underutilizing eDNA's full potential.
Collapse
Affiliation(s)
- Mark McCauley
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Samantha A Koda
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA
| | - Sandra Loesgen
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Manes C, Herren RM, Page A, Dunlap FD, Skibicki CA, Rollinson Ramia DR, Farrell JA, Capua I, Carthy RR, Duffy DJ. Green Turtle Fibropapillomatosis: Tumor Morphology and Growth Rate in a Rehabilitation Setting. Vet Sci 2023; 10:421. [PMID: 37505827 PMCID: PMC10383401 DOI: 10.3390/vetsci10070421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Fibropapillomatosis (FP) is a neoplastic disease most often found in green turtles (Chelonia mydas). Afflicted turtles are burdened with potentially debilitating tumors concentrated externally on the soft tissues, plastron, and eyes and internally on the lungs, kidneys, and the heart. Clinical signs occur at various levels, ranging from mild disease to severe debilitation. Tumors can both progress and regress in affected turtles, with outcomes ranging from death due to the disease to complete regression. Since its official description in the scientific literature in 1938, tumor growth rates have been rarely documented. In addition, FP tumors come in two very different morphologies; yet, to our knowledge, there have been no quantified differences in growth rates between tumor types. FP tumors are often rugose in texture, with a polypoid to papillomatous morphology, and may or may not be pedunculated. In other cases, tumors are smooth, with a skin-like surface texture and little to no papillose structures. In our study, we assessed growth-rate differences between rugose and smooth tumor morphologies in a rehabilitation setting. We measured average biweekly tumor growth over time in green turtles undergoing rehabilitation at the University of Florida Whitney Laboratory Sea Turtle Hospital in St. Augustine, Florida, and compared growth between rugose and smooth tumors. Our results demonstrate that both rugose and smooth tumors follow a similar active growth progression pattern, but rugose tumors grew at significantly faster rates (p = 0.013) than smooth ones. We also documented regression across several examined tumors, ranging from -0.19% up to -10.8% average biweekly negative growth. Our study offers a first-ever assessment of differential growth between tumor morphologies and an additional diagnostic feature that may lead to a more comprehensive understanding and treatment of the disease. We support the importance of tumor morphological categorization (rugose versus smooth) being documented in future FP hospital- and field-based health assessments.
Collapse
Affiliation(s)
- Costanza Manes
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Richard M Herren
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- The Sea Turtle Conservancy, Gainesville, FL 32609, USA
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - Faith D Dunlap
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Devon R Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA
| | - Ilaria Capua
- School of Advanced International Studies, John Hopkins University, 40126 Bologna, Italy
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Raymond R Carthy
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611, USA
| | - David J Duffy
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
6
|
Whitmore L, McCauley M, Farrell JA, Stammnitz MR, Koda SA, Mashkour N, Summers V, Osborne T, Whilde J, Duffy DJ. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat Ecol Evol 2023; 7:873-888. [PMID: 37188965 PMCID: PMC10250199 DOI: 10.1038/s41559-023-02056-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.
Collapse
Affiliation(s)
- Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Mark McCauley
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jessica A Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Maximilian R Stammnitz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Samantha A Koda
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Victoria Summers
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Todd Osborne
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Jenny Whilde
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA.
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Robben DM, Palaniappan P, Loganathan AL, Subbiah VK. Increased Prevalence and New Evidence of Multi-Species Chelonid Herpesvirus 5 (ChHV5) Infection in the Sea Turtles of Mabul Island, Borneo. Animals (Basel) 2023; 13:ani13020290. [PMID: 36670830 PMCID: PMC9854600 DOI: 10.3390/ani13020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Fibropapillomatosis (FP) is a debilitating tumor disease affecting all species of sea turtles globally. The most probable etiological agent for FP is the chelonid herpesvirus 5 (ChHV5). A 2015-2016 field survey of the sea turtles at Mabul Island, Sabah, Malaysia, found three green turtles (Chelonia mydas) with FP tumors. However, the presence of ChHV5 was confirmed in 7.8% (9/115) green turtles and was absent (0/16) in the hawksbill (Eretmochelys imbricata) turtles, as determined through molecular approaches. Subsequent to this, we managed to conduct field sampling of sea turtles in November 2019, just prior to the pandemic lockdown. Here, we aim to determine the extent of ChHV5 infection, and whether the virus has spread to other species of sea turtles around Mabul Island after the first reports of ChHV5 and FP. A total of 69 tissue samples were obtained from green (63), hawksbill (5), and olive ridley (Lepidochelys olivacea) (1) turtles in November 2019. We observed only one green turtle that exhibited FP tumors. To determine the presence of ChHV5, viral DNA was isolated from all the tissue samples, and polymerase chain reaction (PCR) analysis targeting three highly conserved regions of the virus, i.e., the capsid protein gene, glycoprotein H gene, and glycoprotein B gene, was performed. Out of 63 green turtles, 27 were positive for the presence of the virus. The prevalence of ChHV5 in the green turtles showed an increase of 42.9% as compared to the previous sampling conducted in 2015-2016. Additionally, for the first time, three out of the five hawksbill turtles, and one olive ridley turtle, were also PCR-positive for the virus. In conclusion, this study reveals that there has been an increase in ChHV5 infection among turtles in Mabul Island over the last 3 years. ChHV5 should be considered a potential threat, and mitigation efforts should be taken to prevent the spread of infection among the endangered sea turtles of Mabul Island and surrounding islands within the Coral Triangle.
Collapse
Affiliation(s)
- Dexter Miller Robben
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Pushpa Palaniappan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | | | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Morphologic and physiologic characteristics of green sea turtle (Chelonia mydas) hatchlings in southeastern Florida, USA. J Comp Physiol B 2022; 192:751-764. [DOI: 10.1007/s00360-022-01450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
|
9
|
Li TH, Hsu WL, Chen CY, Chen YC, Wang YC, Tsai MA, Chen IC, Chang CC. Preparation of recombinant glycoprotein B (gB) of Chelonid herpesvirus 5 (ChHV5) for antibody production and its application for infection detection in sea turtles. Sci Rep 2022; 12:11022. [PMID: 35773319 PMCID: PMC9246996 DOI: 10.1038/s41598-022-15281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The Chelonid herpesvirus 5 (ChHV5) infection possibly associated to the fibropapillomatosis (FP) disease in sea turtles worldwide remains largely unknown and limited studies have used serological approaches to detection of antibodies against ChHV5 in sea turtles with or without FP. We aimed to develop diagnostic platforms based on the viral glycoprotein B (gB) for ChHV5 infection. In this study, five recombinant sub-fragments of the gB protein were successfully expressed and subsequently served as antigens for both seroprevalence and antibody production. The results indicated that the five expressed proteins harbored antigenicity, shown by the results of using sera from sea turtles that were PCR-positive for ChHV5. Moreover, seropositive sea turtles were significantly associated with FP (p < 0.05). We further used the expressed protein to produce antibodies for immunohistochemical analysis, and found that the in-house-generated sera specifically stained FP lesions while normal epithelium tissues remained negative. Of major importance, the reactivity in the ballooning degeneration area was much stronger than that in other regions of the FP lesion/tumour, thus indicating ChHV5 viral activities. In summary, the developed serological test and specific anti-gB antibodies for IHC analysis could be applied for further understanding of epidemiological distributions of ChHV5 infection in sea turtles, and studies of ChHV5 pathogenesis.
Collapse
Affiliation(s)
- Tsung-Hsien Li
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, 94450, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.,Institute of Marine Ecology and Conservation, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chang-You Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Chen Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, 1650 Sec. 4 Taiwan Blvd., Xitun Dist., Taichung, 407, Taiwan
| | - Yu-Chen Wang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.,International Program in Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - I-Chun Chen
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, 94450, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
10
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via P. Mattioli, 4, 53100 Siena, Italy;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Alessandro Armini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy;
| | - Francesco Bellucci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| | - Giovanni Furii
- Centro Recupero Tartarughe Marine Legambiente, Molo di Ponente, 71043 Manfredonia, Italy;
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| |
Collapse
|
11
|
Farrell JA, Whitmore L, Mashkour N, Rollinson Ramia DR, Thomas RS, Eastman CB, Burkhalter B, Yetsko K, Mott C, Wood L, Zirkelbach B, Meers L, Kleinsasser P, Stock S, Libert E, Herren R, Eastman S, Crowder W, Bovery C, Anderson D, Godfrey D, Condron N, Duffy DJ. Detection and population genomics of sea turtle species via non-invasive environmental DNA analysis of nesting beach sand tracks and oceanic water. Mol Ecol Resour 2022; 22:2471-2493. [PMID: 35377560 DOI: 10.1111/1755-0998.13617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
Elusive aquatic wildlife, such as endangered sea turtles, are difficult to monitor and conserve. As novel molecular and genetic technologies develop, it is possible to adapt and optimize them for wildlife conservation. One such technology is environmental (e)DNA - the detection of DNA shed from organisms into their surrounding environments. We developed species-specific green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle probe-based qPCR assays, which can detect and quantify sea turtle eDNA in controlled (captive tank water and sand samples) and free ranging (oceanic water samples and nesting beach sand) settings. eDNA detection complemented traditional in-water sea turtle monitoring by enabling detection even when turtles were not visually observed. Furthermore, we report that high throughput shotgun sequencing of eDNA sand samples enabled sea turtle population genetic studies and pathogen monitoring, demonstrating that non-invasive eDNA techniques are viable and efficient alternatives to biological sampling (e.g. biopsies and blood draws). Genetic information was obtained from sand many hours after nesting events, without having to observe or interact with the target individual. This greatly reduces the sampling stress experienced by nesting mothers and emerging hatchlings, and avoids sacrificing viable eggs for genetic analysis. The detection of pathogens from sand indicates significant potential for increased wildlife disease monitoring capacity and viral variant surveillance. Together, these results demonstrate the potential of eDNA approaches to ultimately help understand and conserve threatened species such as sea turtles.
Collapse
Affiliation(s)
- Jessica A Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon R Rollinson Ramia
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel S Thomas
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biological Sciences, Florida International University, Miami, FL, 33181, USA
| | - Cody Mott
- Inwater Research Group Inc, Jensen Beach, FL, 34957, USA
| | - Larry Wood
- Florida Hawksbill Project, National Save The Sea Turtle Foundation, Ft. Lauderdale, FL, 33308, USA
| | - Bette Zirkelbach
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Lucas Meers
- Mickler's Landing Turtle Patrol, Ponte Vedra Beach, FL, 32082, USA
| | - Pat Kleinsasser
- Crescent Beach Turtle Patrol, Crescent Beach, FL, 32080, USA
| | - Sharon Stock
- Flagler Turtle Patrol, Marineland Beach, FL, 32080, USA
| | | | | | - Scott Eastman
- Florida Department of Environmental Protection, St Augustine, FL, 32080, USA
| | | | | | | | - David Godfrey
- The Sea Turtle Conservancy, Gainesville, FL, 32609, USA
| | - Nancy Condron
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Mickler's Landing Turtle Patrol, Ponte Vedra Beach, FL, 32082, USA
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
12
|
Giersch RM, Hart SFM, Reddy SG, Yonemitsu MA, Orellana Rosales MJ, Korn M, Geleta BM, Countway PD, Fernández Robledo JA, Metzger MJ. Survival and Detection of Bivalve Transmissible Neoplasia from the Soft-Shell Clam Mya arenaria (MarBTN) in Seawater. Pathogens 2022; 11:pathogens11030283. [PMID: 35335607 PMCID: PMC8955499 DOI: 10.3390/pathogens11030283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022] Open
Abstract
Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and several bivalve species. The transmissible cancers in dogs and devils are known to spread through direct physical contact, but the exact route of transmission of bivalve transmissible neoplasia (BTN) has not yet been confirmed. It has been hypothesized that cancer cells from bivalves could be released by diseased animals and spread through the water column to infect/engraft into other animals. To test the feasibility of this proposed mechanism of transmission, we tested the ability of BTN cells from the soft-shell clam (Mya arenaria BTN, or MarBTN) to survive in artificial seawater. We found that MarBTN cells are highly sensitive to salinity, with acute toxicity at salinity levels lower than those found in the native marine environment. BTN cells also survive longer at lower temperatures, with 50% of cells surviving greater than 12 days in seawater at 10 °C, and more than 19 days at 4 °C. With one clam donor, living cells were observed for more than eight weeks at 4 °C. We also used qPCR of environmental DNA (eDNA) to detect the presence of MarBTN-specific DNA in the environment. We observed release of MarBTN-specific DNA into the water of laboratory aquaria containing highly MarBTN-diseased clams, and we detected MarBTN-specific DNA in seawater samples collected from MarBTN-endemic areas in Maine, although the copy numbers detected in environmental samples were much lower than those found in aquaria. Overall, these data show that MarBTN cells can survive well in seawater, and they are released into the water by diseased animals. These findings support the hypothesis that BTN is spread from animal-to-animal by free cells through seawater.
Collapse
Affiliation(s)
- Rachael M. Giersch
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
| | - Samuel F. M. Hart
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Satyatejas G. Reddy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (S.G.R.); (M.J.O.R.); (P.D.C.); (J.A.F.R.)
- University of Georgia, Athens, GA 30602, USA
| | - Marisa A. Yonemitsu
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - María J. Orellana Rosales
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (S.G.R.); (M.J.O.R.); (P.D.C.); (J.A.F.R.)
- Southern Maine Community College, South Portland, ME 04106, USA
| | - Madelyn Korn
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
- Tulane University, New Orleans, LA 70118, USA
| | - Brook M. Geleta
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
- Macalester College, Saint Paul, MN 55105, USA
| | - Peter D. Countway
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (S.G.R.); (M.J.O.R.); (P.D.C.); (J.A.F.R.)
| | - José A. Fernández Robledo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA; (S.G.R.); (M.J.O.R.); (P.D.C.); (J.A.F.R.)
| | - Michael J. Metzger
- Pacific Northwest Research Institute, Seattle, WA 98122, USA; (R.M.G.); (S.F.M.H.); (M.A.Y.); (M.K.); (B.M.G.)
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +206-726-1220
| |
Collapse
|
13
|
Page-Karjian A, Whitmore L, Stacy BA, Perrault JR, Farrell JA, Shaver DJ, Walker JS, Frandsen HR, Rantonen E, Harms CA, Norton TM, Innis C, Yetsko K, Duffy DJ. Fibropapillomatosis and Chelonid Alphaherpesvirus 5 Infection in Kemp's Ridley Sea Turtles ( Lepidochelys kempii). Animals (Basel) 2021; 11:ani11113076. [PMID: 34827808 PMCID: PMC8614476 DOI: 10.3390/ani11113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The Kemp’s ridley sea turtle is an endangered species that is susceptible to a tumor disease called fibropapillomatosis (FP) and its associated virus, chelonid alphaherpesvirus 5 (ChHV5). The goal of our study was to describe FP in Kemp’s ridley turtles, including estimated disease prevalence and pathologyg, and case demographics and outcomes, to better understand the risk posed by FP to Kemp’s ridley population recovery. During 2006–2020, we identified 22 cases of Kemp’s ridley turtles with FP, including 12 adult turtles, a reproductively valuable age class. Molecular diagnostics were used to identify ChHV5 DNA in blood (7.8%) and tumor (91.7%) samples collected from free-ranging Kemp’s ridley turtles. Genomic sequencing was conducted to identify ChHV5 variants in tumor samples collected from Kemp’s ridley turtles with FP. Along with case data, phylogenetic analysis of resultant sequences suggests increasing, spatiotemporal spread of ChHV5 infections and FP among Kemp’s ridley turtles in coastal areas, including the Gulf of Mexico and the southwestern Atlantic Ocean, where they share habitat with green sea turtles (in which FP is enzootic). This is concerning because FP has an uncertain pathogenesis, is potentially related to anthropogenic environmental degradation, and can cause suffering and/or death in severely afflicted turtles. Abstract Fibropapillomatosis (FP), a debilitating, infectious neoplastic disease, is rarely reported in endangered Kemp’s ridley sea turtles (Lepidochelys kempii). With this study, we describe FP and the associated chelonid alphaherpesvirus 5 (ChHV5) in Kemp’s ridley turtles encountered in the United States during 2006–2020. Analysis of 22 case reports of Kemp’s ridley turtles with FP revealed that while the disease was mild in most cases, 54.5% were adult turtles, a reproductively valuable age class whose survival is a priority for population recovery. Of 51 blood samples from tumor-free turtles and 12 tumor samples from turtles with FP, 7.8% and 91.7%, respectively, tested positive for ChHV5 DNA via quantitative polymerase chain reaction (qPCR). Viral genome shotgun sequencing and phylogenetic analysis of six tumor samples show that ChHV5 sequences in Kemp’s ridley turtles encountered in the Gulf of Mexico and northwestern Atlantic cluster with ChHV5 sequences identified in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles from Hawaii, the southwestern Atlantic Ocean, and the Caribbean. Results suggest an interspecific, spatiotemporal spread of FP among Kemp’s ridley turtles in regions where the disease is enzootic. Although FP is currently uncommon in this species, it remains a health concern due to its uncertain pathogenesis and potential relationship with habitat degradation.
Collapse
Affiliation(s)
- Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
- Correspondence:
| | - Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biological Sciences, University of Limerick, V94 T9PX Co. Limerick, Ireland
| | - Brian A. Stacy
- National Oceanic & Atmospheric Administration, National Marine Fisheries Service, Gainesville, FL 32611, USA;
| | | | - Jessica A. Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Donna J. Shaver
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - J. Shelby Walker
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - Hilary R. Frandsen
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (J.S.W.); (H.R.F.)
| | - Elina Rantonen
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | - Craig A. Harms
- Center for Marine Science & Technology, North Carolina State University, Morehead City, NC 28557, USA;
| | | | | | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
| | - David J. Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (L.W.); (J.A.F.); (K.Y.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Sea Turtles in the Cancer Risk Landscape: A Global Meta-Analysis of Fibropapillomatosis Prevalence and Associated Risk Factors. Pathogens 2021; 10:pathogens10101295. [PMID: 34684244 PMCID: PMC8540842 DOI: 10.3390/pathogens10101295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Several cancer risk factors (exposure to ultraviolet-B, pollution, toxins and pathogens) have been identified for wildlife, to form a “cancer risk landscape.” However, information remains limited on how the spatiotemporal variability of these factors impacts the prevalence of cancer in wildlife. Here, we evaluated the cancer risk landscape at 49 foraging sites of the globally distributed green turtle (Chelonia mydas), a species affected by fibropapillomatosis, by integrating data from a global meta-analysis of 31 publications (1994–2019). Evaluated risk factors included ultraviolet light exposure, eutrophication, toxic phytoplanktonic blooms, sea surface temperature, and the presence of mechanical vectors (parasites and symbiotic species). Prevalence was highest in areas where nutrient concentrations facilitated the emergence of toxic phytoplankton blooms. In contrast, ultraviolet light exposure and the presence of parasitic and/or symbiotic species did not appear to impact disease prevalence. Our results indicate that, to counter outbreaks of fibropapillomatosis, management actions that reduce eutrophication in foraging areas should be implemented.
Collapse
|
15
|
Ní Leathlobhair M, Yetsko K, Farrell JA, Iaria C, Marino G, Duffy DJ, Murchison EP. Genotype data not consistent with clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma. Wellcome Open Res 2021; 6:219. [PMID: 34622016 PMCID: PMC8459624 DOI: 10.12688/wellcomeopenres.17073.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/07/2023] Open
Abstract
Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
| | - Jessica A. Farrell
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Carmelo Iaria
- Centre of Experimental Fish Pathology of Sicily (CISS), Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, n 31, University of Messina, 98166, Messina, Italy
| | - Gabriele Marino
- Department of Veterinary Sciences, Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
| | - David J. Duffy
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Whitmore L, Yetsko K, Farrell JA, Page-Karjian A, Daniel W, Shaver DJ, Frandsen HR, Walker JS, Crowder W, Bovery C, Rollinson Ramia D, Burkhalter B, Ryan E, Duffy DJ. Evolutionary Comparisons of Chelonid Alphaherpesvirus 5 (ChHV5) Genomes from Fibropapillomatosis-Afflicted Green ( Chelonia mydas), Olive Ridley ( Lepidochelys olivacea) and Kemp's Ridley ( Lepidochelys kempii) Sea Turtles. Animals (Basel) 2021; 11:2489. [PMID: 34573455 PMCID: PMC8465875 DOI: 10.3390/ani11092489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth's ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2035 single nucleotide polymorphisms (SNPs), 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific, with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic virus.
Collapse
Affiliation(s)
- Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Jessica A. Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | - Whitney Daniel
- South Carolina Aquarium, 100 Aquarium Wharf, Charleston, SC 29401, USA;
| | - Donna J. Shaver
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Hilary R. Frandsen
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Jennifer Shelby Walker
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Whitney Crowder
- Gumbo Limbo Nature Center, Boca Raton, FL 33432, USA; (W.C.); (C.B.)
| | - Caitlin Bovery
- Gumbo Limbo Nature Center, Boca Raton, FL 33432, USA; (W.C.); (C.B.)
| | - Devon Rollinson Ramia
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Elizabeth Ryan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - David J. Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|