1
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity and category-selectivity from birth. Nat Hum Behav 2025; 9:955-970. [PMID: 40097802 DOI: 10.1038/s41562-025-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, parietal and somatosensory cortex, and increases in connectivity to lateral prefrontal cortex. In addition, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and capacity for white matter connections to change over development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Sarah Tung
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg, Giessen and Darmstadt, Marburg, Germany
| | - Vaidehi S Natu
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior - CMBB, Universities of Marburg, Giessen and Darmstadt, Marburg, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford, CA, USA
| |
Collapse
|
2
|
Girault JB. The developing visual system: A building block on the path to autism. Dev Cogn Neurosci 2025; 73:101547. [PMID: 40096794 PMCID: PMC11964655 DOI: 10.1016/j.dcn.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Longitudinal neuroimaging studies conducted over the past decade provide evidence of atypical visual system development in the first years of life in autism spectrum disorder (ASD). Findings from genomic analyses, family studies, and postmortem investigations suggest that changes in the visual system in ASD are linked to genetic factors, making the visual system an important neural phenotype along the path from genes to behavior that deserves further study. This article reviews what is known about the developing visual system in ASD in the first years of life; it also explores the potential canalizing role that atypical visual system maturation may have in the emergence of ASD by placing findings in the context of developmental cascades involving brain development, attention, and social and cognitive development. Critical gaps in our understanding of human visual system development are discussed, and future research directions are proposed to improve our understanding of ASD as a complex neurodevelopmental disorder with origins in early brain development.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Zhang L, Ge Q, Sun Z, Zhang R, Li X, Luo X, Tian R, Cao Y, Pu C, Li L, Wu D, Jiang P, Yu C, Nosarti C, Xiao C, Liu Z. Association and shared biological bases between birth weight and cortical structure. Transl Psychiatry 2025; 15:74. [PMID: 40044659 PMCID: PMC11882966 DOI: 10.1038/s41398-025-03294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Associations between birth weight and cortical structural phenotypes have been detected; however, the understanding is incomprehensive, and the potential biological bases are not well defined. Leveraging data from genome-wide association studies, we investigated the associations and the shared transcriptomic, proteomic and cellular bases of birth weight and 13 cortical structural phenotypes. Mendelian randomization analyses were performed to examine associations between birth weight and cortical structure. Downstream transcriptome-wide association study (TWAS), proteome-wide association study (PWAS) and summary-based Mendelian randomization (SMR) analyses were utilized to identify the shared cis-regulated gene expressions and proteins. Finally, cell-type expression-specific integration for complex traits (CELLECT) analyses were conducted to explore the enriched cell types. The Mendelian randomization analyses found positive associations between birth weight and global cortical folding index, intrinsic curvature index, local gyrification index, surface area and volume. Downstream transcriptomic-level TWAS and SMR identified three gene expressions both linked to birth weight and at least one cortical structural phenotype (CNNM2, RABGAP1 and CENPW). Parallel PWAS and SMR analyses at the proteomic level identified four proteins linked to both phenotypes (CNNM2, RAB7L1, RAB5B and PPA2), of which CNNM2 was replicated. CELLECT analyses revealed brain cell types enriched in birth weight, including pericytes, inhibitory GABAergic neurons and cerebrovascular cells. These findings support the importance of early life growth to cortical structure, and suggest underlying transcriptomic, proteomic and cellular bases. These results provide intriguing targets for further research into the mechanisms of cortical development.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiaoyue Ge
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zeyuan Sun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Rui Zhang
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinxi Li
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Luo
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Run Tian
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuheng Cao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunyan Pu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ping Jiang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chuan Yu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Chenghan Xiao
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Zhenmi Liu
- Department of Maternal and Child Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Feng Y, Cheng Y, Li X, Ge Y, Liu C, Wang M, Wei X, Wang X, Sun Q, Zheng J, Yang J, Jin C. Preterm Neonates Exhibit a "Catch-Up" Pattern in Motor Development During the Neonatal Period: A Diffusion Tensor Imaging Study. Pediatr Neurol 2025; 164:81-88. [PMID: 39879674 DOI: 10.1016/j.pediatrneurol.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities. METHODS One hundred eighteen neonates without abnormalities on magnetic resonance imaging were included. Diffusion tensor imaging-derived fractional anisotropy (FA) and neonatal neurobehavioral assessment were separately used to characterize the brain WM microstructure and neurobehavioral development levels. Scatterplots with linear fitting and Pearson correlation were used to investigate the relationships of FA and neurobehavioral scores (active tone and behavior scores) with postnatal age separately for preterm and term neonates. Here, the optical radiation (OR), auditory radiation, corticospinal tract (CST), posterior thalamic radiation (PTR), and thalamus-primary somatosensory cortex were selected as the regions of interest (ROIs). RESULTS The preterm FAs in the ROIs were lower than term neonates (all Bonferroni-corrected P < 0.001). Preterm CST FA showed a significantly higher correlation with postnatal age (P = 0.042) than term (r = 0.29 vs 0.08), whereas significantly higher correlations were found in term OR (P = 0.018) and PTR (P = 0.002). Similarly, relatively high and low correlations between active tone (r = 0.48 vs 0.35; P = 0.049 for interactions with a postnatal age ≥14 days and preterm/term group status) and behavioral scores (r = 0.36 vs 0.52; P = 0.030 for interactions of postnatal age and preterm/term group status) were observed in preterm infants. CONCLUSIONS Although delayed, preterm neonates exhibit a "catch-up" pattern in motor development in the newborn stage.
Collapse
Affiliation(s)
- Yuying Feng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Yannan Cheng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Yao Ge
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | | | - Xiaoyu Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Jie Zheng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China.
| |
Collapse
|
5
|
Kubota E, Yan X, Tung S, Fascendini B, Tyagi C, Duhameau S, Ortiz D, Grotheer M, Natu VS, Keil B, Grill-Spector K. White matter connections of human ventral temporal cortex are organized by cytoarchitecture, eccentricity, and category-selectivity from birth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605705. [PMID: 39131283 PMCID: PMC11312531 DOI: 10.1101/2024.07.29.605705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Category-selective regions in ventral temporal cortex (VTC) have a consistent anatomical organization, which is hypothesized to be scaffolded by white matter connections. However, it is unknown how white matter connections are organized from birth. Here, we scanned newborn to 6-month-old infants and adults to determine the organization of the white matter connections of VTC. We find that white matter connections are organized by cytoarchitecture, eccentricity, and category from birth. Connectivity profiles of functional regions in the same cytoarchitectonic area are similar from birth and develop in parallel, with decreases in endpoint connectivity to lateral occipital, and parietal, and somatosensory cortex, and increases to lateral prefrontal cortex. Additionally, connections between VTC and early visual cortex are organized topographically by eccentricity bands and predict eccentricity biases in VTC. These data show that there are both innate organizing principles of white matter connections of VTC, and the capacity for white matter connections to change over development.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Sarah Tung
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Bella Fascendini
- Department of Psychology, Princeton University, 40 Woodlands Way, Princeton, NJ 08544, USA
| | - Christina Tyagi
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Sophie Duhameau
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Danya Ortiz
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Frankfurter Str. 35, Marburg 35037, Germany
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
| | - Vaidehi S. Natu
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Boris Keil
- Center for Mind, Brain and Behavior – CMBB, Universities of Marburg, Giessen, and Darmstadt, Marburg 35039, Germany
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Baldinger Str., Marburg 35043, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen 35390, Germany
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, 288 Campus Drive, Stanford, CA 94305 USA
| |
Collapse
|
6
|
Meyer EE, Martynek M, Kastner S, Livingstone MS, Arcaro MJ. Expansion of a conserved architecture drives the evolution of the primate visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2421585122. [PMID: 39805017 PMCID: PMC11761675 DOI: 10.1073/pnas.2421585122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Human brain evolution is marked by a disproportionate expansion of cortical regions associated with advanced perceptual and cognitive functions. While this expansion is often attributed to the emergence of novel specialized brain areas, modifications to evolutionarily conserved cortical regions also have been linked to species-specific behaviors. Distinguishing between these two evolutionary outcomes has been limited by the ability to make direct comparisons between species. Here, we addressed this limitation by examining the expansion of the human visual cortex relative to macaques using a common functional architecture: retinotopy. Our findings revealed that human visual cortex expansion is primarily driven by increases in the surface area of a visual map architecture present in macaques rather than an increase in the number of individual areas. This expansion was not uniform, with higher-order areas, particularly in the parietal cortex, exhibiting the largest growth. Comparisons between neonate and adult humans revealed that these relative areal size differences were already established at birth. A meta-analysis of neuroimaging studies indicated that the most expanded areas are associated with advanced cognitive functions beyond visual processing. These results suggest that human perceptual and cognitive adaptations may be rooted in the expansion of evolutionarily conserved cortical architecture, with modifications even in the sensory cortex contributing to the broader cognitive functions characteristic of human behavior.
Collapse
Affiliation(s)
- Emily E. Meyer
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Marcelina Martynek
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
| | | | - Michael J. Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
7
|
Ayzenberg V, Song C, Arcaro MJ. An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate. Curr Biol 2025; 35:300-314.e5. [PMID: 39709961 DOI: 10.1016/j.cub.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.
Collapse
Affiliation(s)
- Vladislav Ayzenberg
- Temple University, Department of Psychology and Neuroscience, North 13th Street, Philadelphia, PA 19122, USA; University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Chenjie Song
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michael J Arcaro
- University of Pennsylvania, Department of Psychology, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Yan X, Tung SS, Fascendini B, Chen YD, Norcia AM, Grill-Spector K. The emergence of visual category representations in infants' brains. eLife 2024; 13:RP100260. [PMID: 39714017 DOI: 10.7554/elife.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Organizing the continuous stream of visual input into categories like places or faces is important for everyday function and social interactions. However, it is unknown when neural representations of these and other visual categories emerge. Here, we used steady-state evoked potential electroencephalography to measure cortical responses in infants at 3-4 months, 4-6 months, 6-8 months, and 12-15 months, when they viewed controlled, gray-level images of faces, limbs, corridors, characters, and cars. We found that distinct responses to these categories emerge at different ages. Reliable brain responses to faces emerge first, at 4-6 months, followed by limbs and places around 6-8 months. Between 6 and 15 months response patterns become more distinct, such that a classifier can decode what an infant is looking at from their brain responses. These findings have important implications for assessing typical and atypical cortical development as they not only suggest that category representations are learned, but also that representations of categories that may have innate substrates emerge at different times during infancy.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Psychology, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Sarah Shi Tung
- Department of Psychology, Stanford University, Stanford, United States
| | - Bella Fascendini
- Department of Psychology, Stanford University, Stanford, United States
| | - Yulan Diana Chen
- Department of Psychology, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
- Neurosciences Program, Stanford University, Stanford, United States
| |
Collapse
|
9
|
Wang W, Liu Z, Peng D, Lin GN, Wang Z. Genomic insights into genes expressed specifically during infancy highlight their dominant influence on the neuronal system. BMC Genomics 2024; 25:1012. [PMID: 39472790 PMCID: PMC11520499 DOI: 10.1186/s12864-024-10911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Elucidating the dynamics of gene expression across developmental stages, including the genomic characteristics of brain expression during infancy, is pivotal in deciphering human psychiatric and neurological disorders and providing insights into developmental disorders. RESULTS Leveraging comprehensive human GWAS associations with temporal and spatial brain expression data, we discovered a distinctive co-expression cluster comprising 897 genes highly expressed specifically during infancy, enriched in functions related to the neuronal system. This gene cluster notably harbors the highest ratio of genes linked to psychiatric and neurological disorders. Through computational analysis, MYT1L emerged as a potential central transcription factor governing these genes. Remarkably, the infancy-specific expressed genes, including SYT1, exhibit prominent colocalization within human accelerated regions. Additionally, chromatin state analysis unveiled prevalent epigenetic markers associated with enhancer-specific modifications. In addition, this cluster of genes has demonstrated to be specifically highly expressed in cell-types including excitatory neurons, medial ganglionic eminence and caudal ganglionic eminence. CONCLUSIONS This study comprehensively characterizes the genomics and epigenomics of genes specifically expressed during infancy, identifying crucial hub genes and transcription factors. These findings offer valuable insights into early detection strategies and interventions for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhe Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Daihui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
10
|
Potter NL, VanDam M, Bruce L, Davis J, Eng L, Finestack L, Heinlen V, Scherer N, Schrock C, Seltzer R, Stoel-Gammon C, Thompson L, Peter B. Virtual Post-Intervention Speech and Language Assessment of Toddler and Preschool Participants in Babble Boot Camp. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3327-3339. [PMID: 37235746 DOI: 10.1044/2023_jslhr-22-00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PURPOSE Babble Boot Camp (BBC) is a parent-implemented telepractice intervention for infants at risk for speech and language disorders. BBC uses a teach-model-coach-review approach, delivered through weekly 15-min virtual meetings with a speech-language pathologist. We discuss accommodations needed for successful virtual follow-up test administration and preliminary assessment outcomes for children with classic galactosemia (CG) and controls at age 2.5 years. METHOD This clinical trial included 54 participants, 16 children with CG receiving BBC speech-language intervention from infancy, age 2 years, five children receiving sensorimotor intervention from infancy and changing to speech-language intervention at 15 months until 2 years of age, seven controls with CG, and 26 typically developing controls. The participants' language and articulation were assessed via telehealth at age 2.5 years. RESULTS The Preschool Language Scale-Fifth Edition (PLS-5) was successfully administered with specific parent instruction and manipulatives assembled from the child's home. The GFTA-3 was successfully administered to all but three children who did not complete this assessment due to limited expressive vocabularies. Referrals for continued speech therapy based on PLS-5 and GFTA-3 scores were made for 16% of children who received BBC intervention from infancy as compared to 40% and 57% of children who began BBC at 15 months of age or did not receive BBC intervention, respectively. CONCLUSIONS With extended time and accommodations from the standardized administration guidelines, virtual assessment of speech and language was possible. However, given the inherent challenges of testing very young children virtually, in-person assessment is recommended, when possible, for outcome measurements.
Collapse
Affiliation(s)
- Nancy L Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Phoenix
| | - Jenny Davis
- College of Health Solutions, Arizona State University, Phoenix
| | - Linda Eng
- College of Health Solutions, Arizona State University, Phoenix
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities
| | - Victoria Heinlen
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Phoenix
| | - Claire Schrock
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Ryan Seltzer
- College of Health Solutions, Arizona State University, Phoenix
| | - Carol Stoel-Gammon
- Department of Speech & Hearing Sciences, University of Washington, Seattle
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Beate Peter
- College of Health Solutions, Arizona State University, Phoenix
| |
Collapse
|
11
|
Arshad NH, Abu Hassan H, Omar NF, Zainudin Z. Quantifying myelin in neonates using magnetic resonance imaging: a systematic literature review. Clin Exp Pediatr 2024; 67:371-385. [PMID: 38062713 PMCID: PMC11298773 DOI: 10.3345/cep.2023.00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/03/2024] Open
Abstract
This review aimed to assess the usefulness of various magnetic resonance imaging (MRI) techniques for the quantification of neonatal white matter myelination. The Scopus, PubMed, and Web of Science databases were searched to identify studies following the PRISMA (preferred reporting items for systematic reviews and meta-analyses) statement using quantitative MRI techniques to examine samples collected from neonates to quantify myelin. Twelve studies were ultimately included. The results demonstrated that in validation studies, relaxometry is the most frequently explored approach (83.33%), followed by magnetization transfer imaging (8.33%) and a new automatic segmentation technique (8.33%). Synthetic MRI is recommended for quantifying myelin in neonates because of several advantages that outweigh a few negligible limitations.
Collapse
Affiliation(s)
- Nabila Hanem Arshad
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Radiology, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hasyma Abu Hassan
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Farhayu Omar
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zurina Zainudin
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
12
|
Gilbreath D, Hagood D, Larson-Prior L. A Systematic Review over the Effect of Early Infant Diet on Neurodevelopment: Insights from Neuroimaging. Nutrients 2024; 16:1703. [PMID: 38892636 PMCID: PMC11174660 DOI: 10.3390/nu16111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The optimization of infant neuronal development through nutrition is an increasingly studied area. While human milk consumption during infancy is thought to give a slight cognitive advantage throughout early childhood in comparison to commercial formula, the biological underpinnings of this process are less well-known and debated in the literature. This systematic review seeks to quantitatively analyze whether early diet affects infant neurodevelopment as measured by various neuroimaging modalities and techniques. Results presented suggest that human milk does have a slight positive impact on the structural development of the infant brain-and that this impact is larger in preterm infants. Other diets with distinct macronutrient compositions were also considered, although these had more conflicting results.
Collapse
Affiliation(s)
- Dylan Gilbreath
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Science, Little Rock, AR 72207, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Darcy Hagood
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Linda Larson-Prior
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Science, Little Rock, AR 72207, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| |
Collapse
|
13
|
Zielinska-Pukos MA, Michalska-Kacymirow M, Kurek E, Bulska E, Grabowicz-Chądrzyńska I, Wesołowska A, Hamulka J. Breastmilk mineral composition among well-educated mothers from Central Poland - Associations with maternal dietary intake, dietary patterns and infant psychomotor development. J Trace Elem Med Biol 2024; 83:127393. [PMID: 38271826 DOI: 10.1016/j.jtemb.2024.127393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Maternal dietary habits could affect breastmilk mineral composition, which may influence infant development. Mineral dietary intake or supplementation slightly affects its breastmilk concentration. However, the intake of selected food groups or dietary patterns that reflect diet complexity could have a greater impact. Hence, the aim of the study was to assess breastmilk mineral composition at one, three, and six months of lactation among mothers living in urban area of Central Poland, as well as the evaluate maternal dietary determinants and associations with infant anthropometric and psychomotor development. METHODS The study was conducted among 43 healthy and exclusively breastfeeding mothers. In the first, third, and sixth months of lactation, we collected breastmilk samples and assessed the concentration of Ca, P, Zn, Fe, Se, Ni, As, Pb, and Cd using the ICP-MS method. Maternal dietary habits were evaluated by a food frequency questionnaire in the first month of lactation, whereas in the third and sixth by the three-day food record. Based on the collected data adherence to the Polish-adapted Mediterranean (Pl-aMED; 1 month) and the DASH diet (Mellen's Index; 3 and 6 months) was assessed. In the third and sixth months of lactation infant anthropometric parameters and the sixth month of lactation psychomotor development were evaluated. RESULTS Breastmilk Se, Ni, As, Pb, and Cd levels were under the LOQ in all the breastmilk samples at all study visits. Median breastmilk mineral concentrations of Ca, P, Zn, and Fe in the first, third, and sixth months of lactation varied from 381.9 to 332.7 mg/L, 161.6 to 139.1 mg/L, 2.2 to 0.8 mg/L, and 0.26 to 0.17 mg/L, respectively. Maternal dietary intake and supplementation did not affect breastmilk Ca, P, Zn, and Fe. Pl-aMED scores were associated with breastmilk Ca (β = 0.489, 95% CI 0.180 - 0.799, p = 0.003) and Zn (β = 0.499, 95% CI 0.199 - 0.798, p = 0.002) in the first month of lactation, whereas no association with the DASH diet were observed in the third and sixth month of lactation. Breastmilk Fe in the third month was associated with infant motor development (β = 0.420, 95% CI 0.113 - 0.727, p = 0.009) in the sixth month of life, but no other associations with anthropometric or psychomotor development were observed. Moreover, we estimated that few infants meet their adequate intake (AI) requirements for P, Zn, and Fe. CONCLUSION Our study showed that maternal adherence to Pl-aMED is a significant predictor of breastmilk Ca and Zn in the first month of lactation, which may be especially important considering that more than 75% of infants had inadequate Zn intake. Moreover, we found that breastmilk Fe positively influenced infant motor development, despite the majority of infants having inadequate intake. On the other hand, no infant had deficiency symptoms, which emphasizes the necessity to evaluate of AI norms for infants.
Collapse
Affiliation(s)
- Monika A Zielinska-Pukos
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| | - Magdalena Michalska-Kacymirow
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury St. 101, 02-089 Warsaw, Poland
| | - Eliza Kurek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury St. 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury St. 101, 02-089 Warsaw, Poland
| | | | - Aleksandra Wesołowska
- Department of Medical Biology, Laboratory of Human Milk and Lactation Research at Regional Human Milk Bank in Holy Family Hospital, Faculty of Health Sciences, Medical University of Warsaw, 14/16 Litewska St., 00-575 Warsaw, Poland
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| |
Collapse
|
14
|
Liao C, Cao X, Srinivasan Iyer S, Schauman S, Zhou Z, Yan X, Chen Q, Li Z, Wang N, Gong T, Wu Z, He H, Zhong J, Yang Y, Kerr A, Grill-Spector K, Setsompop K. High-resolution myelin-water fraction and quantitative relaxation mapping using 3D ViSTa-MR fingerprinting. ARXIV 2023:arXiv:2312.13523v1. [PMID: 38196746 PMCID: PMC10775347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Purpose This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. Methods We developed 3D ViSTa-MRF, which combined Visualization of Short Transverse relaxation time component (ViSTa) technique with MR Fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multi-compartment fitting that could introduce bias and/or noise from additional assumptions or priors. Results The in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in-vivo results of 1mm- and 0.66mm-iso datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30x slower with lower SNR. Furthermore, we applied the proposed method to enable 5-minute whole-brain 1mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. Conclusions In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1mm and 0.66mm isotropic resolution in 5 and 15 minutes, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.
Collapse
Affiliation(s)
- Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie Schauman
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Zihan Zhou
- Department of Radiology, Stanford University, Stanford, CA, USA
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqian Yan
- Department of Psychology, Stanford University, Stanford, CA, USA
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Zhitao Li
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ting Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Zhe Wu
- Techna Institute, University Health Network, Toronto, ON, Canada
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Yang Yang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Stanford Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, USA
| | | | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Grotheer M, Bloom D, Kruper J, Richie-Halford A, Zika S, Aguilera González VA, Yeatman JD, Grill-Spector K, Rokem A. Human white matter myelinates faster in utero than ex utero. Proc Natl Acad Sci U S A 2023; 120:e2303491120. [PMID: 37549280 PMCID: PMC10438384 DOI: 10.1073/pnas.2303491120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.
Collapse
Affiliation(s)
- Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - David Bloom
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - John Kruper
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Adam Richie-Halford
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Stephanie Zika
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Vicente A. Aguilera González
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Jason D. Yeatman
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Graduate School of Education, Stanford University, Stanford, CA94305
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| |
Collapse
|
16
|
Oosting A, Harvey L, Ringler S, van Dijk G, Schipper L. Beyond ingredients: Supramolecular structure of lipid droplets in infant formula affects metabolic and brain function in mouse models. PLoS One 2023; 18:e0282816. [PMID: 37531323 PMCID: PMC10395839 DOI: 10.1371/journal.pone.0282816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Human milk beneficially affects infant growth and brain development. The supramolecular structure of lipid globules in human milk i.e., large lipid globules covered by the milk fat globule membrane, is believed to contribute to this effect, in addition to the supply of functional ingredients. Three preclinical (mouse) experiments were performed to study the effects of infant formula mimicking the supramolecular structure of human milk lipid globules on brain and metabolic health outcomes. From postnatal day 16 to 42, mouse offspring were exposed to a diet containing infant formula with large, phospholipid-coated lipid droplets (structure, STR) or infant formula with the same ingredients but lacking the unique structural properties as observed in human milk (ingredient, ING). Subsequently, in Study 1, the fatty acid composition in liver and brain membranes was measured, and expression of hippocampal molecular markers were analyzed. In Study 2 and 3 adult (Western-style diet-induced) body fat accumulation and cognitive function were evaluated. Animals exposed to STR compared to ING showed improved omega-3 fatty acid accumulation in liver and brain, and higher expression of brain myelin-associated glycoprotein. Early exposure to STR reduced fat mass accumulation in adulthood; the effect was more pronounced in animals exposed to a Western-style diet. Additionally, mice exposed to STR demonstrated better memory performance later in life. In conclusion, early life exposure to infant formula containing large, phospholipid-coated lipid droplets, that are closer to the supramolecular structure of lipid globules in human milk, positively affects adult brain and metabolic health outcomes in pre-clinical animal models.
Collapse
Affiliation(s)
| | | | | | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Lidewij Schipper
- Danone Nutricia Research, Utrecht, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Nielsen AN, Kaplan S, Meyer D, Alexopoulos D, Kenley JK, Smyser TA, Wakschlag LS, Norton ES, Raghuraman N, Warner BB, Shimony JS, Luby JL, Neil JJ, Petersen SE, Barch DM, Rogers CE, Sylvester CM, Smyser CD. Maturation of large-scale brain systems over the first month of life. Cereb Cortex 2023; 33:2788-2803. [PMID: 35750056 PMCID: PMC10016041 DOI: 10.1093/cercor/bhac242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child's earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window (i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns (n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e. association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role in brain development. This study represents a step towards a normative brain "growth curve" that could be used to identify atypical brain maturation in infancy.
Collapse
Affiliation(s)
- Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Lauren S Wakschlag
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Elizabeth S Norton
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeffery J Neil
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
Wang L, Wu Z, Chen L, Sun Y, Lin W, Li G. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat Protoc 2023; 18:1488-1509. [PMID: 36869216 DOI: 10.1038/s41596-023-00806-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/03/2022] [Indexed: 03/05/2023]
Abstract
The human cerebral cortex undergoes dramatic and critical development during early postnatal stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging (MRI) datasets have been collected from multiple imaging sites with different scanners and imaging protocols for the investigation of normal and abnormal early brain development. However, it is extremely challenging to precisely process and quantify infant brain development with these multisite imaging data because infant brain MRI scans exhibit (a) extremely low and dynamic tissue contrast caused by ongoing myelination and maturation and (b) inter-site data heterogeneity resulting from the use of diverse imaging protocols/scanners. Consequently, existing computational tools and pipelines typically perform poorly on infant MRI data. To address these challenges, we propose a robust, multisite-applicable, infant-tailored computational pipeline that leverages powerful deep learning techniques. The main functionality of the proposed pipeline includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical surface reconstruction and measurement. Our pipeline can handle both T1w and T2w structural infant brain MR images well in a wide age range (from birth to 6 years of age) and is effective for different imaging protocols/scanners, despite being trained only on the data from the Baby Connectome Project. Extensive comparisons with existing methods on multisite, multimodal and multi-age datasets demonstrate superior effectiveness, accuracy and robustness of our pipeline. We have maintained a website, iBEAT Cloud, for users to process their images with our pipeline ( http://www.ibeat.cloud ), which has successfully processed over 16,000 infant MRI scans from more than 100 institutions with various imaging protocols/scanners.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Sun
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Nedel F, Ferrúa CP, do Amaral CC, Corrêa GP, Silveira RG, Trettim JP, da Cunha GK, Klug AB, Ardais AP, Fogaça TB, Pinheiro KA, Bast RK, Ghisleni G, de M Souza LD, de Matos MB, Quevedo LDA, Pinheiro RT. Maternal expression of miR-let-7d-3p and miR-451a during gestation influences the neuropsychomotor development of 90 days old babies: "Pregnancy care, healthy baby" study. J Psychiatr Res 2023; 158:185-191. [PMID: 36587497 PMCID: PMC9907453 DOI: 10.1016/j.jpsychires.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Studies on maternal microRNA expression have emerged to better understand regulatory mechanisms during the gestational period, since microRNA expression has been associated with pregnancy disorders. OBJECTIVES This study aims to investigate the association between the expression of the maternal microRNAs miR-let-7d-3p and miR-451a during the second gestational trimester and neuropsychomotor development at 90 days of life of infants. METHODS This is a case-control study nested within a cohort, with the groups being divided into dyads in which pregnant women presented Major Depressive Episode (MDE) (n = 64), these being the cases, and their respective controls (no MDE; n = 64). The Bayley Scale III was used to assess the outcome of child development, and MDE was assessed through the Mini International Neuropsychiatric Interview Plus. The analysis of miR-let-7d-3p and miR-451a was done via serum from the pregnant women, utilizing the qRT-PCR (n = 128). RESULTS The results indicated a negative association between expression levels of miR-451a (β -3.3 CI95% -6.4;-0.3) and a positive associated of the miR-let-7d-3p with the cognitive development domain (β 1.7 CI95% 0.1; 3.0), and a positive association between expression of miR-let-7d-3p with motor development of the infants (β 1.6 CI95% 0.3; 2.9). CONCLUSION This is a pioneering study on the topic that indicates a biological interrelationship between the miRNAs miR-let-7d-3p and miR-451a evaluated during the pregnancy and the motor and cognitive domains of infant development at 90 days postpartum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tatiane B. Fogaça
- San Francisco de Paula University Hospital – Fetal Medicine Service, Pelotas, RS, Brazil
| | - Karen A.T. Pinheiro
- University of Rio Grande Foundation (FURG), FAMED, Department of Specialized Surgery, Rio Grande/RS, Brazil
| | - Rachel K.S.S. Bast
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul. Porto Alegre/RS, Brazil
| | | | | | | | | | - Ricardo T. Pinheiro
- Catholic University of Pelotas, Pelotas, RS, Brazil,Corresponding author. Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Gonçalves Chaves, 373, Centro – Pelotas, Rio Grande do Sul, 96015-560, Brazil.
| |
Collapse
|
20
|
Pelc K, Gajewska A, Napiórkowski N, Dan J, Verhoeven C, Dan B. Multiscale entropy as a metric of brain maturation in a large cohort of typically developing children born preterm using longitudinal high-density EEG in the first two years of life. Physiol Meas 2022; 43. [PMID: 36374000 DOI: 10.1088/1361-6579/aca26c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Objective.We aimed to analyze whether complexity of brain electrical activity (EEG) measured by multiscale entropy (MSE) increases with brain maturation during the first two years of life. We also aimed to investigate whether this complexity shows regional differences across the brain, and whether changes in complexity are influenced by extrauterine life experience duration.Approach.We measured MSE of EEG signals recorded longitudinally using a high-density setup (64 or 128 electrodes) in 84 typically developing infants born preterm (<32 weeks' gestation) from term age to two years. We analyzed the complexity index and maximum value of MSE over increasing age, across brain regions, and in function of extrauterine life duration, and used correlation matrices as a metric of functional connectivity of the cerebral cortex.Main results.We found an increase of strong inter-channel correlation of MSE (R > 0.8) with increasing age. Regional analysis showed significantly increased MSE between 3 and 24 months of corrected age in the posterior and middle regions with respect to the anterior region. We found a weak relationship (adjusted R2= 0.135) between MSE and extrauterine life duration.Significance.These findings suggest that brain functional connectivity increases with maturation during the first two years of life. EEG complexity shows regional differences with earlier maturation of the visual cortex and brain regions involved in joint attention than of regions involved in cognitive analysis, abstract thought, and social behavior regulation. Finally, our MSE analysis suggested only a weak influence of early extrauterine life experiences (prior to term age) on EEG complexity.
Collapse
Affiliation(s)
- Karine Pelc
- Université libre de Bruxelles (ULB), Facuty of Motor Sciences, Brussels, Belgium.,Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium
| | | | | | - Jonathan Dan
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium.,Byteflies, Berchem, Belgium
| | - Caroline Verhoeven
- Université libre de Bruxelles (ULB), Facuty of Medicine, Department of Mathematics Education, Brussels, Belgium
| | - Bernard Dan
- Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.,Université libre de Bruxelles (ULB), Faculty of Psychology and Education Sciences, Brussels, Belgium
| |
Collapse
|
21
|
Li M, Liu T, Xu X, Wen Q, Zhao Z, Dang X, Zhang Y, Wu D. Development of visual cortex in human neonates is selectively modified by postnatal experience. eLife 2022; 11:e78733. [PMID: 36399034 PMCID: PMC9674344 DOI: 10.7554/elife.78733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Experience-dependent cortical plasticity is a pivotal process of human brain development and essential for the formation of most cognitive functions. Although studies found that early visual experience could influence the endogenous development of visual cortex in animals, little is known about such impact on human infants. Using the multimodal MRI data from the developing human connectome project, we characterized the early structural and functional maps in the ventral visual cortex and their development during neonatal period. Particularly, we found that postnatal time selectively modulated the cortical thickness in the ventral visual cortex and the functional circuit between bilateral primary visual cortices. But the cortical myelination and functional connections of the high-order visual cortex developed without significant influence of postnatal time in such an early period. The structure-function analysis further revealed that the postnatal time had a direct influence on the development of homotopic connection in area V1, while gestational time had an indirect effect on it through cortical myelination. These findings were further validated in preterm-born infants who had longer postnatal time but shorter gestational time at birth. In short, these data suggested in human newborns that early postnatal time shaped the structural and functional development of the visual cortex in selective and organized patterns.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Qingqing Wen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Xixi Dang
- Department of Psychology, Zhejiang Sci-Tech UniversityHangzhouChina
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang UniversityHangzhouChina
- Children's Hospital School of Medicine, Zhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
22
|
Miyata T, Benson NC, Winawer J, Takemura H. Structural Covariance and Heritability of the Optic Tract and Primary Visual Cortex in Living Human Brains. J Neurosci 2022; 42:6761-6769. [PMID: 35853720 PMCID: PMC9436011 DOI: 10.1523/jneurosci.0043-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Individual differences among human brains exist at many scales, spanning gene expression, white matter tissue properties, and the size and shape of cortical areas. One notable example is an approximately 3-fold range in the size of human primary visual cortex (V1), a much larger range than is found in overall brain size. A previous study (Andrews et al., 1997) reported a correlation between optic tract (OT) cross-section area and V1 size in postmortem human brains, suggesting that there may be a common developmental mechanism for multiple components of the visual pathways. We evaluated the relationship between properties of the OT and V1 in a much larger sample of living human brains by analyzing the Human Connectome Project (HCP) 7 Tesla Retinotopy Dataset (including 107 females and 71 males). This dataset includes retinotopic maps measured with functional MRI (fMRI) and fiber tract data measured with diffusion MRI (dMRI). We found a negative correlation between OT fractional anisotropy (FA) and V1 surface area (r = -0.19). This correlation, although small, was consistent across multiple dMRI datasets differing in acquisition parameters. Further, we found that both V1 surface area and OT properties were correlated among twins, with higher correlations for monozygotic (MZ) than dizygotic (DZ) twins, indicating a high degree of heritability for both properties. Together, these results demonstrate covariation across individuals in properties of the retina (OT) and cortex (V1) and show that each is influenced by genetic factors.SIGNIFICANCE STATEMENT The size of human primary visual cortex (V1) has large interindividual differences. These differences do not scale with overall brain size. A previous postmortem study reported a correlation between the size of the human optic tract (OT) and V1. In this study, we evaluated the relationship between the OT and V1 in living humans by analyzing a neuroimaging dataset that included functional MRI (fMRI) and diffusion MRI (dMRI) data. We found a small, but robust correlation between OT tissue properties and V1 size, supporting the existence of structural covariance between the OT and V1 in living humans. The results suggest that characteristics of retinal ganglion cells (RGCs), reflected in OT measurements, are correlated with individual differences in human V1.
Collapse
Affiliation(s)
- Toshikazu Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, 98195, Washington
| | - Jonathan Winawer
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10003
| | - Hiromasa Takemura
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Institute, National Institute of Information and Communications Technology (NICT), Suita-shi 565-0871, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki-shi 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama-cho 240-0193, Japan
| |
Collapse
|
23
|
White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat Commun 2022; 13:997. [PMID: 35194018 PMCID: PMC8863985 DOI: 10.1038/s41467-022-28326-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain function. Myelination during infancy has been studied with histology, but postmortem data cannot evaluate the longitudinal trajectory of white matter development. Here, we obtained longitudinal diffusion MRI and quantitative MRI measures of longitudinal relaxation rate (R1) of white matter in 0, 3 and 6 months-old human infants, and developed an automated method to identify white matter bundles and quantify their properties in each infant's brain. We find that R1 increases from newborns to 6-months-olds in all bundles. R1 development is nonuniform: there is faster development in white matter that is less mature in newborns, and development rate increases along inferior-to-superior as well as anterior-to-posterior spatial gradients. As R1 is linearly related to myelin fraction in white matter bundles, these findings open new avenues to elucidate typical and atypical white matter myelination in early infancy.
Collapse
|