1
|
Grace PS, Peters JM, Sixsmith J, Lu R, Luedeman C, Fenderson BA, Vickers A, Slein MD, Irvine EB, McKitrick T, Wei MH, Cummings RD, Wallace A, Cavacini LA, Choudhary A, Proulx MK, Sundling C, Källenius G, Reljic R, Ernst JD, Casadevall A, Locht C, Pinter A, Sasseti CM, Bryson BD, Fortune SM, Alter G. Antibody-Fab and -Fc features promote Mycobacterium tuberculosis restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617070. [PMID: 39416184 PMCID: PMC11482752 DOI: 10.1101/2024.10.07.617070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death by an infectious disease globally, with no efficacious vaccine. Antibodies are implicated in Mtb control, but the mechanisms of antibody action remain poorly understood. We assembled a library of TB monoclonal antibodies (mAb) and screened for the ability to restrict Mtb in mice, identifying protective antibodies targeting known and novel antigens. To dissect the mechanism of mAb-mediated Mtb restriction, we optimized a protective lipoarabinomannan-specific mAb through Fc-swapping. In vivo analysis of these Fc-variants revealed a critical role for Fc-effector function in Mtb restriction. Restrictive Fc-variants altered distribution of Mtb across innate immune cells. Single-cell transcriptomics highlighted distinctly activated molecular circuitry within innate immune cell subpopulations, highlighting early activation of neutrophils as a key signature of mAb-mediated Mtb restriction. Therefore, improved antibody-mediated restriction of Mtb is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.
Collapse
|
2
|
Franklin A, Salgueiro VC, Layton AJ, Sullivan R, Mize T, Vázquez-Iniesta L, Benedict ST, Gurcha SS, Anso I, Besra GS, Banzhaf M, Lovering AL, Williams SJ, Guerin ME, Scott NE, Prados-Rosales R, Lowe EC, Moynihan PJ. The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. Nat Commun 2024; 15:5740. [PMID: 38982040 PMCID: PMC11233589 DOI: 10.1038/s41467-024-50051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.
Collapse
Affiliation(s)
- Aaron Franklin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Vivian C Salgueiro
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Todd Mize
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Lucía Vázquez-Iniesta
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | | | | | - Itxaso Anso
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, c/Baldiri Reixac 10-12, Tower R, 08028, Barcelona, Catalonia, Spain
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
3
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
4
|
Marglous S, Brown CE, Padler-Karavani V, Cummings RD, Gildersleeve JC. Serum antibody screening using glycan arrays. Chem Soc Rev 2024; 53:2603-2642. [PMID: 38305761 PMCID: PMC7616341 DOI: 10.1039/d3cs00693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Humans and other animals produce a diverse collection of antibodies, many of which bind to carbohydrate chains, referred to as glycans. These anti-glycan antibodies are a critical part of our immune systems' defenses. Whether induced by vaccination or natural exposure to a pathogen, anti-glycan antibodies can provide protection against infections and cancers. Alternatively, when an immune response goes awry, antibodies that recognize self-glycans can mediate autoimmune diseases. In any case, serum anti-glycan antibodies provide a rich source of information about a patient's overall health, vaccination history, and disease status. Glycan microarrays provide a high-throughput platform to rapidly interrogate serum anti-glycan antibodies and identify new biomarkers for a variety of conditions. In addition, glycan microarrays enable detailed analysis of the immune system's response to vaccines and other treatments. Herein we review applications of glycan microarray technology for serum anti-glycan antibody profiling.
Collapse
Affiliation(s)
- Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Mwebaza I, Shaw R, Li Q, Fletcher S, Achkar JM, Harding CV, Carpenter SM, Boom WH. Impact of Mycobacterium tuberculosis Glycolipids on the CD4+ T Cell-Macrophage Immunological Synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1385-1396. [PMID: 37695687 PMCID: PMC10579150 DOI: 10.4049/jimmunol.2300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.
Collapse
Affiliation(s)
- Ivan Mwebaza
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Rachel Shaw
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Qing Li
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Shane Fletcher
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | - Clifford V. Harding
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Stephen M. Carpenter
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - W. Henry Boom
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
7
|
Franklin A, Layton AJ, Mize T, Salgueiro VC, Sullivan R, Benedict ST, Gurcha SS, Anso I, Besra GS, Banzhaf M, Lovering AL, Williams SJ, Guerin ME, Scott NE, Prados-Rosales R, Lowe EC, Moynihan PJ. The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563968. [PMID: 37961452 PMCID: PMC10634837 DOI: 10.1101/2023.10.26.563968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures where arabinomannan acts as a signal for growth phase transition. Finally, we demonstrate that LamH is important for Mycobacterium tuberculosis survival in macrophages. These data provide a new framework for understanding the biological role of LAM in mycobacteria.
Collapse
Affiliation(s)
- Aaron Franklin
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Abigail J. Layton
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Todd Mize
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Vivian C. Salgueiro
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Samuel T. Benedict
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Itxaso Anso
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Manuel Banzhaf
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Andrew L. Lovering
- School of Biosciences, University of Birmingham, Birmingham, U.K., B15 2TT
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marcelo E. Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology. School of Medicine. Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Elisabeth C. Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, U.K., NE2 4HH
| | | |
Collapse
|
8
|
Liu Y, Chen T, Zhu Y, Furey A, Lowary TL, Chan J, Bournazos S, Ravetch JV, Achkar JM. Features and protective efficacy of human mAbs targeting Mycobacterium tuberculosis arabinomannan. JCI Insight 2023; 8:e167960. [PMID: 37733444 PMCID: PMC10619501 DOI: 10.1172/jci.insight.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
A better understanding of the epitopes most relevant for antibody-mediated protection against tuberculosis (TB) remains a major knowledge gap. We have shown that human polyclonal IgG against the Mycobacterium tuberculosis (M. tuberculosis) surface glycan arabinomannan (AM) and related lipoarabinomannan (LAM) is protective against TB. To investigate the impact of AM epitope recognition and Fcγ receptor (FcγR) binding on antibody functions against M. tuberculosis, we isolated a high-affinity human monoclonal antibody (mAb; P1AM25) against AM and showed its binding to oligosaccharide (OS) motifs we previously found to be associated with in vitro functions of human polyclonal anti-AM IgG. Human IgG1 P1AM25, but not 2 other high-affinity human IgG1 anti-AM mAbs reactive with different AM OS motifs, enhanced M. tuberculosis phagocytosis by macrophages and reduced intracellular growth in an FcγR-dependent manner. P1AM25 in murine IgG2a, but neither murine IgG1 nor a non-FcγR-binding IgG, given intraperitoneally prior to and after aerosolized M. tuberculosis infection, was protective in C57BL/6 mice. Moreover, we demonstrated the protective efficacy of human IgG1 P1AM25 in passive transfer with M. tuberculosis-infected FcγR-humanized mice. These data enhance our knowledge of the important interplay between both antibody epitope specificity and Fc effector functions in the defense against M. tuberculosis and could inform development of vaccines against TB.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Microbiology and Immunology and
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yongqi Zhu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aisha Furey
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - John Chan
- Public Health Research Institute at the International Center for Public Health, New Jersey Medical School – Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Jacqueline M. Achkar
- Department of Microbiology and Immunology and
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
Corrigan DT, Ishida E, Chatterjee D, Lowary TL, Achkar JM. Monoclonal antibodies to lipoarabinomannan/arabinomannan - characteristics and implications for tuberculosis research and diagnostics. Trends Microbiol 2023; 31:22-35. [PMID: 35918247 PMCID: PMC9771891 DOI: 10.1016/j.tim.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Antibodies to the mycobacterial surface lipoglycan lipoarabinomannan (LAM) and its related capsular polysaccharide arabinomannan (AM) are increasingly important for investigations focused on both understanding mechanisms of protection against Mycobacterium tuberculosis (Mtb) and developing next-generation point-of-care tuberculosis (TB) diagnostics. We provide here an overview of the growing pipeline of monoclonal antibodies (mAbs) to LAM/AM. Old and new methodologies for their generation are reviewed and we outline and discuss their glycan epitope specificity and other features with implications for the TB field.
Collapse
Affiliation(s)
- Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
12
|
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa K, Jawaid T, Kamal M, Gupta G, Liu G, Paudel KR, Hansbro PM, George Oliver BG, Singh SK, Chellappan DK, Dureja H, Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Shen K, Lowary TL. Synthesis of the Mycobacterium tuberculosis Canetti Lipooligosaccharide II Nonasaccharide. Org Lett 2022; 24:6428-6432. [PMID: 36005851 DOI: 10.1021/acs.orglett.2c02518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A route for preparing lipooligosaccharide (LOS) glycans from Mycobacterium tuberculosis Canetti was developed and applied to the most complex of these structures, LOS II. The synthesis of the target nonasaccharide was achieved via a convergent [3+3+3] approach. Key features of the strategy include the stereoselective synthesis of an asymmetrically substituted trehalose moiety from two protected glucose residues and several chemoselective glycosylations involving thioglycoside donors.
Collapse
Affiliation(s)
- Ke Shen
- Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
14
|
Lowary TL, Achkar JM. Tailor Made: New Insights Into Lipoarabinomannan Structure May Improve TB Diagnosis. J Biol Chem 2022; 298:101678. [PMID: 35122792 PMCID: PMC8913296 DOI: 10.1016/j.jbc.2022.101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
Detecting the mycobacterial glycolipid lipoarabinomannan (LAM) in urine by anti-LAM antibodies fills a gap in the diagnostic armamentarium of much needed simple rapid tests for tuberculosis, but lacks high sensitivity in all patient groups. A better understanding of LAM structure from clinically relevant strains may allow improvements in diagnostic performance. De et al. have recently determined the structures of LAM from three epidemiologically important lineages of Mycobacterium tuberculosis and probed their interaction with an anti-LAM monoclonal antibody. Their results not only identify a series of tailoring modifications that impact antibody binding but also provide a roadmap for improving U-LAM-based diagnostics.
Collapse
Affiliation(s)
- Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|