1
|
Miao Z, Sha Z, He J, Liang Y, Tan L, Zhao Y, Cui X, Zhong J, Zhong R, Liang H, Yue W, Qiu B, Gao Y, Zhang L, Teng Z, He Z, Chen L, Xiao R, Pei X, He C. Long non-coding RNA LRTOR drives osimertinib resistance in non-small cell lung cancer by boosting YAP positive feedback loop. Drug Resist Updat 2025:101245. [PMID: 40316465 DOI: 10.1016/j.drup.2025.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both in vitro and in vivo. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhou Sha
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaobing Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ruting Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Huijun Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wendi Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Boyang Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yunzhen Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zixin Teng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zeen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Rufei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Juksar J, Mijdam R, Bosman S, van Oudenaarden A, Carlotti F, de Koning EJP. Effects of Neurogenin 3 Induction on Endocrine Differentiation and Delamination in Adult Human Pancreatic Ductal Organoids. Transpl Int 2025; 38:13422. [PMID: 40236756 PMCID: PMC11996654 DOI: 10.3389/ti.2025.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Diabetes mellitus is characterized by the loss of pancreatic insulin-secreting β-cells in the Islets of Langerhans. Understanding the regenerative potential of human islet cells is relevant in the context of putative restoration of islet function after damage and novel islet cell replacement therapies. Adult human pancreatic tissue can be cultured as three-dimensional organoids with the capacity for long-term expansion and the promise of endocrine cell formation. Here, we characterize the endocrine differentiation potential of human adult pancreatic organoids. Because exocrine-to-endocrine differentiation is dependent on the expression of Neurogenin 3 (NEUROG3), we first generated NEUROG3-inducible organoid lines. We show that doxycycline-induced NEUROG3 expression in the organoids leads to the formation of chromogranin A positive (CHGA+) endocrine progenitor cells. The efficiency of this differentiation was improved with the addition of thyroid hormone T3 and the AXL inhibitor R428. Further, compound screening demonstrated that modifying the pivotal embryonic endocrine pancreas signalling pathways driven by Notch, YAP, and EGFR led to increased NEUROG3 expression in organoids. In a similar fashion to embryonic development, adult ductal cells delaminated from the organoids after NEUROG3 induction. Thus, mechanisms in islet (re)generation including the initiation of endocrine differentiation and delamination can be achieved by NEUROG3 induction.
Collapse
Affiliation(s)
- Juri Juksar
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rachel Mijdam
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | - Sabine Bosman
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
| | | | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco J. P. de Koning
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Wu Y, Jiang Y, Jiang L, Peng Y, Zhou T, Xia X, Hou F, Yuan Q, Ye L, Wei W, Zhang J, Chen Q, Feng X. Phospho-cofilin predicts efficiency of Fasudil for oral squamous cell carcinoma treatment through Yes-associated protein inhibition. Arch Oral Biol 2025; 172:106185. [PMID: 39893996 DOI: 10.1016/j.archoralbio.2025.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study evaluates Fasudil, a Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, for its potential to inhibit oral squamous cell carcinoma (OSCC) growth and explores phospho-cofilin as a potential biomarker for prediction treatment efficiency of Fasudil in OSCC. DESIGN A cohort of 109 OSCC patients provided tissue samples for phospho-cofilin expression analysis and survival analysis. The study examined the effect of Fasudil on OSCC cell lines HSC-3, UM1, and CAL33, assessing tumor growth inhibition through various in vitro and in vivo experiments. ROCK inhibition response and downstream mechanisms were explored by RNA sequencing, q-PCR, and immunofluorescence. RESULTS High phospho-cofilin expression in OSCC tissues correlated with poor patient outcomes and was a reliable biomarker for ROCK activity. Fasudil inhibited growth in OSCC cell lines, particularly those with high phospho-cofilin expression. ROCK inhibition led to downregulation of Yes-associated protein (YAP) activity, resulting in suppressed tumor proliferation and increased apoptosis both in vitro and in vivo. CONCLUSIONS Inhibition of ROCK/phospho-cofilin/YAP by Fasudil could suppress OSCC proliferation, while phospho-cofilin served as a potential biomarker of OSCC.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lu Ye
- School of Basic Medicine, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
4
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GTK, Sivakumar A, Wang CC, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413443. [PMID: 40165020 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Paige Eversole
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Cheng-Chun Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Han Yu
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wenjie Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-1088, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
5
|
Sato K, Faraji F, Cervantes-Villagrana RD, Wu X, Koshizuka K, Ishikawa T, Iglesias-Bartolome R, Chen L, Miliani de Marval PL, Gwaltney SL, Adler B, Gutkind JS. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett 2025; 612:217467. [PMID: 39826667 PMCID: PMC12044704 DOI: 10.1016/j.canlet.2025.217467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies. This prompted us to explore the potential benefit of pharmacologically targeting the YAP/TAZ-TEAD axis in this disease. Here, we provide the pre-clinical evidence for the antitumor activity of novel smTEADi, SW-682 in HPV-negative HNSCC. By the use of multiple complementary experimental approaches, including siRNA knockdown, expression of a genetically encoded TEAD inhibitor peptide (pTEADi), and SW-682, we revealed that disruption of YAP/TAZ-TEAD interaction suppresses YAP/TAZ-TEAD-dependent target gene transcription and growth of HNSCC tumors. HNSCC cells with genetic alterations in FAT1 were more sensitive to TEADi compared to FAT1-wild type cells. Mechanistically, TEADi suppressed cell cycle progression and promoted the expression of terminal differentiation gene programs, resulting in tumor growth inhibition. A HNSCC-specific TEADi target gene set was defined from RNA-seq data, which is highly expressed in HNSCC tissues and predicts poor prognosis of HPV-negative HNSCC patients. Our results underscore that YAP/TAZ-TEAD-mediated growth-promoting programs represent a vulnerability in HPV-negative HNSCC, thus providing a pre-clinical rationale for the future evaluation of YAP/TAZ-TEAD targeting strategies as a therapeutic approach for HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA, USA
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- SpringWorks Therapeutics, Inc., Stamford, CT, USA
| | | | | | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Shi Z, Hu C, Liu J, Cheng W, Chen X, Liu X, Bao Y, Tian H, Yu B, Gao F, Ye F, Jin X, Sun C, Li Q. Single-Cell Sequencing Reveals the Role of Radiation-Induced Stemness-Responsive Cancer Cells in the Development of Radioresistance. Int J Mol Sci 2025; 26:1433. [PMID: 40003899 PMCID: PMC11855645 DOI: 10.3390/ijms26041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Increased stemness of cancer cells exacerbates radioresistance, thereby greatly limiting the efficacy of radiotherapy. In order to study the changes in cancer cell stemness during radiotherapy, we established a radioresistance model of human non-small cell lung cancer A549 cells and obtained A549 radioresistant cells (A549-RR). We sampled the cells at different time points during the modeling process and investigated the heterogeneity of each group of cells using single-cell sequencing. Cells in the early stages of fractionated irradiation were found to be significantly up-regulated in stemness, and a subpopulation of cells producing this response was screened and referred to as "radiation-induced stemness-responsive cancer cells". They were undergoing stemness response, energy metabolism reprogramming, and progressively differentiating into cells with more diverse and malignant phenotypes in order to attenuate the killing effect of radiation. Furthermore, we demonstrated that such responses might be driven by the activation of the EGFR-Hippo signaling pathway axis, which also plays a crucial role in the development of radioresistance. Our study reveals the dynamic evolution of cell subpopulation in cancer cells during fractionated radiotherapy; the early stage of irradiation can determine the destiny of the radiation-induced stemness-responsive cancer cells. The activation of stemness-like phenotypes during the development of radioresistance is not the result of dose accumulation but occurs during the early stage of radiotherapy with relatively low-dose irradiation. The degree of the radiation-induced stemness response of cancer cells mediated by the EGFR-Hippo signaling pathway might be a potential predictor of the efficacy of radiotherapy and the development of radioresistance.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- College of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiadi Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Cheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaohua Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanyu Bao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haidong Tian
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Ajongbolo AO, Langhans SA. YAP/TAZ-associated cell signaling - at the crossroads of cancer and neurodevelopmental disorders. Front Cell Dev Biol 2025; 13:1522705. [PMID: 39936032 PMCID: PMC11810912 DOI: 10.3389/fcell.2025.1522705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
YAP/TAZ (Yes-associated protein/paralog transcriptional co-activator with PDZ-binding domain) are transcriptional cofactors that are the key and major downstream effectors of the Hippo signaling pathway. Both are known to play a crucial role in defining cellular outcomes, including cell differentiation, cell proliferation, and apoptosis. Aside from the canonical Hippo signaling cascade with the key components MST1/2 (mammalian STE20-like kinase 1/2), SAV1 (Salvador homologue 1), MOB1A/B (Mps one binder kinase activator 1A/B) and LATS1/2 (large tumor suppressor kinase 1/2) upstream of YAP/TAZ, YAP/TAZ activation is also influenced by numerous other signaling pathways. Such non-canonical regulation of YAP/TAZ includes well-known growth factor signaling pathways such as the epidermal growth factor receptor (EGFR)/ErbB family, Notch, and Wnt signaling as well as cell-cell adhesion, cell-matrix interactions and mechanical cues from a cell's microenvironment. This puts YAP/TAZ at the center of a complex signaling network capable of regulating developmental processes and tissue regeneration. On the other hand, dysregulation of YAP/TAZ signaling has been implicated in numerous diseases including various cancers and neurodevelopmental disorders. Indeed, in recent years, parallels between cancer development and neurodevelopmental disorders have become apparent with YAP/TAZ signaling being one of these pathways. This review discusses the role of YAP/TAZ in brain development, cancer and neurodevelopmental disorders with a special focus on the interconnection in the role of YAP/TAZ in these different conditions.
Collapse
Affiliation(s)
- Aderonke O. Ajongbolo
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
- Biological Sciences Graduate Program, University of Delaware, Newark, DE, United States
| | - Sigrid A. Langhans
- Division of Neurology and Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE, United States
| |
Collapse
|
8
|
Moldovan GE, Massri N, Vegter EL, Pauneto-Delgado IN, Burns GW, Joshi N, Gu B, Arora R, Fazleabas AT. YAP1 and WWTR1 are required for murine pregnancy initiation. Reproduction 2025; 169:e240355. [PMID: 39503541 PMCID: PMC11874952 DOI: 10.1530/rep-24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
Abstract
In brief The HIPPO signaling effectors YAP1 and WWTR1 are required for murine pregnancy initiation, and mutation of these factors compromises the decidualization response and overall pregnancy success. Abstract Endometrial stromal cell decidualization is required for pregnancy success. Although this process is integral to fertility, many of the intricate molecular mechanisms contributing to decidualization remain undefined. One pathway that has been implicated in endometrial stromal cell decidualization in humans in vitro is the HIPPO signaling pathway. Two previously conducted studies showed that the effectors of the HIPPO signaling pathway YAP1 and WWTR1 are required for decidualization of primary endometrial stromal cells in vitro. To investigate the in vivo role of YAP1 and WWTR1 in decidualization and pregnancy initiation, we generated progesterone receptor Cre-mediated mutation of a combination of Yap1 and Wwtr1 alleles. Female Yap1 and Wwtr1 triple allele mutants exhibited subfertility, a compromised decidualization response, decreased endometrial receptivity, delayed embryonic development and a unique transcriptional profile at 7.5 days post-coitus (dpc). Bulk mRNA sequencing revealed aberrant maternal remodeling evidenced by significant alterations in extracellular matrix-encoding genes at 7.5 dpc in mutant dams and enrichment for terms associated with fertility-compromising diseases such as pre-eclampsia and endometriosis. In addition, differentially expressed genes overlapped directionally with estrogen receptor- and epidermal growth factor receptor-regulated genes as identified by microarray. Our results indicate that Yap1 and Wwtr1 are necessary for successful mammalian pregnancy initiation.
Collapse
|
9
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Sharma R, Sharma S, Shriwas P, Mehta L, Vu AH, Mouw JK, Koo J, Huang C, Matsuk VY, Tucker-Burden C, Joseph G, Behera M, Sun SY, Roy MA, Gilbert-Ross M, Leal T, Marcus AI, Shanmugam M. Intra-tumoral YAP and TAZ heterogeneity drives collective NSCLC invasion that is targeted by SUMOylation inhibitor TAK-981. iScience 2024; 27:111133. [PMID: 39524367 PMCID: PMC11544388 DOI: 10.1016/j.isci.2024.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) collective invasion is supported by cooperativity of proliferative (follower) and invasive (leader) cells. H1299-isolated follower cells exhibit higher Yes-associated protein (YAP) expression, while leader cells were found to express elevated transcriptional coactivator with PDZ-binding motif (TAZ/WWTR1) expression. Suppressing TAZ (not YAP) in leader cells reduced invasion. TAZ-regulated leader cell invasion is associated with activation of the EGFR-PI3K-AKT axis. NSCLC patient samples also demonstrated heterogeneity in YAP and TAZ expression. YAP and TAZ regulate proliferation of follower and leader cells. Our results highlight the need to inhibit both YAP and TAZ to effectively target their regulation of collective invasion. We identify that the SUMOylation inhibitor TAK-981 reduces YAP and TAZ expression, decreasing tumor burden and metastasis in a murine NSCLC model. Our study reveals an intra-tumoral division of labor, driven by differential YAP and TAZ expression, which can be effectively targeted with TAK-981 for NSCLC therapy.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shagun Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pratik Shriwas
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Labdhi Mehta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - An H. Vu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Junghui Koo
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunzi Huang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Veronika Y. Matsuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carol Tucker-Burden
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Gregory Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Melissa A. Roy
- Division of Pathology, Emory National Primate Research Center, Atlanta, GA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Tan N, Li Y, Ying J, Chen W. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows. J Transl Int Med 2024; 12:452-465. [PMID: 39513032 PMCID: PMC11538883 DOI: 10.1515/jtim-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Histological transformation from lung adenocarcinoma (ADC) to small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), squamous cell carcinoma (SCC), and sarcomatoid carcinoma (PSC) after targeted therapies is recognized as a mechanism of resistance in ADC treatments. Patients with transformed lung cancer typically experience a poor prognosis and short survival time. However, effective treatment options for these patients are currently lacking. Therefore, understanding the mechanisms underlying histological transformation is crucial for the development of effective therapies. Hypotheses including intratumoral heterogeneity, cancer stem cells, and alteration of suppressor genes have been proposed to explain the mechanism of histological transformation. In this review, we provide a comprehensive overview of the known molecular features and signaling pathways of transformed tumors, and summarized potential therapies based on previous findings.
Collapse
Affiliation(s)
- Nuopei Tan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Müller L, Gutschner T, Hatzfeld M. A feedback loop between plakophilin 4 and YAP signaling regulates keratinocyte differentiation. iScience 2024; 27:110762. [PMID: 39286493 PMCID: PMC11402648 DOI: 10.1016/j.isci.2024.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The Hippo signaling pathway is an important regulator of organ growth and differentiation, and its deregulation contributes to the development of cancer. The activity of its downstream targets YAP/TAZ depends on adherens junctions. Plakophilin 4 (PKP4) is a cell-type specific adherens junction protein expressed in the proliferating cells of the epidermis. Here, we show that PKP4 diminishes proliferation as well as differentiation. Depletion of PKP4 increased proliferation but at the same time induced premature epidermal differentiation. PKP4 interacted with several Hippo pathway components, including the transcriptional co-activators YAP/TAZ, and promoted nuclear YAP localization and target gene expression. In differentiated keratinocytes, PKP4 recruited LATS and YAP to cell junctions where YAP is transcriptionally inactive. YAP depletion, on the other hand, reduced PKP4 levels and keratinocyte adhesion indicative of a feedback mechanism controlling adhesion, proliferation, and differentiation by balancing YAP functions.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for Pathochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| |
Collapse
|
13
|
Muneer G, Chen CS, Lee TT, Chen BY, Chen YJ. A Rapid One-Pot Workflow for Sensitive Microscale Phosphoproteomics. J Proteome Res 2024; 23:3294-3309. [PMID: 39038167 DOI: 10.1021/acs.jproteome.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compared to advancements in single-cell proteomics, phosphoproteomics sensitivity has lagged behind due to low abundance, complex sample preparation, and substantial sample input requirements. We present a simple and rapid one-pot phosphoproteomics workflow (SOP-Phos) integrated with data-independent acquisition mass spectrometry (DIA-MS) for microscale phosphoproteomic analysis. SOP-Phos adapts sodium deoxycholate based one-step lysis, reduction/alkylation, direct trypsinization, and phosphopeptide enrichment by TiO2 beads in a single-tube format. By reducing surface adsorptive losses via utilizing n-dodecyl β-d-maltoside precoated tubes and shortening the digestion time, SOP-Phos is completed within 3-4 h with a 1.4-fold higher identification coverage. SOP-Phos coupled with DIA demonstrated >90% specificity, enhanced sensitivity, lower missing values (<1%), and improved reproducibility (8%-10% CV). With a sample size-comparable spectral library, SOP-Phos-DIA identified 33,787 ± 670 to 22,070 ± 861 phosphopeptides from 5 to 0.5 μg cell lysate and 30,433 ± 284 to 6,548 ± 21 phosphopeptides from 50,000 to 2,500 cells. Such sensitivity enabled mapping key lung cancer signaling sites, such as EGFR autophosphorylation sites Y1197/Y1172 and drug targets. The feasibility of SOP-Phos-DIA was demonstrated on EGFR-TKI sensitive and resistant cells, revealing the interplay of multipathway Hippo-EGFR-ERBB signaling cascades underlying the mechanistic insight into EGFR-TKI resistance. Overall, SOP-Phos-DIA is an efficient and robust protocol that can be easily adapted in the community for microscale phosphoproteomic analysis.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Tsung Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Bo-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Ando T, Okamoto K, Ueda Y, Kataoka N, Shintani T, Yanamoto S, Miyauchi M, Kajiya M. YAP/TAZ interacts with RBM39 to confer resistance against indisulam. Oncogenesis 2024; 13:25. [PMID: 39004623 PMCID: PMC11247092 DOI: 10.1038/s41389-024-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The Hippo pathway and its downstream effectors, Yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ), are essential for cell growth and organ development. Emerging evidence revealed that the Hippo pathway and YAP/TAZ are frequently dysregulated by multiple genetic alterations in solid cancers including head and neck squamous cell carcinoma (HNSCC); however, the YAP/TAZ-nuclear interactome remains unclear. RNA-binding motif protein 39 (RBM39) enhances transcriptional activity of several transcription factors and also regulates mRNA splicing. Indisulam degrading RBM39 induces alternative splicing, leading to cell death. However, clinical trials of indisulam have failed to show effectiveness. Therefore, clarifying the resistance mechanism against splicing inhibitors is urgently required. In this study, we identified RBM39 as a novel YAP/TAZ-interacting molecule by proteome analysis. RBM39 promoted YAP/TAZ transcriptional activity. We further elucidated that indisulam reduces RBM39/YAP/TAZ-mediated integrin or collagen expression, thereby inactivating focal adhesion kinase (FAK) important for cell survival. Moreover, indisulam also induced alternative splicing of cell cycle- or DNA metabolism-related genes. YAP/TAZ hyperactivation delayed indisulam-induced RBM39 degradation, which restored the integrin/collagen expression to activate FAK, and alternative splicing, thereby conferring resistance against indisulam in vitro and in vivo. Our findings may aid to develop a novel cancer therapy focusing on YAP/TAZ/RBM39 interaction.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan.
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yume Ueda
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nanako Kataoka
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| |
Collapse
|
15
|
Liu M, Zhong XS, Krishnachaitanya SS, Ou R, Dashwood RH, Powell DW, Li Q. Erlotinib suppresses tumorigenesis in a mouse model of colitis-associated cancer. Biomed Pharmacother 2024; 175:116580. [PMID: 38723513 PMCID: PMC11883833 DOI: 10.1016/j.biopha.2024.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024] Open
Abstract
Colitis-associated cancer (CAC) in inflammatory bowel diseases exhibits more aggressive behavior than sporadic colorectal cancer; however, the molecular mechanisms remain unclear. No definitive preventative agent against CAC is currently established in the clinical setting. We investigated the molecular mechanisms of CAC in the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and assessed the antitumor efficacy of erlotinib, a small molecule inhibitor of the epidermal growth factor receptor (EGFR). Erlotinib premixed with AIN-93 G diet at 70 or 140 parts per million (ppm) inhibited tumor multiplicity significantly by 96%, with ∼60% of the treated mice exhibiting zero polyps at 12 weeks. Bulk RNA-sequencing revealed more than a thousand significant gene alterations in the colons of AOM/DSS-treated mice, with KEGG enrichment analysis highlighting 46 signaling pathways in CAC development. Erlotinib altered several signaling pathways and rescued 40 key genes dysregulated in CAC, including those involved in the Hippo and Wnt signaling. These findings suggest that the clinically-used antitumor agent erlotinib might be repurposed for suppression of CAC, and that further studies are warranted on the crosstalk between dysregulated Wnt and EGFR signaling in the corresponding patient population.
Collapse
Affiliation(s)
- Max Liu
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xiaoying S Zhong
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Srikruthi S Krishnachaitanya
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rongliwen Ou
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M School of Medicine, Houston, TX, USA
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
16
|
Xu T, Liu K, Zhang Y, Chen Y, Yin D. EGFR and Hippo signaling pathways are involved in organophosphate esters-induced proliferation and migration of triple-negative breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41939-41952. [PMID: 38856849 DOI: 10.1007/s11356-024-33872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 μM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 μM TPHP, 10-25 μM TDCIPP, and 1-10 μM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kaiyue Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Post-doctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
17
|
Pagliaro LC, Tekin B, Gupta S, Herrera Hernandez L. Therapeutic Targets in Advanced Penile Cancer: From Bench to Bedside. Cancers (Basel) 2024; 16:2086. [PMID: 38893204 PMCID: PMC11171031 DOI: 10.3390/cancers16112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Discovery of effective systemic therapies for patients with advanced penile cancer has been slow to occur. Comprehensive genomic profiling from several studies shed light on the molecular oncogenesis of penile squamous cell carcinoma (PSCC) and differences between HPV-related and unrelated tumors. While these two subsets of PSCC appear distinct in their biology, there are not yet specific treatment strategies recommended on that basis. Cell surface proteins have been identified that may potentially serve as drug targets for monoclonal antibodies or small molecule inhibitors. Here, we review some of the new biological insights regarding PSCC that could lead to improved therapies, as well as the related clinical trials recently completed or in progress. We conclude that antibody-drug conjugates are especially promising, as are the combinations of immune checkpoint inhibitors with other types of drugs.
Collapse
Affiliation(s)
- Lance C. Pagliaro
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (B.T.); (S.G.); (L.H.H.)
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (B.T.); (S.G.); (L.H.H.)
| | - Loren Herrera Hernandez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; (B.T.); (S.G.); (L.H.H.)
| |
Collapse
|
18
|
Palamiuc L, Johnson JL, Haratipour Z, Loughran RM, Choi WJ, Arora GK, Tieu V, Ly K, Llorente A, Crabtree S, Wong JC, Ravi A, Wiederhold T, Murad R, Blind RD, Emerling BM. Hippo and PI5P4K signaling intersect to control the transcriptional activation of YAP. Sci Signal 2024; 17:eado6266. [PMID: 38805583 PMCID: PMC11283293 DOI: 10.1126/scisignal.ado6266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.
Collapse
Affiliation(s)
| | - Jared L. Johnson
- Weill Cornell Medicine, Meyer Cancer Center, New York, NY 10021
- Weill Cornell Medicine, Department of Medicine, New York, NY 10021
| | - Zeinab Haratipour
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
- Austin Peay State University, Clarksville, TN, 37044
| | | | - Woong Jae Choi
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| | | | | | - Kyanh Ly
- Sanford Burnham Prebys, La Jolla, CA 92037
| | | | | | - Jenny C.Y. Wong
- Weill Cornell Medicine, Meyer Cancer Center, New York, NY 10021
- New York University Grossman School of Medicine, Department of Cell Biology, New York, NY 10016, USA
| | | | | | - Rabi Murad
- Sanford Burnham Prebys, La Jolla, CA 92037
| | - Raymond D. Blind
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| | | |
Collapse
|
19
|
KAJIMOTO YASUYUKI, SHINOMIYA HIROTAKA, UEHARA NATSUMI, TESHIMA MASANORI, FUJITA TAKESHI, KAKIGI AKINOBU, IMAMURA YOSHINORI, KIYOTA NAOMI, MIYAWAKI DAISUKE, SASAKI RYOHEI, KIMURA HIDEHITO, NIBU KENICHI. Expression of EGFR and p16 in Squamous Cell Carcinoma of External Auditory Canal. THE KOBE JOURNAL OF MEDICAL SCIENCES 2024; 69:E144-E150. [PMID: 38379276 PMCID: PMC11006239 DOI: 10.24546/0100486232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
The expression of EGFR and p16 in the external auditory canal squamous cell carcinoma (EACSCC) and their impacts on oncological outcomes were not well studied. Seventeen-one consecutive patients who were treated for EACSCC at Kobe University Hospital from 1995 to 2018 were enrolled in this study. The expression of EGFR, and p16 were evaluated and their impacts on oncological outcomes were statistically analyzed. Positive expression of EGFR was observed in 62 patients (87%). Strong positive expression of p16 were observed in 18 patients (32.4%), and weakly positive expression in 30 patients (42.3%), respectively. While the number of the patients with negative EGFR expression were limited, all the surgically treated patients with negative EGFR expression have been alive without disease. In the patients with T3 & T4a EACSCC, prognosis of the patients with positive p16 expression EACSCC tended to be better than those with negative p16 expression. These results suggest the clinical significance of EGFR and p16 expressions in the patients with advanced EACSCC to predict oncological outcomes.
Collapse
Affiliation(s)
- YASUYUKI KAJIMOTO
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - HIROTAKA SHINOMIYA
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - NATSUMI UEHARA
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - MASANORI TESHIMA
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - TAKESHI FUJITA
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - AKINOBU KAKIGI
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - YOSHINORI IMAMURA
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - NAOMI KIYOTA
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - DAISUKE MIYAWAKI
- Department of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - RYOHEI SASAKI
- Department of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - HIDEHITO KIMURA
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KEN-ICHI NIBU
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Chaim OM, Miki S, Prager BC, Ma J, Jeong AY, Lara J, Tran NK, Smith JM, Rich JN, Gutkind JS, Miyamoto S, Furnari FB, Brown JH. Gα12 signaling regulates transcriptional and phenotypic responses that promote glioblastoma tumor invasion. Sci Rep 2023; 13:22412. [PMID: 38104152 PMCID: PMC10725435 DOI: 10.1038/s41598-023-49164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.
Collapse
Affiliation(s)
- Olga Meiri Chaim
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA.
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.
| | - Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Briana C Prager
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jianhui Ma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Anthony Y Jeong
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jacqueline Lara
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Nancy K Tran
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jeffrey M Smith
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Jeremy N Rich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, Biomedical Sciences Building, 9500 Gilman Drive #0636, La Jolla, CA, 92093-0636, USA
| |
Collapse
|
21
|
Zheng C, Li Z, Zhao C, Yin X, Feng L, Wang Z, Liu C, Li B. YY1 modulates the radiosensitivity of esophageal squamous cell carcinoma through KIF3B-mediated Hippo signaling pathway. Cell Death Dis 2023; 14:806. [PMID: 38065955 PMCID: PMC10709558 DOI: 10.1038/s41419-023-06321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Radiotherapy is an important strategy in the comprehensive treatment of esophageal squamous cell carcinoma (ESCC). However, effectiveness of radiotherapy is still restricted by radioresistance. Herein, we aimed to understand the mechanisms underlying ESCC radioresistance, for which we looked into the potential role of YY1. YY1 was upregulated in radioresistant tissues and correlated with poor prognosis of patients with ESCC. YY1 depletion enhanced the radiosensitivity of ESCC in vitro and in vivo. Multi-group sequencing showed that downregulation of YY1 inhibited the transcriptional activity of Kinesin Family Member 3B (KIF3B), which further activated the Hippo signaling pathway by interacting with Integrin-beta1 (ITGB1). Once the Hippo pathway was activated, its main effector, Yes-associated protein 1 (YAP1), was phosphorylated in the cytoplasm and its expression reduced in the nucleus, thus enhancing the radiosensitivity by regulating its targeted genes. Our study provides new insights into the mechanisms underlying ESCC radioresistance and highlights the potential role of YY1 as a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chunyan Zheng
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Jinan, China
| | - Zhe Li
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chuanxi Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Feng
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongtang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengxin Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Baosheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
22
|
Li T, Li Y, Wu H, Peng C, Wang J, Chen S, Zhao T, Li S, Qin X, Liu Y. Extracellular cell matrix stiffness-driven drug resistance of breast cancer cells via EGFR activation. MECHANOBIOLOGY IN MEDICINE 2023; 1:100023. [PMID: 40395635 PMCID: PMC12082153 DOI: 10.1016/j.mbm.2023.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 05/22/2025]
Abstract
Tumor progression is accompanied by complex structural changes in the extracellular matrix (ECM), which decrease the effective exposure of tumors to drugs. Breast cancer are highly heterogeneous with a typically high degree of ECM remodeling and stiffening. Therefore, it is especially important to explore the influence of ECM stiffness on breast cancer chemotherapy. Here, we fabricated 3D Methacrylate Gelatin (GelMA) hydrogels with varying stiffness by photo-crosslinking to simulate the change of tissue stiffness during the development of breast cancer. These 3D hydrogels were used to evaluate how MDA-MB-231 cells responded to the chemotherapy drug doxorubicin (DOX), the mechanical regulatory mechanism involved has also been investigated. The findings demonstrated that 15% GelMA hydrogel (9 kPa) increased the activity of EGFR to block the Hippo signaling pathway and activate Yes-associated protein (YAP). Activated YAP allowed cytosolic EGFR transport into the nucleus via binding with it, up-regulated the expression of their respective transcriptional targets, and thus generates drug resistance. Altogether, our study implicates that stiffness-dependent EGFR activation plays an important role in breast cancer drug resistance, indicating that targeting of both YAP and EGFR signals may present a promising therapeutic strategy for ECM stiffness-induced drug resistance.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yichao Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Hao Wu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Chong Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiawen Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shihuan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tian Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
23
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
24
|
Kwon Y, Lee H, Park H, Lee B, Kwon TU, Kwon YJ, Chun YJ. YPEL3 expression induces cellular senescence via the Hippo signaling pathway in human breast cancer cells. Toxicol Res 2023; 39:711-719. [PMID: 37779582 PMCID: PMC10541347 DOI: 10.1007/s43188-023-00208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The Hippo pathway is a signaling pathway that controls organ size in animals by regulating cell proliferation and apoptosis. Yes-associated protein 1 (YAP1), an oncogene associated with the development and progression of breast cancer, is downregulated by the Hippo pathway and is associated with the development and progression of breast cancer. Yippee-like 3 (YPEL3) is a target gene of the tumor suppressor protein p53, and its activation has been shown to inhibit cell growth, induce cellular senescence, and suppress tumor cell metastasis. In this study, we found that YAP1 inhibits the expression of YPEL3 expression in breast cancer cells. Furthermore, a decrease in lamin B1, a marker protein of cellular senescence, coupled with the activation of senescence-associated β-galactosidase indicated that upregulating YPEL3 levels through YAP1 downregulation can induce cellular senescence. Additionally, elevated YPEL3 levels resulted in higher levels of oxygen consumption rate in mitochondria, thus promoting apoptosis. This suggests that YPEL3 plays a crucial role in regulating oxidative stress and cell apoptosis in breast cancer cells. Therefore, the interaction between YAP1 and YPEL3 represents a novel mechanism of cellular senescence mediated by the Hippo signaling pathway. Collectively, our findings suggest that the Hippo signaling pathway plays an important role in regulating cellular senescence, which could have implications for the development of new therapeutic strategies for diseases such as cancer.
Collapse
Affiliation(s)
- Yeonju Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyein Lee
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Boyoung Lee
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
25
|
Okamoto K, Ando T, Izumi H, Kobayashi SS, Shintani T, Gutkind JS, Yanamoto S, Miyauchi M, Kajiya M. AXL activates YAP through the EGFR-LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma. Oncogene 2023; 42:2869-2877. [PMID: 37591955 DOI: 10.1038/s41388-023-02810-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The Hippo signaling pathway and its downstream effector YAP play a central role in cell proliferation. Dysregulation of the Hippo pathway triggers YAP hyperactivation, thereby inducing head and neck squamous cell carcinoma (HNSCC). Recently, we reported that EGFR promotes tyrosine phosphorylation of MOB1 and subsequent LATS1/2 inactivation, which are core components of the Hippo pathway, resulting in YAP activation. However, EGFR-targeted monotherapy has shown a low response rate in HNSCC patients. Given that YAP is activated in patient samples refractory to EGFR-targeted therapy, EGFR inhibitors may temporarily inactivate YAP, but intrinsic hyperactivation or acquired reactivation of YAP may confer resistance to EGFR inhibitors in HNSCC cells. The mechanism by which YAP is activated in HNSCC resistant to EGFR inhibitors remains unclear. Comprehensive transcriptional analysis revealed that AXL activates YAP through a novel mechanism: AXL heterodimerizes with EGFR, thereby activating YAP via the EGFR-LATS1/2 axis. The combination of AXL and EGFR inhibitors synergistically inactivates YAP and suppresses the viability of HNSCC and lung adenocarcinoma cells. In turn, LATS1/2 knockout and YAP hyperactivation confer resistance to the synergistic effects of these inhibitors. Our findings suggest that co-targeting both AXL and EGFR represent a promising therapeutic approach in patients with EGFR-altered cancers.
Collapse
Affiliation(s)
- Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
26
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
27
|
Nettleford SK, Liao C, Short SP, Rossi RM, Singh V, Prabhu KS. Selenoprotein W Ameliorates Experimental Colitis and Promotes Intestinal Epithelial Repair. Antioxidants (Basel) 2023; 12:850. [PMID: 37107231 PMCID: PMC10134982 DOI: 10.3390/antiox12040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Selenoprotein W (Selenow) is a ~9 kDa selenoprotein suggested to play a beneficial role in resolving inflammation. However, the underlying mechanisms are poorly understood. SELENOW expression in the human GI tract using ScRNAseq Gut Cell Atlas and Gene Expression Omnibus (GEO) databases revealed its expression in the small intestine and colonic epithelial, endothelial, mesenchymal, and stem cells and correlated with a protective effect in ulcerative colitis patients. Selenow KO mice treated with 4% dextran sodium sulfate (DSS) showed exacerbated acute colitis, with greater weight loss, shorter colons, and increased fecal occult blood compared to the WT counterparts. Selenow KO mice expressed higher colonic Tnfα, increased Tnfα+ macrophages in the colonic lamina propria, and exhibited loss in epithelial barrier integrity and decreased zonula occludens 1 (Zo-1) expression following DSS treatment. Expression of epithelial cellular adhesion marker (EpCam), yes-associated protein 1 (Yap1), and epidermal growth factor receptor (Egfr) were decreased along with CD24lo cycling epithelial cells in Selenow KO mice. Colonic lysates and organoids confirmed a crosstalk between Egfr and Yap1 that was regulated by Selenow. Overall, our findings suggest Selenow expression is key for efficient resolution of inflammation in experimental colitis that is mediated through the regulation of Egfr and Yap1.
Collapse
Affiliation(s)
- Shaneice K. Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chang Liao
- Department of Medicine-Infectious Diseases, University of California, San Francisco, CA 94143, USA
| | - Sarah P. Short
- Department of Medicine, Department of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Randall M. Rossi
- Mouse Transgenic Core Facility, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Brandt A, Thiele B, Schultheiß C, Daetwyler E, Binder M. Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2051. [PMID: 37046721 PMCID: PMC10093741 DOI: 10.3390/cancers15072051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Tumors shed cell-free DNA (cfDNA) into the plasma. "Liquid biopsies" are a diagnostic test to analyze cfDNA in order to detect minimal residual cancer, profile the genomic tumor landscape, and monitor cancers non-invasively over time. This technique may be useful in patients with head and neck squamous cell carcinoma (HNSCC) due to genetic tumor heterogeneity and limitations in imaging sensitivity. However, there are technical challenges that need to be overcome for the widespread use of liquid biopsy in the clinical management of these patients. In this review, we discuss our current understanding of HNSCC genetics and the role of cfDNA genomic analyses as an emerging precision diagnostic tool.
Collapse
Affiliation(s)
- Anna Brandt
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Benjamin Thiele
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Schultheiß
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| | - Eveline Daetwyler
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Mascha Binder
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
29
|
Rosado-Galindo H, Domenech M. Surface roughness modulates EGFR signaling and stemness of triple-negative breast cancer cells. Front Cell Dev Biol 2023; 11:1124250. [PMID: 36968199 PMCID: PMC10030610 DOI: 10.3389/fcell.2023.1124250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Cancer stem cells (CSC), a major culprit of drug-resistant phenotypes and tumor relapse, represent less than 2 % of the bulk of TNBC cells, making them difficult to isolate, study, and thus, limiting our understanding of the pathogenesis of the disease. Current methods for CSC enrichment, such as 3D spheroid culture, genetic modification, and stem cell conditioning, are time consuming, expensive, and unsuitable for high-throughput assays. One way to address these limitations is to use topographical stimuli to enhance CSC populations in planar culture. Physical cues in the breast tumor microenvironment can influence cell behavior through changes in the mechanical properties of the extracellular matrix (ECM). In this study, we used topographical cues on polystyrene films to investigate their effect on the proteome and stemness of standard TNBC cell lines. Methods: The topographical polystyrene-based array was generated using razor printing and polishing methods. Proteome data were analyzed and enriched bioprocesses were identified using R software. Stemness was assessed measuring CD44, CD24 and ALDH markers using flow cytometry, immunofluorescence, detection assays, and further validated with mammosphere assay. EGF/EGFR expression and activity was evaluated using enzyme-linked immunosorbent assay (ELISA), immunofluorescence and antibody membrane array. A dose-response assay was performed to further investigate the effect of surface topography on the sensitivity of cells to the EGFR inhibitor. Results: Surface roughness enriched the CSC population and modulated epidermal growth factor receptor (EGFR) signaling activity in TNBC cells. Enhanced proliferation of MDA-MB-468 cells in roughness correlated with upregulation of the epidermal growth factor (EGF) ligand, which in turn corresponded with a 3-fold increase in the expression of EGFR and a 42% increase in its phosphorylation compared to standard smooth culture surfaces. The results also demonstrated that phenotypic changes associated with topographical (roughness) stimuli significantly decreased the drug sensitivity to the EGFR inhibitor gefitinib. In addition, the proportion of CD44+/CD24-/ALDH+ was enhanced on surface roughness in both MDA-MB-231 and MDA-MB-468 cell lines. We also demonstrated that YAP/TAZ activation decreased in a roughness-dependent manner, confirming the mechanosensing effect of the topographies on the oncogenic activity of the cells. Discussion: Overall, this study demonstrates the potential of surface roughness as a culture strategy to influence oncogenic activity in TNBC cells and enrich CSC populations in planar cultures. Such a culture strategy may benefit high-throughput screening studies seeking to identify compounds with broader tumor efficacy.
Collapse
Affiliation(s)
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
30
|
Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 2023; 50:4565-4578. [PMID: 36877351 DOI: 10.1007/s11033-023-08329-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.
Collapse
|
31
|
Saetern LC, Wang Y, Ribizzi-Akhtar I. Molecular profiling of a high-grade squamous cell carcinoma arising from sinonasal inverted papilloma. OTOLARYNGOLOGY CASE REPORTS 2023. [DOI: 10.1016/j.xocr.2023.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
32
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
33
|
Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, Kajiya M. Integrating Genetic Alterations and the Hippo Pathway in Head and Neck Squamous Cell Carcinoma for Future Precision Medicine. J Pers Med 2022; 12:jpm12101544. [PMID: 36294681 PMCID: PMC9604790 DOI: 10.3390/jpm12101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic alterations and dysregulation of signaling pathways are indispensable for the initiation and progression of cancer. Understanding the genetic, molecular, and signaling diversities in cancer patients has driven a dynamic change in cancer therapy. Patients can select a suitable molecularly targeted therapy or immune checkpoint inhibitor based on the driver gene alterations determined by sequencing of cancer tissue. This “precision medicine” approach requires detailed elucidation of the mechanisms connecting genetic alterations of driver genes and aberrant downstream signaling pathways. The regulatory mechanisms of the Hippo pathway and Yes-associated protein/transcriptional co-activator with PDZ binding motif (YAP/TAZ) that have central roles in cancer cell proliferation are not fully understood, reflecting their recent discovery. Nevertheless, emerging evidence has shown that various genetic alterations dysregulate the Hippo pathway and hyperactivate YAP/TAZ in cancers, including head and neck squamous cell carcinoma (HNSCC). Here, we summarize the latest evidence linking genetic alterations and the Hippo pathway in HNSCC, with the aim of contributing to the continued development of precision medicine.
Collapse
Affiliation(s)
- Toshinori Ando
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-82-257-5727
| | - Kento Okamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - J. Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
34
|
Wang Y, Shi R, Zhai R, Yang S, Peng T, Zheng F, Shen Y, Li M, Li L. Matrix stiffness regulates macrophage polarization in atherosclerosis. Pharmacol Res 2022; 179:106236. [PMID: 35483516 DOI: 10.1016/j.phrs.2022.106236] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the pathological basis of many fatal cardiovascular diseases. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a paradox role in disease progression. In response to different microenvironments, macrophages mainly have two polarized directions: pro-inflammatory macrophages and anti-inflammatory macrophages. More and more evidence shows that macrophage is mechanosensitive and matrix stiffness regulate macrophage phenotypes in atherosclerosis. However, the molecular mechanism of matrix stiffness regulating macrophage polarization still lacks in-depth research, which hinders the development of new anti-atherosclerotic therapies. In this review, we discuss the important role of matrix stiffness in regulating macrophage polarization through mechanical signal transduction (Hippo, Piezo, cytoskeleton, and integrin) and epigenetic mechanisms (miRNA, DNA methylation, and histone). We hope to provide a new perspective for atherosclerosis therapy by targeting matrix stiffness and macrophage polarization.
Collapse
Affiliation(s)
- Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruotong Shi
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Ran Zhai
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Shiyan Yang
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Tianqi Peng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - YanNan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
35
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
36
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|