1
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
2
|
Gabrielli AP, Novikova L, Ranjan A, Wang X, Ernst NJ, Abeykoon D, Roberts A, Kopp A, Mansel C, Qiao L, Lysaker CR, Wiedling IW, Wilkins HM, Swerdlow RH. Inhibiting mtDNA transcript translation alters Alzheimer's disease-associated biology. Alzheimers Dement 2024; 20:8429-8443. [PMID: 39441557 PMCID: PMC11667520 DOI: 10.1002/alz.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) features changes in mitochondrial structure and function. Investigators debate where to position mitochondrial pathology within the chronology and context of other AD features. METHODS To address whether mitochondrial dysfunction alters AD-implicated genes and proteins, we treated SH-SY5Y cells and induced pluripotent stem cell (iPSC)-derived neurons with chloramphenicol, an antibiotic that inhibits mtDNA-generated transcript translation. We characterized adaptive, AD-associated gene, and AD-associated protein responses. RESULTS SH-SY5Y cells and iPSC neurons responded to mtDNA transcript translation inhibition by increasing mtDNA copy number and transcription. Nuclear-expressed respiratory chain mRNA and protein levels also changed. There were AD-consistent concordant and model-specific changes in amyloid precursor protein, beta amyloid, apolipoprotein E, tau, and α-synuclein biology. DISCUSSION Primary mitochondrial dysfunction induces compensatory organelle responses, changes nuclear gene expression, and alters the biology of AD-associated genes and proteins in ways that may recapitulate brain aging and AD molecular phenomena. HIGHLIGHTS In AD, mitochondrial dysfunction could represent a disease cause or consequence. We inhibited mitochondrial translation in human neuronal cells and neurons. Mitochondrial and nuclear gene expression shifted in adaptive-consistent patterns. APP, Aβ, APOE, tau, and α-synuclein biology changed in AD-consistent patterns. Mitochondrial stress creates an environment that promotes AD pathology.
Collapse
Affiliation(s)
- Alexander P. Gabrielli
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Lesya Novikova
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Amol Ranjan
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Nicholas J. Ernst
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Dhanushki Abeykoon
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Anysja Roberts
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Annie Kopp
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Clayton Mansel
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Linlan Qiao
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityKansasUSA
- Neurologythe University of Kansas Medical CenterKansas CityKansasUSA
| | - Ian W. Wiedling
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Neurologythe University of Kansas Medical CenterKansas CityKansasUSA
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityKansasUSA
- Neurologythe University of Kansas Medical CenterKansas CityKansasUSA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease Research CenterKansas CityKansasUSA
- Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityKansasUSA
- Neurologythe University of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
3
|
Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 2024; 25:923-941. [PMID: 39196438 DOI: 10.1007/s10522-024-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
5
|
Devine J, Monzel AS, Shire D, Rosenberg AM, Junker A, Cohen AA, Picard M. Brain-body mitochondrial distribution patterns lack coherence and point to tissue-specific and individualized regulatory mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614152. [PMID: 39345381 PMCID: PMC11430016 DOI: 10.1101/2024.09.20.614152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Energy transformation capacity is generally assumed to be a coherent individual trait driven by genetic and environmental factors. This predicts that some individuals should have high and others low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. Here, we test this assumption using multi-tissue molecular and enzymatic activities in mice and humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mtDNA density were correlated between tissues (median r = -0.01-0.16), indicating that animals with high mitochondrial capacity in one tissue can have low capacity in other tissues. Similarly, the multi-tissue correlation structure of RNAseq-based indices of mitochondrial gene expression across 45 tissues from 948 women and men (GTEx) showed small to moderate coherence between only some tissues (regions of the same brain), but not between brain-body tissue pairs in the same person (median r = 0.01). Mitochondrial DNA copy number (mtDNAcn) also lacked coherence across organs and tissues. Mechanistically, tissue-specific differences in mitochondrial gene expression were attributable in part to i) tissue-specific activation of canonical energy sensing pathways including the transcriptional coactivator PGC-1 and the integrated stress response (ISR), and ii) proliferative activity across tissues. Finally, we identify subgroups of individuals with high mitochondrial gene expression in some tissues (e.g., heart) but low expression in others (e.g., skeletal muscle) who display different clinical phenotypic patterns. Taken together, these data raise the possibility that tissue-specific energy sensing pathways may contribute to the idiosyncratic mitochondrial distribution patterns associated with the inter-organ heterogeneity and phenotypic diversity among individuals.
Collapse
Affiliation(s)
- Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Tsai PY, Shui B, Lee S, Liu Y, Qu Y, Cheng C, Edwards K, Wong C, Meng-Killeen R, Soloway PD, Barrow JJ. Ado-Mediated Depletion of Taurine Impairs Mitochondrial Respiratory Capacity and Alters the Chromatin Landscape of Inguinal Adipose Tissue. Nutrients 2023; 15:3532. [PMID: 37630723 PMCID: PMC10458711 DOI: 10.3390/nu15163532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Non-shivering thermogenesis (NST) has strong potential to combat obesity; however, a safe molecular approach to activate this process has not yet been identified. The sulfur amino acid taurine has the ability to safely activate NST and confer protection against obesity and metabolic disease in both mice and humans, but the mechanism of this action is unknown. In this study, we discover that a suite of taurine biosynthetic enzymes, especially that of cysteamine dioxygenase (ADO), significantly increases in response to β3 adrenergic signaling in inguinal adipose tissue (IWAT) in order to increase intracellular concentrations of taurine. We further show that ADO is critical for thermogenic mitochondrial respiratory function as its ablation in adipocytes significantly reduces taurine levels, which leads to declines in mitochondrial oxygen consumption rates. Finally, we demonstrate via assay for transposase-accessible chromatin with sequencing (ATAC-seq) that taurine supplementation in beige adipocytes has the ability to remodel the chromatin landscape to increase the chromatin accessibility and transcription of genes, such as glucose-6-phosphate isomerase 1 (Gpi1), which are critical for NST. Taken together, our studies highlight a potential mechanism for taurine in the activation of NST that can be leveraged toward the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Seoyeon Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yang Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Yue Qu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Chloe Cheng
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Kaydine Edwards
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Callie Wong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Ryan Meng-Killeen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| | - Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Joeva J. Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (P.-Y.T.)
| |
Collapse
|
7
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
8
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
9
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
10
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Anusha-Kiran Y, Mol P, Dey G, Bhat FA, Chatterjee O, Deolankar SC, Philip M, Prasad TSK, Srinivas Bharath MM, Mahadevan A. Regional heterogeneity in mitochondrial function underlies region specific vulnerability in human brain ageing: Implications for neurodegeneration. Free Radic Biol Med 2022; 193:34-57. [PMID: 36195160 DOI: 10.1016/j.freeradbiomed.2022.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.
Collapse
Affiliation(s)
- Yarlagadda Anusha-Kiran
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mariamma Philip
- Department of Biostatistics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India.
| |
Collapse
|
12
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
13
|
THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|